
An Introduction to Finite Element Method
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Engineering design
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Introduction to FEM

Physical Problem

Mathematical model
Governed by differential 

equations

Assumptions regarding
Geometry
Kinematics
Material law
Loading
Boundary conditions
Etc.

Question regarding the problem
...how large are the deformations? 
...how much is the heat transfer?
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Questions: What is the bending moment at section AA?  What is the deflection at the pin?

Mathematical model

Difficult to solve by hand!

Physical Problem

Exact
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Introduction to FEM

Finite element analysis

Finite element modelSolid model

PREPROCESSING
1. Create a geometric model
2. Develop the finite element model (numerical approximation) 
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Introduction to FEM

FEM analysis scheme

Step 1: Divide the problem domain into non overlapping 
regions (“elements”) connected to each other through 
special points (“nodes”)

Element

Node

Finite element model

Finite element analysis
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Introduction to FEM

FEM analysis scheme

Step 2: Describe the approximate behavior of each element 
(spatially discretized by displacement-formulated FEM).

Step 3: Describe the approximate behavior of the entire body 
by putting together the behavior of each of the elements (this is 
a process known as “assembly”)

POSTPROCESSING

Compute moment at 
section AA

Preprocessing

Analysis

Postprocessing

Step 1

Step 2
Step 3

Finite element analysis
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Introduction to FEM

FEM solution to mathematical model 2 (plane stress)

Moment at section AA

cm
cmNM

Wloadat 064.0
500,27
=

=
δDeflection at load

Conclusion: With respect to the questions we posed, the beam 
model is reliable if the required bending moment is to be predicted 
within 1% and the deflection is to be predicted within 20%. The beam 
model is also highly effective since it can be solved easily (by hand).
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Introduction to FEM

Physical
Phenomenon

Differential 
Equations

Finite Element
Equations

model Approximation

Steps in engineeing mechanics analysis

Boundary

Region

Heat conduction 
in concrete

Diff. equation for
heat conduction

Finite element
model

element

model Approximation
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Introduction to FEM

Temperature distribution along 1-dim. fin
T T(x)

x

T

x

T1
T2 T3 T4

T5

1 2 3 4 5

Nodal points & temperature values at nodes

T1
T2

1 2

T3
T4

T5

3 4 5432

4 elements with linear temp within each element
resulting an approximation along the fin.

1 32 3 4 5

2 elements with quadratic temp within each 
element resulting a better approximation

degrees of freedom

nodes

•C
ha

pt
er

 1
 O

ve
rv

ie
w

Introduction to FEM

•C
ha

pt
er

 1
 O

ve
rv

ie
w

Introduction to FEM

Cantilever plate
in plane strain 

uniform loadinguniform loading
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Problem:Problem: Obtain the Obtain the 
stresses/strains in the platestresses/strains in the plate

Node

Element
Finite element Finite element 

modelmodel

• Approximate method
• Geometric model
• Node
• Element
• Mesh 
• Discretization

In summary, FEM involves…
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Introduction to FEM

Physical Problem

Mathematical model
Governed by differential 

equations

Numerical model

e.g., finite element 
model

Verification

Validation
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Introduction to FEM

1. “Direct Stiffness” approach for springs
2. Bar elements and truss analysis
3. Introduction to boundary value problems: strong form, principle 

of minimum potential energy and principle of virtual work.
4. Displacement-based finite element formulation in 1D: formation 

of stiffness matrix and load vector, numerical integration.
5. Displacement-based finite element formulation in 2D: formation 

of stiffness matrix and load vector for CST and quadrilateral 
elements.

6. Discussion on issues in practical FEM modeling
7. Convergence of finite element results
8. Higher order elements
9. Isoparametric formulation
10. Numerical integration in 2D
11. Solution of linear algebraic equations

Upcoming Course content



Summary:

• Developing the finite element equations for a    
system of springs using the “direct stiffness”
approach

• Application of boundary conditions
• Physical significance of the stiffness matrix
• Direct assembly of the global stiffness matrix
• Problems
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Step 1: Divide the problem domain into non 
overlapping regions (“elements”) connected to 
each other through special points (“nodes”) 

Step 2: Describe the behavior of each element

Step 3: Describe the behavior of the entire body by 
putting together the behavior of each of the 
elements (this is a process known as “assembly”)•D
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Problem
Analyze the behavior of the system composed of the two 
springs loaded by external forces as shown above

k1 k2

F1x F2x F3x x

Given
F1x , F2x ,F3x are external loads. Positive directions of the 
forces are along the positive x-axis
k1 and k2 are the stiffnesses of the two springs•D
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Step 1: In order to analyze the system we break it up into 
smaller parts, i.e., “elements” connected to each other 
through “nodes”

k1
k2F1x F2x F3x x

1 2 3
Element 1 Element 2

Node 1
d1x d2x d3x

Unknowns: nodal displacements d1x, d2x, d3x,

•D
ire

ct
 S

tif
fn

es
s 

-s
pr

in
gs



© 2002 Brooks/Cole Publishing / Thomson Learning™

Step 2: Analyze the behavior of a single element (spring)

Two nodes: 1, 2
Nodal displacements:
Nodal forces:
Spring constant: k 

1xd̂ 2xd̂
1xf̂ 2xf̂

k1
k2F1x F2x F3x x

1 2 3
Element 1 Element 2

Node 1
d1x d2x d3x
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Local (  ,   ,  ) and global (x,y,z) coordinate systemsx̂ ŷ ẑ
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F

d
F

x
k

k
d

k
1

Hooke’s Law
F = kd

Behavior of a linear spring (recap)

F = Force in the spring 
d = deflection of the spring
k = “stiffness” of the spring
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Element 
stiffness 
matrix

Hooke’s law for our spring element )d̂d̂(k f̂ 1x2x2x −= Eq (1)

Force equilibrium for our spring element
0f̂f̂ 2x1x =+

)d̂d̂(k f̂f̂ 1x2x2x1x −−=−=⇒ Eq (2)

Collect Eq (1) and (2) in matrix form

d̂k̂f̂ =

32143421321
d̂

2x

1x

k̂f̂

2x

1x

d̂
d̂

kk-
k-k

f̂
f̂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Element 
force 
vector

Element nodal 
displacement 
vector
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1xf̂
2xf̂
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Note  
1. The element stiffness matrix is “symmetric”, i.e. 
2. The element stiffness matrix is singular, i.e.,

The consequence is that the matrix is NOT invertible. It is not possible 
to invert it to obtain the displacements. Why?

The spring is not constrained in space and hence it can attain multiple 
positions in space for the same nodal forces

e.g.,

0)k̂(det 22 =−= kk
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each spring element, lets try to obtain the behavior of the original 
structure by assembly
Split the original structure into component elements

32143421321
)1()1()1(

d̂

(1)
2x

(1)
1x

k̂

11

11

f̂

(1)
2x

(1)
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Eq (3) Eq (4)

Element 1

k11 2

(1)
1xd̂(1)

1xf̂ (1)
2xf̂ (1)

2xd̂

Element 2
k22 3

(2)
1xd̂(2)

1xf̂ (2)
2xf̂ (2)

2xd̂
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To assemble these two results into a single description of the 
response of the entire structure we need to link between the local and 
global variables. 

Question 1: How do we relate the local (element) displacements
back to the global (structure) displacements?

k1
k2F1x F2

x
F3
x x

1 2 3
Element 1 Element 2

Node 1 d1x d2x d3x

3x
(2)
2x

2x
(2)
1x

(1)
2x

1x
(1)
1x

dd̂

dd̂d̂

dd̂

=

==

=

Eq (5)
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Hence, equations (3) and (4) may be rewritten as
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⎨
⎧
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k11 2

(1)
1xd̂(1)

1xf̂ (1)
2xf̂ (1)

2xd̂

k22 3

(2)
1xd̂(2)

1xf̂ (2)
2xf̂ (2)

2xd̂

Element 1 Element 2

Or, we may expand the matrices and vectors to obtain



Eq (6)

Eq (7)
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Expanded element stiffness matrix of element 1 (local)
Expanded nodal force vector for element 1 (local)
Nodal load vector for the entire structure (global)

e)1(
k̂

e)1(
f̂
d
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forces back to the global (structure) forces? Draw 5 FBDs

0f̂-F:3nodeAt

0f̂f̂-F:2nodeAt

0f̂-F:1nodeAt

(2)
2x3x

(2)
1x

(1)
2x2x

(1)
1x1x

=

=−

=

k1
k2F1x F2x F3x x

1 2 3
d1x d2x

d3x
A B C D
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(1)
1xf̂ (1)

2xf̂ (2)
1xf̂ (2)

2xf̂
2xF1xF 3xF

2 3
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In vector form, the nodal 
force vector (global)

⎪
⎭

⎪
⎬

⎫

⎪
⎩
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(1)
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(1)
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3x
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f̂f̂
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F
F
F

F

Recall that the expanded 
element force vectors were 
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1x)1(

f̂

f̂
0
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0
f̂
f̂

f̂
ee

Hence, the global force vector is simply the sum of the 
expanded element nodal force vectors

ee )2()1(

3x

2x

1x

f̂f̂
F
F
F
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⎭
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dk̂f̂ anddk̂f̂
(2)e)2((1)e)1(

==
ee

But we know the expressions for the expanded local 
force vectors from Eqs (6) and (7)

dk̂k̂dk̂dk̂f̂f̂F
(2)e(1)e(2)e(1)e)2()1(

⎟
⎠
⎞⎜

⎝
⎛ +=+=+=

ee

Hence

dKF =

matricesstiffnesselementexpandedofsum
matrixstiffnessGlobalK

vectorntdisplacemenodalGlobald
vectorforcenodalGlobalF

=
=
=
=
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For our original structure with two springs, the 
global stiffness matrix is

⎥
⎥
⎥
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⎢
⎢
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⎡
−+

−
=

⎥
⎥
⎥
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⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

22

2211

11

k̂

22

22

k̂

11

11

kk-0
kkkk-
0kk

kk-0
kk0
000

000
0kk-
0kk

K

)2()1(
44 344 2144 344 21

ee

NOTE
1. The global stiffness matrix is symmetric
2. The global stiffness matrix is singular
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3x22x23x

3x22x211x12x

2x11x11x

3x
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22
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11
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dkd-kF
dkd)kk(d-kF

dkdkF

d
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⇒
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These are the 3 equilibrium equations at the 3 nodes. 

The system equations                       implydKF =
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0f̂-F:3nodeAt

0f̂f̂-F:2nodeAt

0f̂-F:1nodeAt

(2)
2x3x

(2)
1x

(1)
2x2x

(1)
1x1x

=

=−

=

k1
k2F1x F2x F3x x

1 2 3
d1x d2x

d3x
A B C D
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(1)
1xf̂ (1)

2xf̂ (2)
1xf̂ (2)

2xf̂
2xF1xF 3xF

2 3

( ) (1)
1x2x1x11x f̂ddkF =−=

( ) ( )
(2)

1x
(1)
2x

3x2x22x1x1

3x22x211x12x

f̂f̂

ddkddk
dkd)kk(d-kF

+=

−+−−=
−++=

( ) (2)
2x3x2x23x f̂dd-kF =−=

Notice that the sum of the forces equal zero, i.e., the 
structure is in static equilibrium. 

F1x + F2x+ F3x =0

Given the nodal forces, can we solve for the 
displacements?

To obtain unique values of the displacements, at least 
one of the nodal displacements must be specified.•D
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Direct assembly of the global stiffness matrix

k1
k2F1x F2x F3x x

1 2 3
Element 1 Element 2

d1x d2x d3x

Global

Element 1
k11 2

(1)
1xd̂(1)

1xf̂ (1)
2xf̂ (1)

2xd̂

Element 2
k22 3

(2)
1xd̂(2)

1xf̂ (2)
2xf̂ (2)

2xd̂

Local

Node element connectivity chart : Specifies the global 
node number corresponding to the local (element) node 
numbers

322

211

Node 2Node 1ELEMENT

Global node number

Local node number
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Stiffness matrix of element 2

⎥
⎦

⎤
⎢
⎣

⎡
=

22

22)2(

kk-
k-k

k̂
d2x

d3x

d3xd2x

Stiffness matrix of element 1

⎥
⎦

⎤
⎢
⎣

⎡
=

11

11)1(

kk-
k-k

k̂
d1x

d2x

d2xd1x

Examples: 
Problems 
2.1 & 2.3 of Logan

Global stiffness matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=

22

2211

11

kk-0
k-kkk-
0k-k

K d2x

d3x

d3xd2x

d1x

d1x

Example 2.1

Compute the global stiffness matrix of the assemblage of springs
shown above

( )
( )

1000 1000 0 0
1000 1000 2000 2000 0

K
0 2000 2000 3000 3000
0 0 3000 3000

−⎡ ⎤
⎢ ⎥− + −⎢ ⎥=
⎢ ⎥− + −
⎢ ⎥−⎣ ⎦

d3xd2xd1x d4x

d2x

d3x

d1x

d4x
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Example 2.3

Compute the global stiffness matrix of the assemblage of springs
shown above

( )
( ) ( )

1 1

1 1 2 3 2 3

2 3 2 3

k -k 0
K -k k k k - k k

0 - k k k k

⎡ ⎤
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

© 2002 Brooks/Cole Publishing / Thomson Learning™

3

Imposition of boundary conditions
Consider 2 cases
Case 1: Homogeneous boundary conditions (e.g., d1x=0)
Case 2: Nonhomogeneous boundary conditions (e.g., one of the 
nodal displacements is known to be different from zero)

Homogeneous boundary condition at node 1

k1=500N/m k2=100N/m F3x=5N
x1

2 3
Element 1 Element 2

d1x=0 d2x d3x

System equations

Note that F1x is the wall reaction which is to be computed as part of the 
solution and hence is an unknown in the above equation

Writing out the equations explicitly
2x 1

2 3

2 3

-500d
600 100 0
100 100 5

x

x x

x x

F
d d
d d

=
− =

− + =

Eq(1)

Eq(2)
Eq(3)

1 1

2

3

500 -500 0
-500 600 -100 0

0 -100 100 5

x x

x

x

d F
d
d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0

Global Stiffness 
matrix

Nodal 
disp
vector

Nodal 
load 
vector

Eq(2) and (3) are used to 
find d2x and d3x by solving

Note use Eq(1) to compute 1 2x=-500d 5xF N= −

2

3

2

3

600 100 0
100 100 5

0.01
0.06

x

x

x

x

d
d

d m
d m

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
⇒ =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
NOTICE: The matrix in the above equation may be obtained from 
the global stiffness matrix by deleting the first row and column

500 -500 0
-500 600 -100

0 -100 100

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

600 100
100 100

−⎡ ⎤
⎢ ⎥−⎣ ⎦



NOTICE: NOTICE: 

1. Take care of 1. Take care of homogeneoushomogeneous boundary conditionsboundary conditions
by deleting the appropriate rows and columns by deleting the appropriate rows and columns from the from the 
global stiffness matrix and solving the reduced set of global stiffness matrix and solving the reduced set of 
equations for the unknown nodal displacements.equations for the unknown nodal displacements.

2. Both displacements and forces CANNOT be known at 2. Both displacements and forces CANNOT be known at 
the same node. If the displacement at a node is known, the the same node. If the displacement at a node is known, the 
reaction force at that node is unknown (and vice versa)reaction force at that node is unknown (and vice versa)•D
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Imposition of boundary conditions…contd.

Nonhomogeneous boundary condition:  spring 2 is pulled at 
node 3 by 0.06 m)

k1=500N/m k2=100N/m
x1

2 3
Element 1 Element 2

d1x=0 d2x d3x=0.06m

System equations

1 1

2

3 3

500 -500 0
-500 600 -100 0

0 -100 100

x x

x

x x

d F
d
d F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Note that now F1x and F3x are not known.
Writing out the equations explicitly

2x 1

2

2 3

-500d
600 100(0.06) 0
100 100(0.06)

x

x

x x

F
d
d F

=
− =

− + =

0

Eq(1)

Eq(2)
Eq(3)

0.06
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Now use only equation (2) to compute d2x

2

2

600 100(0.06)
0.01

x

x

d
d m

=
⇒ =

Now use Eq(1) and (3) to 
compute F1x =-5N and F3x=5N
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Recap of what we did

Step 1: Divide the problem domain into non overlapping regions 
(“elements”) connected to each other through special points 
(“nodes”) 

Step 2: Describe the behavior of each element (               )

Step 3: Describe the behavior of the entire body (by “assembly”). 

d̂k̂f̂ =

Element 
nodal 
displacement
vector

This consists of the following steps

1. Write the force-displacement relations of each spring in 
expanded form

d̂k̂f̂ e=
e

Global 
nodal 
displacement
vector

Recap of what we did…contd.

2. Relate the local forces of each element to the global forces at 
the nodes (use FBDs and force equilibrium).

Finally obtain

Where the global stiffness matrix

∑=
e

f̂F

dKF =

∑= ekK

Recap of what we did…contd.

Apply boundary conditions by partitioning the matrix and vectors

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

2221

1211

F
F

d
d

KK
KK

Solve for unknown nodal displacements

1212222 dKFdK −=

Compute unknown nodal forces

2121111 dKdKF +=



Physical significance of the stiffness matrix

In general, we will have a 
stiffness matrix of the form
(assume for now that we do not 
know k11, k12, etc) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

kkk
kkk
kkk

K

The finite element 
force-displacement 
relations: ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

333231

232221

131211

F
F
F

d
d
d

kkk
kkk
kkk

k1
k2F1x F2x F3x x

1 2 3
Element 1 Element 2

d1x d2x d3x

The first equation is

1313212111 Fdkdkdk =++
Force equilibrium 
equation at node 1

What if d1=1, d2=0, d3=0 ?

313

212

111

kF
kF
kF

=
=
= Force along node 1 due to unit displacement at node 1

Force along node 2 due to unit displacement at node 1
Force along node 3 due to unit displacement at node 1

While nodes 2 and 3 are held fixed

Similarly we obtain the physical significance of the other 
entries of the global stiffness matrix

Columns of the global stiffness matrix

ijk = Force at node ‘i’ due to unit displacement at node ‘j’
keeping all the other nodes fixed

In general

This is an alternate route to generating the global stiffness matrix
e.g., to determine the first column of the stiffness matrix

Set d1=1, d2=0, d3=0
k1

k2F1 F2 F3 x

1 2 3
Element 1 Element 2

d1 d2 d3

Find F1=?, F2=?, F3=?

For this special case, Element #2 does not have any contribution.
Look at the free body diagram of Element #1

x
k1

(1)
1xd̂

(1)
1xf̂ (1)

2xf̂

(1)
2xd̂

(1) (1) (1)
2x 1 2x 1x 1 1

ˆ ˆ ˆf (d d ) (0 1)k k k= − = − = −

(1) (1)
1x 2x 1

ˆ ˆf f k= − =



F1

F1 = k1d1 = k1=k11

F2 = -F1 = -k1=k21

F3 = 0 =k31

(1)
1xf̂

Force equilibrium at node 1

(1)
1 1x 1

ˆF =f k=

Force equilibrium at node 2

(1)
2xf̂

F2
(1)

2 2x 1
ˆF =f k= −

Of course, F3=0

Hence the first column of the stiffness matrix is

1 1

2 1

3 0

F k
F k
F

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

To obtain the second column of the stiffness matrix, calculate the 
nodal reactions at nodes 1, 2 and 3 when d1=0, d2=1, d3=0 

1 1

2 1 2

3 2

F k
F k k
F k

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭

Check that

To obtain the third column of the stiffness matrix, calculate the 
nodal reactions at nodes 1, 2 and 3 when d1=0, d2=0, d3=1 

1

2 2

3 2

0F
F k
F k

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

Check that

Steps in solving a problem

Step  1: Write down the node-element connectivity table
linking local and global displacements

Step 2: Write down the stiffness matrix of each element

Step 3: Assemble the element stiffness matrices to form the 
global stiffness matrix for the entire structure using the node 
element connectivity table

Step 4: Incorporate appropriate boundary conditions

Step 5: Solve resulting set of reduced equations for the unknown
displacements

Step 6: Compute the unknown nodal forces



Summary:

• Stiffness matrix of a bar/truss element 

• Coordinate transformation

• Stiffness matrix of a truss element in 2D space

• Problems in 2D truss analysis (including multipoint 
constraints)

• 3D Truss element•D
ire

ct
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tif
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–
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Trusses: Engineering structures that are composed only 
of two-force members. e.g., bridges, roof supports

Actual trusses: Airy structures composed of slender members (I-
beams, channels, angles, bars etc) joined together at their ends by 
welding, riveted connections or large bolts and pins

Gusset plate

A typical truss structure

Ideal trusses: Assumptions

• Ideal truss members are connected only at their ends.

• Ideal truss members are connected by frictionless pins (no moments)

• The truss structure is loaded only at the pins

• Weights of the members are neglected

A typical truss structure
Frictionless pin

These assumptions allow us to idealize each truss member as a 
two-force member (members loaded only at their extremities by equal 
opposite and collinear forces)

member in 
compression

member in 
tension

Connecting pin



FEM analysis scheme

Step 1: Divide the truss into bar/truss elements connected to each 
other through special points (“nodes”) 

Step 2: Describe the behavior of each bar element (i.e. derive its 
stiffness matrix and load vector in local AND global coordinate 
system)

Step 3: Describe the behavior of the entire truss by putting together the 
behavior of each of the bar elements (by assembling their stiffness 
matrices and load vectors)

Step 4: Apply appropriate boundary conditions and solve

Stiffness Matrix  
A Bar/Truss Element

L: Length of bar
A: Cross sectional area of bar
E: Elastic (Young’s) modulus of bar

:displacement of bar as a function of local coordinate   of bar
The strain in the bar at 

© 2002 Brooks/Cole Publishing / Thomson Learning™

E, A

x̂

x̂d
ûd)x̂ε( =

x̂)x̂(û

The stress in the bar (Hooke’s law)
)x̂ε( E)x̂( =σ

Derivation: stiffness matrix of a bar element
EAε)x̂T( =

Tension in the bar

2x1x d̂
L
x̂d̂

L
x̂1)x̂(û +⎟
⎠
⎞

⎜
⎝
⎛ −=

x̂

Assume that the displacement         is varying linearly along the bar)x̂(û

Then, strain is constant along the bar: L
d̂d̂

x̂d
ûdε 1x2x −==

2xd̂

1xd̂ 2x1x d̂
L
x̂d̂

L
x̂1)x̂(û +⎟
⎠
⎞

⎜
⎝
⎛ −=x̂

L

Stress is also constant along the bar: ( )1x2x d̂d̂
L
EEε −==σ

Tension is constant along the bar: 
{

( )1x2x

k

d̂d̂
L

EAEAεT −==

The bar is acting like a spring with stiffness
L

EAk =



Recall the lecture on springs

© 2002 Brooks/Cole Publishing / Thomson Learning™

E, A

Two nodes: 1, 2
Nodal displacements:
Nodal forces:
Spring constant:

1xd̂ 2xd̂
1xf̂ 2xf̂

L
EAk =

d̂k̂f̂ =
32143421321

d̂

2x

1x

k̂f̂

2x

1x

d̂
d̂

kk-
k-k

f̂
f̂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Element force 
vector

Element nodal 
displacement 
vector

Element 
stiffness 
matrix

Element stiffness matrix in local coordinates

What if we have 2 bars?

1

11
1 L

AEk =
x

1 2 3Element 1 Element 2

d1x d2x
d3x

2

22
2 L

AEk =

This is equivalent to the following system of springs

E1, A1
E2, A2

L1
L2

Problem 1: Find the stresses in the two-bar assembly loaded as 
shown below

E, 2A
E, A

L L

1
2EAk

L
=

x

1 2 3Element 1 Element 2

d1x d2x
d3x

2
EAk
L

=

Solution: This is equivalent to the following system of springs

1
2 3

P

We will first compute the displacement at node 2 and then the 
stresses within each element

The global set of equations can be generated using the technique
developed in the lecture on “springs”

1 1 1x 1x

1 1 2 2 2 2

2 2 3 3

0 d F

0
x x

x x

k k
k k k k d F

k k d F

−⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥− + − =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎩ ⎭

here 1 3 20x x xd d and F P= = =

Hence, the above set of equations may be explicitly written as 

1 2 1

1 2 2

2 2 3

(1)
( ) (2)

(3)

x x

x

x x

k d F
k k d P
k d F

− =

+ =
− =

From equation (2) 2
1 2 3x

P PLd
k k EA

= =
+



To calculate the stresses:

For element #1 first compute the element strain

(1) 2 1 2

3
x x xd d d P
L L EA

ε −
= = =

and then the stress as

Similarly, in element # 2  

(1) (1)

3
PE
A

σ ε= =

(2) 3 2 2

3
x x xd d d P

L L EA
ε −

= = − = −

(2) (2)

3
PE
A

σ ε= = −

(element in tension)

(element in compression)

© 2002 Brooks/Cole Publishing / Thomson Learning™

Inter-element continuity of a two-bar structure

Bars in a truss have various orientations

member in 
compression

member in 
tension

Connecting pin

x̂
ŷ

θ

1x1x f̂,d̂

2x2x f̂,d̂

1x1x f,d

1y1y f,d

2y2y f,d

2x2x f,d

x

y

At node 1: At node 2:

1xd

1yd
1xd̂θ

1yd̂

2xd

2yd
2xd̂θ

2yd̂

1xf

1yf
1xf̂θ

1yf̂ 0=

2xf

2yf
2xf̂θ

2yf̂ 0=

1y 1y
ˆ ˆd , f 0=

2y 2y
ˆ ˆd , f 0=



In the global coordinate system, the vector of nodal 
displacements and  loads

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

2y

2x

1y

1x

2y

2x

1y

1x

f
f
f
f

f;

d
d
d
d

d

Our objective is to obtain a relation of the form

144414
dkf
×××

=

Where k is the 4x4 element stiffness matrix in global coordinate
system

The key is to look at the local coordinates

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

2x

1x

2x

1x

d̂
d̂

kk-
k-k

f̂
f̂

L
EAk =

Rewrite as
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⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

2y

2x

1y

1x

2y

2x

1y

1x

d̂

d̂
d̂

d̂

0000
0k0k-
0000
0k-0k

f̂

f̂
f̂

f̂

x̂
ŷ

θ

1x1x f̂,d̂

2x2x f̂,d̂

x

y

1y 1y
ˆ ˆd , f 0=

2y 2y
ˆ ˆd , f 0=

d̂k̂f̂ =

NOTES

1. Assume that there is no stiffness in the local y direction.

2. If you consider the displacement at a point along the local x
direction as a vector, then the components of that vector along the 
global x and y directions are the global x and y displacements.

3. The expanded stiffness matrix in the local coordinates is 
symmetric and singular.

^

NOTES
5. In local coordinates we have

But or goal is to obtain the following relationship

Hence, need a relationship between     and  
and between    and    

144414
dkf
×××

=

144414
d̂k̂f̂
×××

=

d̂ d
f̂ f

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

2y

2x

1y

1x

2y

2x

1y

1x

d̂

d̂
d̂

d̂

d̂

d
d
d
d

d

Need to understand 
how the components 
of a vector change 
with coordinate 
transformation

1xd

1yd
1xd̂θ

1yd̂

2xd

2yd
2xd̂θ

2yd̂



Transformation of a vector in two dimensions

θ

x̂ŷ
yv̂

xv cos θ
x

y

v

xv̂
xv

yv

yv sin θ

θ

yv cos θ

xv sin θ

x x y

y x y

v̂ v cos θ v sin θ

v̂ v sin θ v cos θ

= +

= − +

The vector v has components (vx, vy) in the global coordinate system 
and (vx, vy) in the local coordinate system. From geometry^ ^

Angle θ is 
measured positive 
in the counter 
clockwise direction 
from the +x axis)

x x

y y

v̂ vcos θ sin θ
v̂ vsin θ cos θ
⎧ ⎫ ⎧ ⎫⎡ ⎤

=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

In matrix form

Or
x x

y y

v̂ v
v̂ v

l m
m l

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

where
θ
θ

sin
cos
=
=

m
l

Transformation matrix for a single vector in 2D

⎥
⎦

⎤
⎢
⎣

⎡
−

=
lm
ml*T

*v̂ T v=

x x

y y

v̂ v
v̂ and v

v̂ v
⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

relates

where are components of the same 
vector in local and global 
coordinates, respectively.

Direction cosines

d̂ dRelationship between      and for the truss element
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⎫
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⎨
⎧

1y

1x*

1y

1x

d
d

T
d̂
d̂At node 1

At node 2
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d

T
d̂
d̂

Putting these together

321444 3444 21321 d
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2y

2x

1y

1x
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×
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44 T0
0TT

1xd

1yd
1xd̂θ

1yd̂

2xd

2yd
2xd̂θ

2yd̂

Relationship between      and for the truss elementf̂ f
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1x*
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T
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f̂At node 1

At node 2
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Putting these together

321444 3444 21321 f
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=

×
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0TT

1xf

1yf
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2xf̂θ
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Important property of the transformation matrix T

The transformation matrix is orthogonal, i.e. its inverse is its 
transpose

TTT 1 =−

Use the property that l2+m2=1

Putting all the pieces together

( )dTk̂Tf

dTk̂fT

d̂k̂f̂

k

1

43421
−=⇒

=⇒

=

x̂
ŷ

θ

1x1x f̂,d̂

2x2x f̂,d̂

x

y

1y1y f̂,d̂

2y2y f̂,d̂

fTf̂ =

dTd̂ =

The desired relationship is
144414

dkf
×××

=

Where 
44444444

Tk̂Tk
××××

= T is the element stiffness matrix in the 
global coordinate system

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

lm
ml

lm
ml

00
00

00
00
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
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0k0k-
0000
0k-0k
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
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−−
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L
EATk̂Tk
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T

Computation of the direction cosines

L

1

2

θ

(x1,y1)

(x2,y2)

L
yym

L
xxl

12

12

sin

cos

−
==

−
==

θ

θ

What happens if I reverse the node numbers?

L

2

1

θ

(x1,y1)

(x2,y2)

m
L

yym

l
L

xxl

−=
−

==

−=
−

==

21

21

sin'

cos'

θ

θ

Question: Does the stiffness matrix change?
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Example  Bar element for stiffness matrix evaluation
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=

=
=

×=

θ

inL
inA

psiE

2
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⎥
⎥
⎥
⎥
⎥
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⎢
⎢
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Computation of element strains

[ ]

[ ]

[ ] dT0101
L
1

d̂0101
L
1

d̂

d̂
d̂

d̂

0101
L
1

L
d̂d̂ε

2y

2x

1y

1x

1x2x

−=

−=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩
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⎪

⎨
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−=
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Recall that the element strain is
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⎪
⎪
⎭

⎪⎪
⎬
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⎩
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⎨
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⎥
⎥
⎥
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⎤

⎢
⎢
⎢
⎢

⎣

⎡
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d
d
d
d

L
1

d
L
1

d

00
00

00
00

0101
L
1ε

mlml

mlml

lm
ml

lm
ml Computation of element stresses stress and tension

( ) [ ]d
L
Ed̂d̂

L
EEε 1x2x mlml −−=−==σ

[ ]EAT EAε d
L

l m l m= = − −

Recall that the element stress is

Recall that the element tension is



Steps in solving a problem

Step  1: Write down the node-element connectivity table
linking local and global nodes; also form the table of 
direction cosines (l, m)

Step 2: Write down the stiffness matrix of each element in 
global coordinate system with global numbering

Step 3: Assemble the element stiffness matrices to form the 
global stiffness matrix for the entire structure using the 
node element connectivity table

Step 4: Incorporate appropriate boundary conditions

Step 5: Solve resulting set of reduced equations for the unknown
displacements

Step 6: Compute the unknown nodal forces

Node element connectivity table

322

1

2

Node 2

33

11

Node 1ELEMENT

1

2 3

El 1

El 2

El 3

L

1

2

θ

(x1,y1)

(x2,y2)

60 60

60

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=)1(k

Stiffness matrix of element 1

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

Stiffness matrix of element 2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=)2(k

d2x

d3x

d3xd2y d3y

d2y

d3y

d2x

Stiffness matrix of element 3

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=)3(k

d3x

d1x

d1xd3y d1y

d3y

d1y

d3x
There are 4 degrees of 
freedom (dof) per 
element (2 per node)

Global stiffness matrix

66

K

×⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
d2x

d3x

d3xd2x
d1x

d1x

d3y

d2y

d1y

d1y d2y d3y

How do you incorporate boundary conditions?

)3(k

)2(k

)1(k



Example 2

P1

P2

1

2

3

x

y

El#1

El#2
The length of bars 12 and 23 are equal (L)
E: Young’s modulus
A: Cross sectional area of each bar
Solve for 
(1) d2x and d2y
(2) Stresses in each bar

Solution

Step 1: Node element connectivity table

322

2
Node 2

11
Node 1ELEMENT

45o

Table of nodal coordinates

Lsin45Lcos452

2Lsin45

0

y

03

01

xNode

Table of direction cosines

-cos45

cos45

sin45L2

sin45L1

LengthELEMENT 2 1x xl
length
−

= 2 1y ym
length
−

=

Step 2: Stiffness matrix of each element in global 
coordinates with global numbering

2 2

2 2
(1)

2 2

2 2

EAk
L

l lm l lm
lm m lm m
l lm l lm
lm m lm m

⎡ ⎤− −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

Stiffness matrix of element 1

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

1 1 1 1
1 1 1 1EA
1 1 1 12L
1 1 1 1

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

Stiffness matrix of element 2

d2x

d3x

d3x d3y

d2y

d3y

d2x d2y

(2)

1 1 1 1
1 1 1 1EAk
1 1 1 12L

1 1 1 1

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦



1 1 1 1 0 0
1 1 1 1 0 0
1 1 2 0 1 1EAK
1 1 0 2 1 12L

0 0 1 1 1 1
0 0 1 1 1 1

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −

= ⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

Step 3: Assemble the global stiffness matrix

The final set of equations is K d F=

Step 4: Incorporate boundary conditions

2

2

0
0

0
0

x

y

d
d

d

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

Hence reduced set of equations to solve for unknown 
displacements at node 2

2 1

2 2

2 0
0 22

x

y

d PE A
d PL

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭⎩ ⎭

Step 5: Solve for unknown displacements

1

2

2 2

x

y

P L
d E A
d P L

E A

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎪ ⎪⎩ ⎭

Step 6: Obtain stresses in the elements

For element #1: 1

1(1)

2

2

1 2
2 2

E 1 1 1 1
L 2 2 2 2

E ( )
2L 2

x

y

x

y

x y

d
d
d
d

P Pd d
A

σ

⎧ ⎫
⎪ ⎪

⎡ ⎤ ⎪ ⎪= − − ⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

+
= + =

0

0

For element #2: 2

2(2)

3

3

1 2
2 2

E 1 1 1 1
L 2 2 2 2

E ( )
2L 2

x

y

x

y

x y

d
d
d
d

P Pd d
A

σ

⎧ ⎫
⎪ ⎪

⎡ ⎤ ⎪ ⎪= − − ⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

−
= − =

0
0
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Figure 3-19  Plane truss with inclined boundary 
conditions at node 3 (see problem worked out in class)

Multi-point constraints
Problem 3: For the plane truss

P

1

2

3

x

y

El#1

El#2

45o

El#3

P=1000 kN, 
L=length of elements 1 and 2 = 1m
E=210 GPa
A = 6×10-4m2 for elements 1 and 2

= 6     ×10-4 m2 for element 32

Determine the unknown displacements 
and reaction forces.

Solution
Step 1: Node element connectivity table

322
313

2
Node 2

11
Node 1ELEMENT

Table of nodal coordinates

L02

L

0

y

L3

01

xNode

Table of direction cosines

01L2

0

L3

1L1

LengthELEMENT 2 1x xl
length
−

= 2 1y ym
length
−

=

2 1/ 2 1/ 2

Step 2: Stiffness matrix of each element in global 
coordinates with global numbering

2 2

2 2
(1)

2 2

2 2

EAk
L

l lm l lm
lm m lm m
l lm l lm
lm m lm m

⎡ ⎤− −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

Stiffness matrix of element 1

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

9 -4

0 0 0 0
0 1 0 1(210 10 )(6 10 )
0 0 0 01
0 1 0 1

⎡ ⎤
⎢ ⎥−× × ⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦



Stiffness matrix of element 2

d2x

d3x

d3x d3y

d2y

d3y

d2x d2y

9 -4
(2)

1 0 1 0
0 0 0 0(210 10 )(6 10 )k
1 0 1 01

0 0 0 0

−⎡ ⎤
⎢ ⎥× × ⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

Stiffness matrix of element 3

9 -4
(3)

0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5(210 10 )(6 2 10 )k
0.5 0.5 0.5 0.52
0.5 0.5 0.5 0.5

− −⎡ ⎤
⎢ ⎥− −× × ⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

d1x

d3x

d3x d3y

d1y

d3y

d1x d1y

5

0.5 0.5 0 0 0.5 0.5
0.5 1.5 0 1 0.5 0.5
0 0 1 0 1 0

K 1260 10
0 1 0 1 0 0
0.5 0.5 1 0 1.5 0.5
0.5 0.5 0 0 0.5 0.5

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−

= × ⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
− −⎣ ⎦

Step 3: Assemble the global stiffness matrix

The final set of equations is K d F=

N/m

Eq(1)

Step 4: Incorporate boundary conditions

2

3

3

0
0

0
x

x

y

d
d

d
d

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P

1

2

3

x

y

El#1

El#2

45o

El#3

$x
$y

Also, $
3 0yd =

How do I convert this to a boundary condition in the global (x,y) 
coordinates?

in the local coordinate system of element 3

1

1

2

3

3

x

y

y

x

y

F
F
P

F
F
F
F

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P

1

2

3

x

y

El#1

El#2

45o

El#3

$x
$y

Also, 3 0xF =
How do I convert this to a boundary condition in the global (x,y) 
coordinates?

in the local coordinate system of element 3
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$

3 3

33

1
2

x x

yy

dd l m
l m

dm ld
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Using coordinate transformations 

$

$

( )

( )

3 3
3 3

33
3 3

1 1 1
2 2 2
1 1 1
2 2 2

x y
x x

yy
y x

d ddd
dd d d

⎡ ⎤ ⎧ ⎫+⎢ ⎥ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥⇒ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ − −⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

$
3 0yd =

$ ( )3 3 3

3 3

1 0
2

0

y y x

y x

d d d

d d

⇒ = − =

⇒ − = Eq (2)

(Multi-point constraint)

3 3

33

1
2

x x

yy

FF l m
l m

Fm nF

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ = = =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

Similarly for the forces at node 3

( )

( )

3 3
3 3

33
3 3

1 1 1
2 2 2
1 1 1
2 2 2

x y
x x

yy
y x

F FFF
FF F F

⎡ ⎤ ⎧ ⎫+⎢ ⎥ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥⇒ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ − −⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

( )3 3 3

3 3

1 0
2

0

x y x

y x

F F F

F F

⇒ = + =

⇒ + = Eq (3)

3 0xF =

Therefore we need to solve the following equations 
simultaneously

K d F= Eq(1)

3 3 0y xd d− = Eq(2)

3 3 0y xF F+ = Eq(3)

Incorporate boundary conditions and reduce Eq(1) to

2
5

3 3

3 3

1 1 0
1 2 6 0 1 0 1 1 .5 0 .5

0 0 .5 0 .5

x

x x

y y

d P
d F
d F

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥× − =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

Write these equations out explicitly

5
2 3

5
2 3 3 3

5
3 3 3

1 2 6 0 1 0 ( )
1 2 6 0 1 0 ( 1 .5 0 .5 )

1 2 6 0 1 0 ( 0 .5 0 .5 )

x x

x x y x

x y y

d d P
d d d F

d d F

× − =
× − + + =

× + =

Eq(4)

Eq(5)
Eq(6)

Add Eq (5) and (6)
5

2 3 3 3 31 2 6 0 1 0 ( 2 ) 0x x y x yd d d F F× − + + = + = using Eq(3)

5
2 31 2 6 0 1 0 ( 3 ) 0x xd d⇒ × − + = using Eq(2)

2 33x xd d⇒ = Eq(7)

Plug this into Eq(4)
5

3 3
5 6

3

1 2 6 0 1 0 (3 )

2 5 2 0 1 0 1 0
x x

x

d d P
d

⇒ × − =

⇒ × =



3

2 3

0 .0 0 3 9 6 8
3 0 .0 1 1 9

x

x x

d m
d d m
⇒ =

= =

Compute the reaction forces
1

1 2
5

2 3

3 3

3

0 0 .5 0 .5
0 0 .5 0 .5

1 2 6 0 1 0 0 0 0
1 1 .5 0 .5

0 0 .5 0 .5

5 0 0
5 0 0
0

5 0 0
5 0 0

x

y x

y x

x y

y

F
F d
F d
F d
F

k N
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⎪ ⎪ ⎢ ⎥ ⎧ ⎫− −⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥= ×⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪− ⎩ ⎭⎢ ⎥⎪ ⎪
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⎪ ⎪−⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎪ ⎪
⎪ ⎪⎩ ⎭

Physical significance of the stiffness matrix

In general, we will have a stiffness matrix of the form
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⎥
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333231
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And the finite element force-displacement relation
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333231
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Physical significance of the stiffness matrix

The first equation is

1313212111 Fdkdkdk =++
Force equilibrium 
equation at node 1

What if d1=1, d2=0, d3=0 ?

313

212

111

kF
kF
kF

=
=
= Force along d.o.f 1 due to unit displacement at d.o.f 1

Force along d.o.f 2 due to unit displacement at d.o.f 1
Force along d.o.f 3 due to unit displacement at d.o.f 1

While d.o.f 2 and 3 are held fixed

Similarly we obtain the physical significance of the other 
entries of the global stiffness matrix

Columns of the global stiffness matrix
ijk = Force at d.o.f ‘i’ due to unit displacement at d.o.f ‘j’

keeping all the other d.o.fs fixed

In general



Example

P1

P2

1

2

3

x

y

El#1

El#2
The length of bars 12 and 23 are equal (L)
E: Young’s modulus
A: Cross sectional area of each bar
Solve for d2x and d2y using the “physical 
interpretation” approach

Solution

Notice that the final set of equations will be of the form

211 12 1

221 22 2

x

y

dk k P
dk k P
⎧ ⎫⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭⎩ ⎭

Where k11, k12, k21 and k22 will be determined using the 
“physical interpretation” approach

45o

F2x=k11

F2y=k21

1

2

3

x

y

El#1

El#2

To obtain  the first column 11

21

k
k
⎧ ⎫
⎨ ⎬
⎩ ⎭

apply 2

2

1
0

x

y

d
d

=
=

2

x

T1

y

2’

1
11.cos(45)
2

δ = =

2
11.cos(45)
2

δ = =

T2
F2x=k11

F2y=k21

Force equilibrium

11 1 2

21 1 2

cos(45) cos(45) 0

sin(45) sin(45) 0
x

y

F k T T

F k T T

= − − =

= − + =
∑
∑

Force-deformation relations

1 1

2 2

EAT
L
EAT
L

δ

δ

=

=

d2x=1

Combining force equilibrium and force-deformation relations
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Now use the geometric (compatibility) conditions (see figure)
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Combining force equilibrium and force-deformation relations
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Now use the geometric (compatibility) conditions (see figure)
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This negative is due to compression
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Transformation matrix T relating the local and global 
displacement and load vectors of the truss element
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Element stiffness matrix in global coordinates
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Notice that the direction cosines of only the local x axis enter the 
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Solve for nodal disp. + 
element forces

Assemble global 
stiffness matrix + BC

Derive stiffness matrix
(Local)

Define relationships

Select 
displacement function
approx. shape function

Bar/TrussLinear spring
Select element type

STEP

;

;

;

; ;

; Solve for a1 and a2

;

;
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Summary:

•The principles of simple beam theory

•Stiffness matrix of a beam element

• Procedures for handling distributed loading and
concentrated nodal loading

• Example Problems

Beams: Engineering structures that are long, slender and 
generally subjected to transverse loading that produces 
significant bending effects as opposed to twisting or axial 
effects

Ideal beams are straight and have constant cross-sectional area.

Development of  
Beam Equations



The differential equation governing simple linear-elastic beam behavior
can be derived as follows. Consider the beam shown below. 

Write the equations of equilibrium for the differential element:

From force and moment equilibrium of a differential beam element, we get:



Stiffness Matrix  
A Beam Element

STEP 1: Select Element Type
Consider a linear-elastic beam element shown below

Neglect all axial effects!

STEP 2: Select a displacement function

Assume the transverse displacement function v is 



Applying the boundary conditions

Solving these equations for the unknown coefficient gives

In matrix form the above equations are:

Shape Functions for a Beam Element

Shape Functions for a Beam Element STEP 3: Define the strain/displacement + stress/strain relationships

The stress-displacement relationship is:



STEP 4: Derive the element stiffness matrix and equations

Using beam theory sign convention for shear force and bending moment,
one obtain the following equations:

In the matrix form the above equations are:

Where the stiffness matrix is:

STEP 5: Assemble the element equations and 
Introduce boundary conditions

This will be illustrated in the following example!

EI constant



The beam element stiffness matrices are:

STEP 6: Introduce boundary conditions

























Many bridges and buildings are composed of 
frames and grids.

Development of  
Plane Frame Equations

Rigid Plane Frame
A rigid plane frame is defined as a series of 
beam elements rigidly connected to each other.
The angles made between elements at joints 
remained unchanged after the deformation.
Moments are transmitted from one element to 
another at joints.
The element centroid and the applied load lie in 
a common plane. •D
ire
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Summary:

•Local stiffness matrix of a beam element 
oriented in a plane including axial deformation 
effects.

The equations & methods for sol. of plane 
frame. 

• Example Problems: frames with inclined and 
skewed supports



Stiffness matrix of a beam element 
oriented in a plane



The effect of axial force 
in the beam transformation



•The analysis of a rigid plane frame can be 
undertaken by applying stiffness matrix.

•The element stiffnesses of a frame are 
functions of E,A,L,I, and the angle of 
orientation of the element with respect to 
the global-coordinate axes.

Rigid Plane Frame 
Example



Example 1







Example 2







Example 3











Example 4





Inclined or Skewed Supports            
Frame Example Problems

Example 5



Development of  
Grid Equations

Grid Structures
A grid is a structure on which the loads are 
applied perpendicular to the plane of the 
structure as opposed to a plane frame where 
loads are applied in the plane.
Both torsional and bending moment continuity 
are maintained at each node in a grid element. 
Examples are floors and bridge deck systems.
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Summary:Summary:

•Derivation of the torsional components of the 
element matrix .

• Local stiffness matrix of a beam element 
oriented in space.

• Example Problems





Grid Example









Stiffness matrix of a beam element 
oriented in space







So far, we considered only line elements.
Line elements are connected at common 
nodes, forming trusses, frames, and grids.

Line elements have geometric properties (A, I 
associate with cross sections).
Only one local coordinate along the length of the 
element is required to describe a position along the 
line element.
Nodal compatibility is forced during the formulation 
of the nodal equilibrium equations for a line 
element.

2D Finite Elements

2D planar elements are thin-plate elements.
2 coordinates define a position on the 2D element 
surface.

1 2

34

1

2

3

x

y

x

y



Cantilever plate
in plane strain

uniform loadinguniform loading
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Cantilever plate
in plane strain 

uniform loadinguniform loading
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Node

Element
Finite element Finite element 

modelmodel

2D elements are connected at common nodes 
and/or along common edges to form continuous 
structures. 
Nodal compatibility is enforced during the 
formulation of the nodal equilibrium equations.
If proper displacement functions are chosen, 
compatibility along common edges is obtained.

The 2D elements are extremely important for:
Plane stress analysis: problems such as plates 
with holes or other changes in geometry that are 
loaded in plane resulting in local stress 
concentrations.
Plane strain analysis: problems such as long 
underground box culvert subjected to a uniform 
loading acting constantly over its length.

Plane Stress Problems



Plane Strain problems
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Summary:

• The review of the principle of minimum 
potential energy. 

• The development of the stiffness matrix of 
a basic 2D or plane finite element called 
Constant-Strain Triangular (CST) elements.

• Example Problems.

Potential Energy and Equilibrium

The principle of minimum 
potential energy





Let’s assume F=1000 lb, k=500 lb/in. The total potential energy is defined as If we had plotted the total potential energy function for various values of deformation, we would get:

Now let’s derive the spring element equations and stiffness matrix using the principal of minimum 
potential energy. Consider the linear spring subjected to nodal forces shown below:

The development of the stiffness matrix of a 
basic 2D or plane finite element



To fully understand the development and 
applicability of the stiffness matrix for the 
plane stress/plane strain triangular element, 
the concept of 2D state of stress and strain 
and the stress/strain relationships for plane 
stress and plane strain are necessary.



Plane Stress

stress-strain matrix
(constitutive matrix)

Plane Strain

stress-strain matrix
(constitutive matrix)

Steps in the formulation of element 
stiffness equations



Consider the problem of a thin plate subjected to a tensile 
load as shown below

Step 1 : Discretize and Select element types
Discretize the thin plate into a set of triangular elements. Each element 

is defined by nodes i, j, and m. Each node has 2 DOFs (displacements in x-,y-
directions)

We use triangular elements because 
1. Boundaries of irregularly shape bodies can be closely approximated.
2. The expressions related to the triangular element are simple.

i(xi,yi)
x

y

j(xj,yj)

m(xm,ym)

ui

vi

uj

vj

um

vm

Step 2 : Select Displacement Functions
A linear displacement function is selected for each triangular element, defined as

A linear displacement function ensures that the displacements along each edge of 
the element and the nodes shared by adjacent elements are equal.





Step 3 : Define the Strain-Displacement and Stress-Strain Relationships
Elemental Strains: The strains over a 2D element are:



Step 4: Derive the Element Stiffness Matrix and Equations using the Total 
Potential Energy Approach
The total potential energy is defined as the sum of the internal strain energy U and 
the potential energy of the external forces Ω :



Step 5: Assemble the Element Equations to obtain the Global Equations and 
Introduce the Boundary Conditions
The global stiffness matrix can be found by the direct stiffness method.

The global equivalent nodal load vector is obtained by lumping body forces and 
distributed loads at the appropriate nodes as well as including any concentrated 
loads.

The resulting global equations are:



Step 6: Solve for Nodal Displacements
Step 7: Solve for Element Forces and Stresses









Explicit Expression for the Constant-Strain Triangle Stiffness Matrix 
for plain strain case

Recall that:

The stiffness matrix is a 
function of the global 
coordinates x and y, the 
material properties, the 
thickness and area of the 
element

FINITE ELEMENT SOLUTION OF 
A PLANE STRESS EXAMPLE   
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