An Introduction to Finite Element Method

Introduction to FEM

Mahidol University

Physical Problem

Question regarding the problem
...how large are the deformations? ...how much is the heat transfer?

Mathematical model

Assumptions regarding
Governed by differential
Geometry
equations

Summary：

－Developing the finite element equations for a system of springs using the＂direct stiffness＂ approach
－Application of boundary conditions
－Physical significance of the stiffness matrix
－Direct assembly of the global stiffness matrix
－Problems

O

Step 1：Divide the problem domain into non overlapping regions（＂elements＂）connected to each other through special points（＂nodes＂）

Step 2：Describe the behavior of each element
Step 3：Describe the behavior of the entire body by putting together the behavior of each of the elements（this is a process known as＂assembly＂）

Given

$F_{1 x}, F_{2 x}, F_{3 x}$ are external loads．Positive directions of the forces are along the positive x－axis
k_{1} and k_{2} are the stiffnesses of the two springs
Mahidol University
Faculty of Engineering

Problem
Analyze the behavior of the system composed of the two springs loaded by external forces as shown above

Solution
Step 1：In order to analyze the system we break it up into smaller parts，i．e．，＂elements＂connected to each other through＂nodes＂

Unknowns：nodal displacements $\mathrm{d}_{1 \mathrm{x}}, \mathrm{d}_{2 \mathrm{x}}, \mathrm{d}_{3 \mathrm{x}}$ ，

Step 2: Analyze the behavior of a single element (spring)

Two nodes: 1, 2
Nodal displacements: $\hat{\mathrm{d}}_{1 \mathrm{x}} \hat{\mathrm{d}}_{2 x}$ Nodal forces: $\hat{f}_{1 \mathrm{x}} \hat{\mathrm{f}}_{2 \mathrm{x}}$ Spring constant: k

Local ($\hat{\mathrm{x}}, \hat{\mathrm{y}}, \mathrm{z}$) and global ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinate systems

Mahidol University

Faculty of Engineering

Behavior of a linear spring (recap)

$\mathbf{F}=$ Force in the spring d = deflection of the spring $\mathbf{k}=$ "stiffness" of the spring

Note

1. The element stiffness matrix is "symmetric", i.e. $\underline{\hat{k}}^{T}=\underline{\hat{k}}$
2. The element stiffness matrix is singular, i.e.,

$$
\operatorname{det}(\underline{\hat{k}})=k^{2}-k^{2}=0
$$

The consequence is that the matrix is NOT invertible. It is not possible to invert it to obtain the displacements. Why?
The spring is not constrained in space and hence it can attain multiple positions in space for the same nodal forces
e.g.,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{1 x} \\
\hat{\mathrm{f}}_{2 x}
\end{array}\right\}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}=\left\{\begin{array}{c}
-2 \\
2
\end{array}\right\} \\
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{1 x} \\
\hat{\mathrm{f}}_{2 \mathrm{x}}
\end{array}\right\}=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left\{\begin{array}{l}
3 \\
4
\end{array}\right\}=\left\{\begin{array}{c}
-2 \\
2
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

Step 3: Now that we have been able to describe the behavior of each spring element, lets try to obtain the behavior of the original structure by assembly
Split the original structure into component elements
Element 1

Eq (3)

Mahidol University

To assemble these two results into a single description of the response of the entire structure we need to link between the local and global variables.

Question 1: How do we relate the local (element) displacements back to the global (structure) displacements?

$$
\begin{aligned}
& \hat{\mathrm{d}}_{1 \mathrm{x}}^{(1)}=\mathrm{d}_{1 \mathrm{x}} \\
& \hat{\mathrm{~d}}_{2 \mathrm{x}}^{(1)}=\hat{\mathrm{d}}_{1 \mathrm{x}}^{(2)}=\mathrm{d}_{2 \mathrm{x}} \\
& \hat{\mathrm{~d}}_{2 \mathrm{x}}^{(2)}=\mathrm{d}_{3 \mathrm{x}}
\end{aligned}
$$

Eq (5)

Hence, equations (3) and (4) may be rewritten as

Or, we may expand the matrices and vectors to obtain

Question 2: How do we relate the local (element) nodal forces back to the global (structure) forces? Draw 5 FBDs

At node 1: $\mathrm{F}_{1 \mathrm{x}}-\hat{\mathrm{f}}_{1 \mathrm{x}}^{(1)}=0$
At node 2: $\mathrm{F}_{2 \mathrm{x}}-\hat{\mathrm{f}}_{2 \mathrm{x}}^{(1)}-\hat{\mathrm{f}}_{1 \mathrm{x}}^{(2)}=0$
At node 3: $\mathrm{F}_{3 \mathrm{x}}-\hat{\mathrm{f}}_{2 \mathrm{x}}^{(2)}=0$

Hence, the global force vector is simply the sum of the expanded element nodal force vectors

$$
\underline{\mathrm{F}}=\left\{\begin{array}{l}
\mathrm{F}_{1 \mathrm{x}} \\
\mathrm{~F}_{2 \mathrm{x}} \\
\mathrm{~F}_{3 \mathrm{x}}
\end{array}\right\}=\underline{\hat{\mathrm{f}}}^{(1) e}+\underline{\hat{\mathrm{f}}}^{(2) e}
$$

But we know the expressions for the expanded local force vectors from Eqs (6) and (7)

$$
\underline{\hat{\mathrm{f}}}^{(1) e}=\underline{\hat{\mathrm{k}}}^{(1) \mathrm{e}} \underline{\mathrm{~d}} \text { and } \underline{\hat{\mathrm{f}}}^{(2) e}=\underline{\hat{\mathrm{k}}}^{(2) \mathrm{e}} \underline{\mathrm{~d}}
$$

Hence
$\underline{\mathrm{F}}=\underline{\hat{\mathrm{f}}}^{(1) e}+\underline{\hat{\mathrm{f}}}^{(2) e}=\underline{\hat{\mathrm{k}}}^{(1) \mathrm{e}} \underline{\mathrm{d}}+\underline{\hat{\mathrm{k}}}^{(2) \mathrm{e}} \underline{\mathrm{d}}=\left(\underline{\hat{\mathrm{k}}}^{(1) \mathrm{e}}+\underline{\hat{\mathrm{k}}}^{(2) \mathrm{e}}\right) \underline{\mathrm{d}}$
$\underline{\mathrm{F}}=\underline{\mathrm{K}} \underline{\mathrm{d}} \quad \underline{\mathrm{d}}=$ Global nodal displacement vector
$\underline{K}=$ Global stiffness matrix
= sum of expanded element stiffness matrices

For our original structure with two springs，the global stiffness matrix is

$$
\begin{aligned}
\underline{K} & =\underbrace{\left[\begin{array}{ccc}
\mathrm{k}_{1} & -\mathrm{k}_{1} & 0 \\
-\mathrm{k}_{1} & \mathrm{k}_{1} & 0 \\
0 & 0 & 0
\end{array}\right]}_{\hat{\underline{k}}^{(1) e}}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathrm{k}_{2} & -\mathrm{k}_{2} \\
0 & -\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]}_{\underline{\hat{k}}^{(2) e}} \\
& =\left[\begin{array}{ccc}
\mathrm{k}_{1} & -\mathrm{k}_{1} & 0 \\
-\mathrm{k}_{1} & \mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
0 & -\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]
\end{aligned}
$$

1．The global stiffness matrix is symmetric
2．The global stiffness matrix is singular $\quad \underset{\sim}{0}|\checkmark| D|D|$

The system equations $\underline{F}=\underline{\mathrm{K}} \underline{\mathrm{d}}$ imply

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left\{\begin{array}{c}
\mathrm{F}_{1 \mathrm{x}} \\
\mathrm{~F}_{2 \mathrm{x}} \\
\mathrm{~F}_{3 \mathrm{x}}
\end{array}\right\}
\end{array}\right\}=\left[\begin{array}{ccc}
\mathrm{k}_{1} & -\mathrm{k}_{1} & 0 \\
-\mathrm{k}_{1} & \mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
0 & -\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{d}_{1 \mathrm{x}} \\
\mathrm{~d}_{2 \mathrm{x}} \\
\mathrm{~d}_{3 \mathrm{x}}
\end{array}\right\} \\
& \Rightarrow \mathrm{F}_{1 \mathrm{x}}=\mathrm{k}_{1} \mathrm{~d}_{1 \mathrm{x}}-\mathrm{k}_{1} \mathrm{~d}_{2 \mathrm{x}} \\
& \Rightarrow \mathrm{~F}_{2 \mathrm{x}}=-\mathrm{k}_{1} \mathrm{~d}_{1 \mathrm{x}}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{d}_{2 \mathrm{x}}-\mathrm{k}_{2} \mathrm{~d}_{3 \mathrm{x}} \\
& \mathrm{~F}_{3 \mathrm{x}}=-\mathrm{k}_{2} \mathrm{~d}_{2 \mathrm{x}}+\mathrm{k}_{2} \mathrm{~d}_{3 \mathrm{x}}
\end{aligned}
$$

These are the 3 equilibrium equations at the 3 nodes．

Mahidol University

Faculty of Engineering

Notice that the sum of the forces equal zero，i．e．，the structure is in static equilibrium．
$\mathrm{F}_{1 \mathrm{x}}+\mathrm{F}_{2 \mathrm{x}}+\mathrm{F}_{3 \mathrm{x}}=0$
Given the nodal forces，can we solve for the displacements？

To obtain unique values of the displacements，at least one of the nodal displacements must be specified．

Direct assembly of the global stiffness matrix

Local

Element 2
Element 1

Mahidol University

Faculty of Engineering

Stiffness matrix of element 1
Stiffness matrix of element 2
$\underline{\hat{\mathbf{k}}}^{(1)}=\left[\begin{array}{c:c}\mathrm{d}_{1 \mathrm{x}} & \mathrm{d}_{2 \mathrm{x}} \\ \hdashline-\mathrm{k}_{1} & -\mathrm{k}_{1} \\ \hdashline-\mathrm{k}_{1} & \mathrm{k}_{1 \mathrm{x}}\end{array}\right] \mathrm{d}_{2 \mathrm{x}}$.

$$
\hat{\hat{\mathbf{k}}}^{(2)}=\left[\begin{array}{c:c}
\mathrm{d}_{2 \mathrm{x}} & \mathrm{~d}_{3 \mathrm{x}} \\
\mathrm{k}_{2} & -\mathrm{k}_{2} \\
\hdashline-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right] \begin{gathered}
\mathrm{d}_{2 \mathrm{x}} \\
\mathrm{~d}_{3 \mathrm{x}}
\end{gathered}
$$

Node element connectivity chart : Specifies the global node number corresponding to the local (element) node numbers

ELEMENT	Node 1	Node 2	Local node number
1	1	2	
2	2	3	

国| \mid | \mid | \mid |

Example 2.1

Compute the global stiffness matrix of the assemblage of springs shown above

Imposition of boundary conditions

Consider 2 cases
Case 1: Homogeneous boundary conditions (e.g., $\mathrm{d}_{1 \mathrm{x}}=0$)
Case 2: Nonhomogeneous boundary conditions (e.g., one of the nodal displacements is known to be different from zero)

Homogeneous boundary condition at node 1

NOTICE: The matrix in the above equation may be obtained from the global stiffness matrix by deleting the first row and column

$$
\left[\begin{array}{ccc}
500 & -500 & 0 \\
-500 & 600 & -100 \\
0 & -100 & 100
\end{array}\right] \quad \square\left[\begin{array}{cc}
600 & -100 \\
-100 & 100
\end{array}\right]
$$

Note use $\mathrm{Eq}(1)$ to compute $\quad F_{1 x}=-500 \mathrm{~d}_{2 \mathrm{x}}=-5 N$

NOTICE:

1. Take care of homogeneous boundary conditions by deleting the appropriate rows and columns from the global stiffness matrix and solving the reduced set of equations for the unknown nodal displacements.
2. Both displacements and forces CANNOT be known at the same node. If the displacement at a node is known, the reaction force at that node is unknown (and vice versa)

Imposition of boundary conditions...contd.

Nonhomogeneous boundary condition: spring 2 is pulled at

 node 3 by 0.06 m)

Recap of what we did

Step 1: Divide the problem domain into non overlapping regions ("elements") connected to each other through special points ("nodes")

Step 2: Describe the behavior of each element $(\underline{\hat{f}}=\underline{\hat{k}} \underline{\hat{d}})$) $\begin{aligned} & \text { displacement } \\ & \text { vector }\end{aligned}$
Step 3: Describe the behavior of the entire body (by "assembly").

Recap of what we did...contd.

2. Relate the local forces of each element to the global forces at the nodes (use FBDs and force equilibrium).

$$
\underline{\mathrm{F}}=\sum \underline{\hat{f}}^{e}
$$

Finally obtain

$$
\underline{\mathrm{F}}=\underline{\mathrm{K}} \underline{\mathrm{~d}}
$$

Where the global stiffness matrix

$$
\underline{\mathrm{K}}=\sum \underline{\mathrm{k}}^{e}
$$

This consists of the following steps

1. Write the force-displacement relations of each spring in expanded form

Global
 vector

Mahidol University

Faculty of Engineering

Recap of what we did...contd.

Apply boundary conditions by partitioning the matrix and vectors

$$
\left[\begin{array}{ll}
\underline{\mathrm{K}}_{11} & \underline{\mathrm{~K}}_{12} \\
\underline{\underline{K}}_{21} & \underline{\mathrm{~K}}_{22}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathrm{d}}_{1} \\
\underline{\mathrm{~d}}_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{F}_{1} \\
\underline{\mathrm{~F}}_{2} \\
\hline
\end{array}\right.
$$

Solve for unknown nodal displacements

$$
\underline{\mathrm{K}}_{22} \underline{\mathrm{~d}}_{2}=\underline{\mathrm{F}}_{2}-\underline{\mathrm{K}}_{21} \underline{\mathrm{~d}}_{1}
$$

Compute unknown nodal forces

$$
\underline{\mathrm{F}}_{1}=\underline{\mathrm{K}}_{11} \underline{\mathrm{~d}}_{1}+\underline{\mathrm{K}}_{12} \underline{\mathrm{~d}}_{2}
$$

Physical significance of the stiffness matrix

In general, we will have a stiffness matrix of the form (assume for now that we do not know $\mathrm{k}_{11}, \mathrm{k}_{12}$, etc)

The first equation is

$$
\mathrm{k}_{11} \mathrm{~d}_{1}+\mathrm{k}_{12} \mathrm{~d}_{2}+\mathrm{k}_{13} \mathrm{~d}_{3}=\mathrm{F}_{1}
$$

Force equilibrium equation at node 1

Columns of the global stiffness matrix

What if $\mathrm{d}_{1}=1, \mathrm{~d}_{2}=0, \mathrm{~d}_{3}=0$?
While nodes 2 and 3 are held fixed
$\mathrm{F}_{1}=\mathrm{k}_{11}$ Force along node 1 due to unit displacement at node 1
$\mathrm{F}_{2}=\mathrm{k}_{21}$ Force along node 2 due to unit displacement at node 1
$\mathrm{F}_{3}=\mathrm{k}_{31}$ Force along node 3 due to unit displacement at node 1
Similarly we obtain the physical significance of the other entries of the global stiffness matrix

In general

$$
\mathrm{K}_{i j}=\begin{aligned}
& \text { Force at node ' } \mathrm{i} \text { ' due to unit displacement at node ' } \mathrm{j} \text { ' } \\
& \text { keeping all the other nodes fixed }
\end{aligned}
$$

This is an alternate route to generating the global stiffness matrix e.g., to determine the first column of the stiffness matrix

Find $\mathrm{F}_{1}=$?, $\mathrm{F}_{2}=$?, $\mathrm{F}_{3}=$?

For this special case, Element \#2 does not have any contribution. Look at the free body diagram of Element \#1

$$
\begin{aligned}
& \xrightarrow[\substack{\hat{\mathrm{f}}_{1 \mathrm{x}}^{(1)}}]{\hat{\mathrm{d}}_{1 \mathrm{x}}^{(1)}} \underbrace{\substack{\hat{\mathrm{d}}_{2 \mathrm{x}}^{(1)}}}_{\underset{\hat{\mathrm{f}}_{2 \mathrm{x}}^{(1)}}{\longrightarrow}} \mathrm{x} \\
& \hat{\mathrm{f}}_{2 \mathrm{x}}^{(1)}=k_{1}\left(\hat{\mathrm{~d}}_{2 \mathrm{x}}^{(1)}-\hat{\mathrm{d}}_{1 \mathrm{x}}^{(1)}\right)=k_{1}(0-1)=-k_{1} \\
& \hat{\mathrm{f}}_{1 \mathrm{x}}^{(1)}=-\hat{\mathrm{f}}_{2 \mathrm{x}}^{(1)}=k_{1}
\end{aligned}
$$

Force equilibrium at node 1

$\mathrm{F}_{1}=\hat{\mathrm{f}}_{1 \mathrm{x}}^{(1)}=k_{1}$
Force equilibrium at node 2

Of course, $\mathrm{F}_{3}=0$

Mahidol University

Faculty of Engineering

Hence the first column of the stiffness matrix is
$\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right\}=\left\{\begin{array}{c}k_{1} \\ -k_{1} \\ 0\end{array}\right\}$
To obtain the second column of the stiffness matrix, calculate the nodal reactions at nodes 1,2 and 3 when $d_{1}=0, \mathbf{d}_{2}=\mathbf{1}, d_{3}=0$
Check that
$\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right\}=\left\{\begin{array}{c}-k_{1} \\ k_{1}+k_{2} \\ -k_{2}\end{array}\right\}$

To obtain the third column of the stiffness matrix, calculate the nodal reactions at nodes 1,2 and 3 when $d_{1}=0, d_{2}=0, d_{3}=\mathbf{1}$

Check that

$$
\left\{\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-k_{2} \\
k_{2}
\end{array}\right\}
$$

Mahidol University
 Faculty of Engineering

Steps in solving a problem

Step 1: Write down the node-element connectivity table linking local and global displacements

Step 2: Write down the stiffness matrix of each element
Step 3: Assemble the element stiffness matrices to form the global stiffness matrix for the entire structure using the node element connectivity table

Step 4: Incorporate appropriate boundary conditions
Step 5: Solve resulting set of reduced equations for the unknown displacements

Summary:

- Stiffness matrix of a bar/truss element
- Coordinate transformation
- Stiffness matrix of a truss element in 2D space
- Problems in 2D truss analysis (including multipoint constraints)
-3D Truss element

```
|||||||||
```


Ideal trusses: Assumptions

- Ideal truss members are connected only at their ends.
- Ideal truss members are connected by frictionless pins (no moments)
- The truss structure is loaded only at the pins
- Weights of the members are neglected

A typical truss structure

Trusses: Engineering structures that are composed only of two-force members. e.g., bridges, roof supports

Actual trusses: Airy structures composed of slender members (Ibeams, channels, angles, bars etc) joined together at their ends by welding, riveted connections or large bolts and pins

These assumptions allow us to idealize each truss member as a two-force member (members loaded only at their extremities by equal opposite and collinear forces)

FEM analysis scheme

Step 1: Divide the truss into barltruss elements connected to each other through special points ("nodes")

Step 2: Describe the behavior of each bar element (i.e. derive its stiffness matrix and load vector in local AND global coordinate system)

Stiffness Matrix A Bar/Truss Element

Step 3: Describe the behavior of the entire truss by putting together the behavior of each of the bar elements (by assembling their stiffness matrices and load vectors)

Step 4: Apply appropriate boundary conditions and solve

Derivation: stiffness matrix of a bar element

L: Length of bar
A: Cross sectional area of bar
E: Elastic (Young's) modulus of bar
$\hat{u}(\hat{x})$: displacement of bar as a function of local coordinate \hat{x} of bar
The strain in the bar at \hat{x}

$$
\varepsilon(\hat{\mathrm{x}})=\frac{\mathrm{d} \hat{\mathrm{u}}}{\mathrm{~d} \mathrm{\hat{x}}}
$$

The stress in the bar (Hooke's law)

$$
\sigma(\hat{\mathrm{x}})=\mathrm{E} \varepsilon(\hat{\mathrm{x}})
$$

Assume that the displacement $\hat{\mathrm{u}}(\hat{\mathrm{x}})$ is varying linearly along the bar $\hat{u}(\hat{x})=\left(1-\frac{\hat{x}}{L}\right) \hat{d}_{1 x}+\frac{\hat{x}}{L} \hat{d}_{2 x}$
Then, strain is constant along the bar:

$$
\varepsilon=\frac{d \hat{u}}{d \hat{x}}=\frac{\hat{\mathrm{d}}_{2 \mathrm{x}}-\hat{\mathrm{d}}_{1 \mathrm{x}}}{\mathrm{~L}}
$$

Stress is also constant along the bar:

$$
\sigma=\mathrm{E} \varepsilon=\frac{\mathrm{E}}{\mathrm{~L}}\left(\hat{\mathrm{~d}}_{2 \mathrm{x}}-\hat{\mathrm{d}}_{1 \mathrm{x}}\right)
$$

Tension is constant along the bar: $\quad T=E A \varepsilon=\underbrace{\frac{E A}{L}}_{k}\left(\hat{d}_{2 x}-\hat{d}_{1 x}\right)$
The bar is acting like a spring with stiffness $k=\frac{E A}{L}$

Two nodes: 1,2
Nodal displacements: $\hat{\mathrm{d}}_{1 \mathrm{x}} \hat{\mathrm{d}}_{2 \mathrm{x}}$
Nodal forces: $\hat{f}_{1 \mathrm{x}} \quad \hat{\mathrm{f}}_{2 \mathrm{x}} \mathrm{E}$
Spring constant: $k=\frac{\mathrm{I}^{2}}{\mathrm{~L}} \mathrm{EA}$
Element stiffness matrix in local coordinates

Element force vector

displacement

$$
\begin{aligned}
& \text { stiffness } \\
& \text { matrix }
\end{aligned}
$$

$$
=\underbrace{\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]}_{\hat{\hat{\mathrm{k}}}} \underbrace{\left\{\begin{array}{l}
\hat{\mathrm{d}}_{1 \mathrm{x}} \\
\hat{\mathrm{~d}}_{2 \mathrm{x}}
\end{array}\right\}}_{\hat{\hat{\mathrm{d}}}}
$$

MAHIDOL
UNIVERSITY
UNIVERSITY
Problem 1: Find the stresses in the two-bar assembly loaded as shown below

Solution: This is equivalent to the following system of springs

We will first compute the displacement at node 2 and then the stresses within each element

For element \#1 first compute the element strain

$$
\varepsilon^{(1)}=\frac{d_{2 x}-d_{1 x}}{L}=\frac{d_{2 x}}{L}=\frac{P}{3 E A}
$$

and then the stress as

$$
\sigma^{(1)}=E \varepsilon^{(1)}=\frac{P}{3 A}
$$

(element in tension)

Similarly, in element \# 2

$$
\begin{aligned}
& \varepsilon^{(2)}=\frac{d_{3 x}-d_{2 x}}{L}=-\frac{d_{2 x}}{L}=-\frac{P}{3 E A} \\
& \sigma^{(2)}=E \varepsilon^{(2)}=-\frac{P}{3 A} \quad \text { (element in compression) }
\end{aligned}
$$

MAHIDOL UNIVERSITY
Bars in a truss have various orientations

Inter-element continuity of a two-bar structure

At node 1:

At node 2:

In the global coordinate system，the vector of nodal displacements and loads

$$
\underline{d}=\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y}
\end{array}\right\} ; \quad \underline{f}=\left\{\begin{array}{l}
f_{1 x} \\
f_{1 y} \\
f_{2 x} \\
f_{2 y}
\end{array}\right\}
$$

Our objective is to obtain a relation of the form

$$
\frac{\mathrm{f}}{4 \times 1}=\frac{\mathrm{k}}{4 \times 4} \frac{\mathrm{~d}}{4 \times 1}
$$

Where \underline{k} is the 4×4 element stiffness matrix in global coordinate system

The key is to look at the local coordinates UNIVERSITY

$$
\begin{aligned}
& \text { x } \\
& \mathrm{k}=\frac{\mathrm{EA}}{\mathrm{~L}}
\end{aligned}
$$

Rewrite as

$$
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{1 \mathrm{x}} \\
\hat{\mathrm{f}}_{1 \mathrm{y}} \\
\hat{\mathrm{f}}_{2 \mathrm{x}} \\
\hat{\mathrm{f}}_{2 \mathrm{y}}
\end{array}\right\}=\left[\begin{array}{cccc}
\mathrm{k} & 0 & -\mathrm{k} & 0 \\
0 & 0 & 0 & 0 \\
-\mathrm{k} & 0 & \mathrm{k} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
\hat{\mathrm{d}}_{1 \mathrm{x}} \\
\hat{\mathrm{~d}}_{1 \mathrm{y}} \\
\hat{\mathrm{~d}}_{2 \mathrm{x}} \\
\hat{\mathrm{~d}}_{2 \mathrm{y}}
\end{array}\right\} \underline{\hat{\mathrm{f}}=\underline{\hat{k}} \underline{\hat{\mathrm{~d}}}}
$$

NOTES

1．Assume that there is no stiffness in the local \hat{y} direction．

2．If you consider the displacement at a point along the local x direction as a vector，then the components of that vector along the global x and y directions are the global x and y displacements．

3．The expanded stiffness matrix in the local coordinates is symmetric and singular．

A MAHIDOL UNIVERSITY

NOTES

5．In local coordinates we have $\quad \frac{\hat{\mathrm{f}}}{4 \times 1}=\frac{\hat{\mathrm{k}}}{4 \times 4} \frac{\hat{\mathrm{~d}}}{4 \times 1}$
But or goal is to obtain the following relationship

$$
\frac{\mathrm{f}}{4 \times 1}=\frac{\mathrm{k}}{4 \times 4} \frac{\mathrm{~d}}{4 \times 1}
$$

Hence，need a relationship between $\underline{\hat{\mathrm{d}}}$ and $\underline{\mathrm{d}}$ and between \underline{f} and \underline{f}

Need to understand how the components of a vector change with coordinate transformation

Transformation of a vector in two dimensions

The vector \mathbf{v} has components $\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right)$ in the global coordinate system and $\left(\hat{v}_{x}, \hat{v}_{y}\right)$ in the local coordinate system. From geometry
$\hat{\mathrm{v}}_{\mathrm{x}}=\mathrm{v}_{\mathrm{x}} \cos \theta+\mathrm{v}_{\mathrm{y}} \sin \theta$
$\hat{\mathrm{v}}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}} \sin \theta+\mathrm{v}_{\mathrm{y}} \cos \theta$

In matrix form

$$
\left\{\begin{array}{l}
\hat{\mathrm{v}}_{\mathrm{x}} \\
\hat{\mathrm{v}}_{\mathrm{y}}
\end{array}\right\}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v}_{\mathrm{x}} \\
\mathrm{v}_{\mathrm{y}}
\end{array}\right\}
$$

Or

Direction cosines

$$
\left\{\begin{array}{c}
\hat{\mathrm{v}}_{\mathrm{x}} \\
\hat{\mathrm{v}}_{\mathrm{y}}
\end{array}\right\}=\left[\begin{array}{cc}
l & m \\
-m & l
\end{array}\right]\left\{\begin{array}{c}
\mathrm{v}_{\mathrm{x}} \\
\mathrm{v}_{\mathrm{y}}
\end{array}\right\} \quad \text { where } \quad \begin{aligned}
& l=\cos \theta \\
& m=\sin \theta
\end{aligned}
$$

Transformation matrix for a single vector in 2D

$$
\underline{\mathrm{T}}^{*}=\left[\begin{array}{cc}
l & m \\
-m & l
\end{array}\right] \quad \text { relates } \quad \underline{\hat{\mathrm{v}}=\underline{\mathrm{T}}^{*} \underline{\mathrm{v}}}
$$

where $\hat{\hat{v}}=\left\{\begin{array}{l}\hat{v}_{x} \\ \hat{v}_{y}\end{array}\right\}$ and $\underline{v}=\left\{\begin{array}{l}v_{x} \\ v_{y}\end{array}\right\} \begin{gathered}\text { are components of the same } \\ \text { vector in local and global }\end{gathered}$ coordinates, respectively.

Relationship between $\hat{\underline{\mathrm{d}}}$ and $\underline{\mathrm{d}}$ for the truss element

MAHIDOL

 UNIVERSITYAt node 1

$$
\left\{\begin{array}{l}
\hat{\mathrm{d}}_{1 \mathrm{x}} \\
\hat{\mathrm{~d}}_{1 \mathrm{y}}
\end{array}\right\}=\underline{\mathrm{T}}^{*}\left\{\begin{array}{l}
\mathrm{d}_{1 \mathrm{x}} \\
\mathrm{~d}_{1 \mathrm{y}}
\end{array}\right\}
$$

At node 2

$$
\left\{\begin{array}{l}
\hat{\mathrm{d}}_{2 \mathrm{x}} \\
\hat{\mathrm{~d}}_{2 \mathrm{y}}
\end{array}\right\}=\underline{\mathrm{T}}^{*}\left\{\begin{array}{l}
\mathrm{d}_{2 \mathrm{x}} \\
\mathrm{~d}_{2 \mathrm{y}}
\end{array}\right\}
$$

Putting these together $\underline{\hat{d}}=\underline{T d}$
$\mathrm{d}_{2 \mathrm{x}}$

$$
\underbrace{\left\{\begin{array}{l}
\hat{\mathrm{d}}_{1 \mathrm{x}} \\
\hat{\mathrm{~d}}_{1 \mathrm{y}} \\
\hat{\mathrm{~d}}_{2 \mathrm{x}} \\
\hat{\mathrm{~d}}_{2 \mathrm{y}}
\end{array}\right\}}_{\hat{\mathrm{d}}}=\underbrace{\left[\begin{array}{cccc}
l & m & 0 & 0 \\
-m & l & 0 & 0 \\
0 & 0 & l & m \\
0 & 0 & -m & l
\end{array}\right]}_{\underline{\mathrm{T}}} \underbrace{\left[\begin{array}{l}
\mathrm{d}_{1 \mathrm{x}} \\
\mathrm{~d}_{1 \mathrm{y}} \\
\mathrm{~d}_{2 \mathrm{x}} \\
\mathrm{~d}_{2 \mathrm{y}}
\end{array}\right\}}_{\underline{d}} \quad \begin{aligned}
& \frac{\mathrm{T}}{4 \times 4}=\left[\begin{array}{cc}
\underline{\mathrm{T}}^{*} & \underline{0} \\
\underline{0} & \underline{\mathrm{~T}}^{*}
\end{array}\right] \\
& \boxed{|l| \Delta|\Delta| \Delta \mid}
\end{aligned}
$$

Relationship between $\hat{\underline{f}}$ and \underline{f} for the truss element
At node 1

$$
\left\{\begin{array}{l}
\hat{f}_{1 x} \\
\hat{f}_{1 \mathrm{y}}
\end{array}\right\}=\underline{T^{*}}\left\{\begin{array}{l}
f_{\mathrm{f}_{1 \mathrm{x}}} \\
\mathrm{f}_{1 \mathrm{y}}
\end{array}\right\}
$$

At node 2

$$
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{2 x} \\
\hat{\mathrm{f}}_{2 \mathrm{y}}
\end{array}\right\}=\mathbf{T}^{*}\left\{\begin{array}{l}
\mathrm{f}_{2 x} \\
\mathrm{f}_{2 y}
\end{array}\right\}
$$

Putting these together $\underline{\hat{\mathbf{t}}}=\underline{\mathrm{Tf}}$

$$
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{1 \mathrm{x}} \\
\hat{\mathrm{f}}_{1 \mathrm{y}} \\
\hat{\mathrm{f}}_{2 \mathrm{x}}
\end{array}\right\}=\left[\begin{array}{cccc}
l & m & 0 & 0 \\
-m & l & 0 & 0 \\
0 & 0 & l & m
\end{array}\right]\left\{\begin{array}{l}
\mathrm{f}_{1 \mathrm{x}} \\
\mathrm{f}_{1 \mathrm{y}} \\
\mathrm{f}_{2 \mathrm{x}}
\end{array}\right\} \quad \frac{\mathrm{T}}{4 \times 4}=\left[\begin{array}{cc}
\underline{\mathrm{T}}^{*} & \underline{0} \\
\underline{0} & \underline{\mathrm{~T}}^{*}
\end{array}\right]
$$

Important property of the transformation matrix \mathbf{T}

The transformation matrix is orthogonal，i．e．its inverse is its transpose

$$
\underline{\mathrm{T}}^{-1}=\underline{\mathrm{T}}^{T}
$$

Use the property that $l^{2}+m^{2}=1$

$$
\underline{\mathrm{T}}=\left[\begin{array}{cccc}
l & m & 0 & 0 \\
-m & l & 0 & 0 \\
0 & 0 & l & m \\
0 & 0 & -m & l
\end{array}\right] \quad \underline{\hat{\mathrm{k}}}=\left[\begin{array}{cccc}
\mathrm{k} & 0 & -\mathrm{k} & 0 \\
0 & 0 & 0 & 0 \\
-\mathrm{k} & 0 & \mathrm{k} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\underline{\mathrm{k}}=\underline{\mathrm{T}}^{T} \hat{\mathrm{k}} \underline{\mathrm{~T}}=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cccc}
l^{2} & l m & -l^{2} & -l m \\
\operatorname{lm} & m^{2} & -l m & -m^{2} \\
-l^{2} & -l m & l^{2} & l m \\
-l m & -m^{2} & l m & m^{2}
\end{array}\right]
$$

Putting all the pieces together

$y \uparrow \hat{y} \quad \underline{\hat{\mathrm{~d}}=\underline{T} \underline{d}}$
$\underline{\hat{\mathrm{f}}}=\underline{\hat{\mathrm{k}}} \underline{\hat{\mathrm{d}}}$
$\Rightarrow \underline{\mathrm{T}} \underline{\mathrm{f}}=\underline{\hat{\mathrm{k}}} \underline{\mathrm{T}} \underline{\mathrm{d}}$
$\Rightarrow \underline{f}=\underbrace{\left(\underline{T}^{-1} \underline{\hat{k}} \underline{\mathrm{~T}}\right)}_{\underline{\underline{k}}}) \underline{d}$
The desired relationship is

$$
\frac{\mathrm{f}}{4 \times 1}=\frac{\mathrm{k}}{4 \times 4} \frac{\mathrm{~d}}{4 \times 1}
$$

Where $\quad \frac{\mathrm{k}}{4 \times 4}=\frac{\mathrm{T}^{T}}{4 \times 4} \frac{\hat{\mathrm{k}}}{4 \times 4} \frac{\mathrm{~T}}{4 \times 4}$ 位 $\begin{aligned} & \text { is the element stiffness matrix in the } \\ & \text { global coordinate system }\end{aligned}$

Computation of the direction cosines

（2）MAHIDOL

$$
l=\cos \theta=\frac{x_{2}-x_{1}}{L}
$$

What happens if I reverse the node numbers？

$$
\begin{aligned}
& l^{\prime}=\cos \theta=\frac{x_{1}-x_{2}}{L}=-l \\
& m^{\prime}=\sin \theta=\frac{y_{1}-y_{2}}{L}=-m
\end{aligned}
$$

Question：Does the stiffness matrix change？

Example Bar element for stiffness matrix evaluation

$$
\underline{\mathrm{k}}=\frac{\left(30 \times 10^{6}\right)(2)}{60}\left[\begin{array}{cccc}
\frac{3}{4} & \frac{\sqrt{3}}{4} & -\frac{3}{4} & -\frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4} & -\frac{\sqrt{3}}{4} & -\frac{1}{4} \\
-\frac{3}{4} & -\frac{\sqrt{3}}{4} & \frac{3}{4} & \frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & -\frac{1}{4} & \frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right] \frac{\mathrm{lb}}{\mathrm{in}}
$$

$$
\begin{aligned}
& E=30 \times 10^{6} \text { psi } \\
& A=2 \mathrm{in}^{2} \\
& L=60 \mathrm{in} \\
& \theta=30^{\circ}
\end{aligned}
$$

$$
l=\cos 30=\frac{\sqrt{3}}{2}
$$

$$
m=\sin 30=\frac{1}{2}
$$

Computation of element strains

$$
\begin{aligned}
& =\frac{1}{\mathrm{~L}}\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right] \underline{\hat{\mathrm{d}}} \\
& =\frac{1}{\mathrm{~L}}\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right] \underline{\mathrm{T}} \underline{\mathrm{~d}}
\end{aligned}
$$

$$
\varepsilon=\frac{1}{\mathrm{~L}}\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
l & m & 0 & 0 \\
-m & l & 0 & 0 \\
0 & 0 & l & m \\
0 & 0 & -m & l
\end{array}\right] \underline{d}
$$

Computation of element stresses stress and tension

Recall that the element stress is

$$
=\frac{1}{\mathrm{~L}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right] \mathrm{d}
$$

$$
\sigma=\mathrm{E} \varepsilon=\frac{\mathrm{E}}{\mathrm{~L}}\left(\hat{\mathrm{~d}}_{2 \mathrm{x}}-\hat{\mathrm{d}}_{1 \mathrm{x}}\right)=\frac{\mathrm{E}}{\mathrm{~L}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right] \underline{\mathrm{d}}
$$

$$
=\frac{1}{\mathrm{~L}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right]\left\{\begin{array}{l}
\mathrm{d}_{1 \mathrm{x}} \\
\mathrm{~d}_{1 \mathrm{y}} \\
\mathrm{~d}_{2 \mathrm{x}} \\
\mathrm{~d}_{2 \mathrm{y}}
\end{array}\right\}
$$

Recall that the element tension is

$$
\mathrm{T}=\mathrm{EA} \varepsilon=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right] \underline{\mathrm{d}}
$$ university

Node element connectivity table

Step 1: Write down the node-element connectivity table linking local and global nodes; also form the table of direction cosines (l, m)
Step 2: Write down the stiffness matrix of each element in global coordinate system with global numbering

Step 3: Assemble the element stiffness matrices to form the global stiffness matrix for the entire structure using the node element connectivity table

Step 4: Incorporate appropriate boundary conditions
Step 5: Solve resulting set of reduced equations for the unknown displacements
Step 6: Compute the unknown nodal forces

ELEMENT	Node 1	Node 2
1	1	2
2	2	3
3	3	1

MAHIDOL
UNIVERSITY
Stiffness matrix of element 1

Stiffness matrix of element 3

Stiffness matrix of element 2

There are 4 degrees of freedom (dof) per element (2 per node)

Example 2

MAHIDOL

The length of bars 12 and 23 are equal (L) E: Young's modulus
A: Cross sectional area of each bar Solve for
(1) $d_{2 x}$ and $d_{2 y}$
(2) Stresses in each bar

Solution

Step 1: Node element connectivity table

ELEMENT	Node 1	Node 2
1	1	2
2	2	3

Table of nodal coordinates

Node	x	y
1	0	0
2	$L \cos 45$	$\mathrm{~L} \sin 45$
3	0	$2 \mathrm{~L} \sin 45$

Table of direction cosines

ELEMENT	Length	$l=\frac{x_{2}-x_{1}}{\text { length }}$	$m=\frac{y_{2}-y_{1}}{\text { length }}$
1	L	$\cos 45$	$\sin 45$
2	L	$-\cos 45$	$\sin 45$

Step 2: Stiffness matrix of each element in global coordinates with global numbering

Stiffness matrix of element 1

$$
\begin{aligned}
& \underline{\mathrm{k}}^{(1)}=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cccc}
l^{2} & l m & -l^{2} & -l m \\
l m & m^{2} & -l m & -m^{2} \\
-l^{2} & -l m & l^{2} & l m \\
-l m & -m^{2} & l m & m^{2}
\end{array}\right]
\end{aligned}
$$

Stiffness matrix of element 2

$$
\underline{\mathrm{k}}^{(2)}=\frac{\mathrm{EA}}{2 \mathrm{~L}}\left[\begin{array}{c:c:c:c}
\mathrm{d}_{2 \mathrm{x}} & \mathrm{~d}_{2 \mathrm{y}} & \mathrm{~d}_{3 \mathrm{x}} & \mathrm{~d}_{3 \mathrm{y}} \\
\hdashline-1 & -1 & -1 & 1 \\
\hdashline-1 & 1 & 1 & -1 \\
\hdashline 1 & -1 & -1 & 1
\end{array}\right] \mathrm{d}_{2 \mathrm{x}}
$$

(ㅅ) UNIVERSITY $_{\text {MAHIDOL }}$
UNIVERSITY

$$
\underline{K}=\frac{E A}{2 L}\left[\begin{array}{cccc|cc}
\begin{array}{ccccc}
1 & 1 & -1 & -1 & 0 \\
1 & 0 \\
1 & 1 & -1 & -1 & 0
\end{array} & 0 \\
-1 & -1 & 2 & 0 & -1 & 1 \\
-1 & -1 & 0 & 2 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 1 & -1 & -1 & 1 \\
\hline
\end{array}\right]
$$

The final set of equations is $\underline{K} \underline{d}=\underline{F}$

Step 4：Incorporate boundary conditions

$$
\underline{d}=\left\{\begin{array}{c}
0 \\
0 \\
d_{2 x} \\
d_{2 y} \\
0 \\
0
\end{array}\right\}
$$

Hence reduced set of equations to solve for unknown displacements at node 2

$$
\frac{E A}{2 L}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left\{\begin{array}{l}
d_{2 x} \\
d_{2 y}
\end{array}\right\}=\left\{\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right\}
$$

Step 5：Solve for unknown displacements

$$
\left\{\begin{array}{l}
d_{2 x} \\
d_{2 y}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{P_{1} L}{E A} \\
\frac{P_{2} L}{E A}
\end{array}\right\}
$$

Step 6：Obtain stresses in the elements UNIVERSITY

For element \＃2：

$$
\begin{aligned}
\sigma^{(2)} & =\frac{\mathrm{E}}{\mathrm{~L}}\left[\begin{array}{llll}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left\{\begin{array}{l}
d_{2 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right\} \longrightarrow 0 \\
& =\frac{\mathrm{E}}{\sqrt{2} \mathrm{~L}}\left(d_{2 x}-d_{2 y}\right)=\frac{P_{1}-P_{2}}{A \sqrt{2}}
\end{aligned}
$$

For element \＃1：

$$
\begin{aligned}
& \text { or element \#1: } \\
& \sigma^{(1)}=\frac{\mathrm{E}}{\mathrm{~L}}\left[\begin{array}{llll}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left\{\begin{array}{l}
a_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y}
\end{array}\right\}
\end{aligned}
$$

$$
=\frac{\mathrm{E}}{\sqrt{2} \mathrm{~L}}\left(d_{2 x}+d_{2 y}\right)=\frac{P_{1}+P_{2}}{A \sqrt{2}}
$$

Figure 3－19 Plane truss with inclined boundary conditions at node 3 （see problem worked out in class）

Problem 3：For the plane truss

$$
\mathrm{P}=1000 \mathrm{kN},
$$

$\mathrm{L}=$ length of elements 1 and $2=1 \mathrm{~m}$

$$
\mathrm{E}=210 \mathrm{GPa}
$$

$\mathrm{A}=6 \times 10^{-4} \mathrm{~m}^{2}$ for elements 1 and 2
$=6 \sqrt{2} \times 10^{-4} \mathrm{~m} 2$ for element 3

Step 1：Node element connectivity table

ELEMENT	Node 1	Node 2
1	1	2
2	2	3
3	1	3

Step 2：Stiffness matrix of each element in globalMAHIDOL coordinates with global numbering

Stiffness matrix of element 1

$$
\underline{\mathrm{k}}^{(1)}=\frac{\mathrm{EA}}{\mathrm{~L}}\left[\begin{array}{cccc}
l^{2} & l m & -l^{2} & -l m \\
l m & m^{2} & -l m & -m^{2} \\
-l^{2} & -l m & l^{2} & l m \\
-l m & -m^{2} & l m & m^{2}
\end{array}\right]
$$

Table of direction cosines

ELEMENT	Length	$l=\frac{x_{2}-x_{1}}{\text { length }}$	$m=\frac{y_{2}-y_{1}}{\text { length }}$
1	L	0	1
2	L	1	0
3	$\mathrm{~L} \sqrt{2}$	$1 / \sqrt{2}$	$1 / \sqrt{2}$

Stiffness matrix of element $2 \mathrm{~d}_{2 \mathrm{x}}: \mathrm{d}_{2 \mathrm{y}}: \mathrm{d}_{3 \mathrm{x}}: \mathrm{d}_{3 \mathrm{y}}$

$$
\underline{\mathrm{k}}^{(2)}=\frac{\left(210 \times 10^{9}\right)\left(6 \times 10^{-4}\right)}{1}\left[\begin{array}{c:c:c:c}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
\hdashline-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& \mathrm{d}_{2 x} \\
& \mathrm{~d}_{2 y} \\
& \mathrm{~d}_{3 x} \\
& \mathrm{~d}_{3 y}
\end{aligned}
$$

Stiffness matrix of element 3

$\underline{\mathrm{k}}^{(3)}=\frac{\left(210 \times 10^{9}\right)\left(6 \sqrt{2} \times 10^{-4}\right)}{\sqrt{2}}\left[\begin{array}{c:c:c:c}0.5 & 0.5 & -0.5 & -0.5 \\ \hdashline 0.5 & 0.5 & -0.5 & -0.5 \\ \hdashline-0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5\end{array}\right] \mathrm{d}_{1 \mathrm{x}}$

Step 3：Assemble the global stiffness matrix

$$
\underline{\mathrm{K}}=1260 \times 10^{5}\left[\begin{array}{cccccc}
0.5 & 0.5 & 0 & 0 & -0.5 & -0.5 \\
0.5 & 1.5 & 0 & -1 & -0.5 & -0.5 \\
0 & 0 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-0.5 & -0.5 & -1 & 0 & 1.5 & 0.5 \\
-0.5 & -0.5 & 0 & 0 & 0.5 & 0.5
\end{array}\right]
$$

N / m

The final set of equations is $\underline{K} \underline{d}=\underline{F}$
Eq（1）

Step 4：Incorporate boundary conditions
（2）MAHIDOL

$$
\underline{d}=\left\{\begin{array}{c}
0 \\
0 \\
d_{2 x} \\
0 \\
d_{3 x} \\
d_{3 y}
\end{array}\right\}
$$

Also，

$$
\hat{\boldsymbol{d}}_{3 y}=0
$$

in the local coordinate system of element 3
How do I convert this to a boundary condition in the global（ x, y ） coordinates？

$$
\begin{aligned}
& \left\{\begin{array}{l}
\widehat{d}_{3 x} \\
\widehat{d}_{3 y}
\end{array}\right\}=\left[\begin{array}{cc}
l & m \\
-m & l
\end{array}\right]\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y}
\end{array}\right\} l=m=\frac{1}{\sqrt{2}} \\
& \Rightarrow\left\{\begin{array}{l}
\widehat{d}_{3 x} \\
\widehat{d}_{3 y}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}\left(d_{3 x}+d_{3 y}\right) \\
\frac{1}{\sqrt{2}}\left(d_{3 y}-d_{3 x}\right)
\end{array}\right\} \\
& \hat{\boldsymbol{d}}_{3 y}=0 \quad \text { (Multi-point constraint) } \\
& \Rightarrow \widehat{d}_{3 y}=\frac{1}{\sqrt{2}}\left(d_{3 y}-d_{3 x}\right)=0 \\
& \Rightarrow d_{3 y}-d_{3 x}=0 \quad \mathrm{Eq}(2)
\end{aligned}
$$

Therefore we need to solve the following equations simultaneously

$$
\begin{array}{ll}
\underline{K} \underline{d}=\underline{F} \\
d_{3 y}-d_{3 x}=0 & \mathrm{Eq}(1) \tag{2}\\
F_{3 y}+F_{3 x}=0 & \mathrm{Eq}(2) \\
\mathrm{Eq}(3)
\end{array}
$$

Incorporate boundary conditions and reduce $\mathrm{Eq}(1)$ to
$1260 \times 10^{5}\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1.5 & 0.5 \\ 0 & 0.5 & 0.5\end{array}\right]\left\{\begin{array}{l}d_{2 x} \\ d_{3 x} \\ d_{3 y}\end{array}\right\}=\left\{\begin{array}{c}P \\ F_{3 x} \\ F_{3 y}\end{array}\right\}$

$$
\left\{\begin{array}{l}
F_{3 x} \\
F_{3 y}
\end{array}\right\}=\left[\begin{array}{cc}
l & m \\
-m & n
\end{array}\right]\left\{\begin{array}{l}
F_{3 x} \\
F_{3 y}
\end{array}\right\} l=m=\frac{1}{\sqrt{2}}
$$

$\Rightarrow\left\{\begin{array}{l}F_{3 x} \\ F_{3 y}\end{array}\right\}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]\left\{\begin{array}{l}F_{3 x} \\ F_{3 y}\end{array}\right\}=\left\{\begin{array}{l}\frac{1}{\sqrt{2}}\left(F_{3 x}+F_{3 y}\right) \\ \frac{1}{\sqrt{2}}\left(F_{3 y}-F_{3 x}\right)\end{array}\right\}$
$F_{3 x}=0$
$\Rightarrow F_{3 x}=\frac{1}{\sqrt{2}}\left(F_{3 y}+F_{3 x}\right)=0$
$\Rightarrow F_{3 y}+F_{3 x}=0 \quad$ Eq（3）

Write these equations out explicitly
（A）MAHIDOL UNIVERSITY

$$
\begin{array}{cc}
1260 \times 10^{5}\left(d_{2 x}-d_{3 x}\right)=P & \mathrm{Eq}(4) \\
1260 \times 10^{5}\left(-d_{2 x}+1.5 d_{3 x}+0.5 d_{3 y}\right)=F_{3 x} & \mathrm{Eq}(5) \\
1260 \times 10^{5}\left(0.5 d_{3 x}+0.5 d_{3 y}\right)=F_{3 y} & \mathrm{Eq}(6)
\end{array}
$$

Add Eq（5）and（6）
$1260 \times 10^{5}\left(-d_{2 x}+2 d_{3 x}+d_{3 y}\right)=F_{3 x}+F_{3 y}=0$ using $\operatorname{Eq}(3)$
$\Rightarrow 1260 \times 10^{5}\left(-d_{2 x}+3 d_{3 x}\right)=0$ using $\operatorname{Eq}(2)$
$\Rightarrow d_{2 x}=3 d_{3 \times} \quad \operatorname{Eq}(7)$
Plug this into $\mathrm{Eq}(4) \Rightarrow 1260 \times 10^{5}\left(3 d_{3 x}-d_{3 x}\right)=P$

$$
\Rightarrow 2520 \times 10^{5} d_{3 x}=10^{6}
$$

$$
\begin{aligned}
& \Rightarrow d_{3 x}=0.003968 \mathrm{~m} \\
& d_{2 x}=3 d_{3 x}=0.0119 \mathrm{~m}
\end{aligned}
$$

Compute the reaction forces
$\left\{\begin{array}{l}F_{1 x} \\ F_{1 y} \\ F_{2 y} \\ F_{3 x} \\ F_{3 y}\end{array}\right\}=1260 \times 10^{5}\left[\begin{array}{ccc}0 & -0.5 & -0.5 \\ 0 & -0.5 & -0.5 \\ 0 & 0 & 0 \\ -1 & 1.5 & 0.5 \\ 0 & 0.5 & 0.5\end{array}\right]\left\{\begin{array}{l}d_{2 x} \\ d_{3 x} \\ d_{3 y}\end{array}\right\}$

In general，we will have a stiffness matrix of the form

$$
\underline{K}=\left[\begin{array}{lll}
\mathrm{k}_{11} & \mathrm{k}_{12} & \mathrm{k}_{13} \\
\mathrm{k}_{21} & \mathrm{k}_{22} & \mathrm{k}_{23} \\
\mathrm{k}_{31} & \mathrm{k}_{32} & \mathrm{k}_{33}
\end{array}\right]
$$

And the finite element force－displacement relation

$$
\left[\begin{array}{lll}
\mathrm{k}_{11} & \mathrm{k}_{12} & \mathrm{k}_{13} \\
\mathrm{k}_{21} & \mathrm{k}_{22} & \mathrm{k}_{23} \\
\mathrm{k}_{31} & \mathrm{k}_{32} & \mathrm{k}_{33}
\end{array}\right]\left\{\begin{array}{l}
\mathrm{d}_{1} \\
\mathrm{~d}_{2} \\
\mathrm{~d}_{3}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{F}_{1} \\
\mathrm{~F}_{2} \\
\mathrm{~F}_{3}
\end{array}\right\}
$$

Physical significance of the stiffness matrix

The first equation is

$$
\mathrm{k}_{11} \mathrm{~d}_{1}+\mathrm{k}_{12} \mathrm{~d}_{2}+\mathrm{k}_{13} \mathrm{~d}_{3}=\mathrm{F}_{1} \quad \begin{aligned}
& \text { Force equilibrium } \\
& \text { equation at node } 1
\end{aligned}
$$

In general
$K_{i j}=\begin{gathered}\text { Force at d．o．f＇} i \text {＇due to unit displacement at d．o．f＇} j \text {＇} \\ \text { keeping all the other d．o．fs fixed }\end{gathered}$

Columns of the global stiffness matrix

What if $\mathrm{d}_{1}=1, \mathrm{~d}_{2}=0, \mathrm{~d}_{3}=0$ ？
While d．o．f 2 and 3 are held fixed
$\mathrm{F}_{1}=\mathrm{k}_{11}$ Force along d．o．f 1 due to unit displacement at d．o．f 1
$\mathrm{F}_{2}=\mathrm{k}_{21}$ Force along d．o．f 2 due to unit displacement at d．o．f 1
$\mathrm{F}_{3}=\mathrm{k}_{31}$ Force along d．o．f 3 due to unit displacement at d．o．f 1

Similarly we obtain the physical significance of the other entries of the global stiffness matrix

余｜$|\triangle| \triangle|D|$

Example

MAHIDOL UNIVERSITY

The length of bars 12 and 23 are equal（ L ） E：Young＇s modulus
A：Cross sectional area of each bar
Solve for $d_{2 x}$ and $d_{2 y}$ using the＂physical interpretation＂approach

Solution

Notice that the final set of equations will be of the form

$$
\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left\{\begin{array}{l}
d_{2 x} \\
d_{2 y}
\end{array}\right\}=\left\{\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right\}
$$

Where k_{11}, k_{12}, k_{21} and k_{22} will be determined using the ＂physical interpretation＂approach

Force equilibrium

$$
\begin{aligned}
& \sum F_{x}=k_{11}-T_{1} \cos (45)-T_{2} \cos (45)=0 \\
& \sum F_{y}=k_{21}-T_{1} \sin (45)+T_{2} \sin (45)=0
\end{aligned}
$$

Force－deformation relations

$$
\begin{aligned}
& T_{1}=\frac{E A}{L} \delta_{1} \\
& T_{2}=\frac{E A}{L} \delta_{2}
\end{aligned}
$$

Combining force equilibrium and force－deformation relations

$$
\begin{aligned}
& k_{11}=\frac{\left(T_{1}+T_{2}\right)}{\sqrt{2}}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}+\delta_{2}\right) \\
& k_{21}=\frac{\left(T_{1}-T_{2}\right)}{\sqrt{2}}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}-\delta_{2}\right)
\end{aligned}
$$ UNIVERSITY

Now use the geometric（compatibility）conditions（see figure）

$\delta_{1}=1 \cdot \cos (45)=\frac{1}{\sqrt{2}}$
$\delta_{2}=1 \cdot \cos (45)=\frac{1}{\sqrt{2}}$

Finally

$k_{11}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}+\delta_{2}\right)=\frac{E A}{\sqrt{2} L}\left(\frac{2}{\sqrt{2}}\right)=\frac{E A}{L}$
$k_{21}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}-\delta_{2}\right)=0$

Force equilibrium

$\sum F_{x}=k_{12}-T_{1} \cos (45)-T_{2} \cos (45)=0$
$\sum F_{y}=k_{22}-T_{1} \sin (45)+T_{2} \sin (45)=0$

Force－deformation relations

$$
\begin{aligned}
& T_{1}=\frac{E A}{L} \delta_{1} \\
& T_{2}=\frac{E A}{L} \delta_{2}
\end{aligned}
$$

Combining force equilibrium and force-deformation relations
$k_{12}=\frac{\left(T_{1}+T_{2}\right)}{\sqrt{2}}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}+\delta_{2}\right)$
$k_{22}=\frac{\left(T_{1}-T_{2}\right)}{\sqrt{2}}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}-\delta_{2}\right)$
(2) MAHIDOL UNIVERSITY

Now use the geometric (compatibility) conditions (see figure)

$\delta_{1}=1 \cdot \cos (45)=\frac{1}{\sqrt{2}}$
$\delta_{2}=-1 \cdot \cos (45)=-\frac{1}{\sqrt{2}}$
$\underline{\text { Finally }}$
This negative is due to compression
$k_{12}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}+\delta_{2}\right)=0$
$k_{22}=\frac{E A}{\sqrt{2} L}\left(\delta_{1}-\delta_{2}\right)=\frac{E A}{\sqrt{2} L}\left(\frac{2}{\sqrt{2}}\right)=\frac{E A}{L}$

In local coordinate system $\quad \underline{\hat{\mathrm{f}}}=\underline{\hat{\mathrm{k}}} \underline{\hat{\mathrm{d}}}$

$$
\left\{\begin{array}{l}
\hat{\mathrm{f}}_{1 \mathrm{x}} \\
\hat{\mathrm{f}}_{1 \mathrm{y}} \\
\hat{\mathrm{f}}_{1 \mathrm{z}} \\
\hat{\mathrm{f}}_{2 \mathrm{x}} \\
\hat{\mathrm{f}}_{2 \mathrm{y}} \\
\hat{\mathrm{f}}_{2 \mathrm{z}}
\end{array}\right\}=\left[\begin{array}{cccccc}
\mathrm{k} & 0 & 0 & -\mathrm{k} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\mathrm{k} & 0 & 0 & \mathrm{k} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
\hat{\mathrm{d}}_{1 \mathrm{x}} \\
\hat{\mathrm{~d}}_{1 \mathrm{y}} \\
\hat{\mathrm{~d}}_{1 \mathrm{z}} \\
\hat{\mathrm{~d}}_{2 \mathrm{x}} \\
\hat{\mathrm{~d}}_{2 \mathrm{y}} \\
\hat{\mathrm{~d}}_{2 \mathrm{z}}
\end{array}\right\}
$$

The transformation matrix for a single vector in 3DMAHIDOL $\hat{\mathrm{d}}=\underline{\mathrm{T}^{*}} \underline{d}$

$$
\underline{\mathrm{T}}^{*}=\left[\begin{array}{lll}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right] \quad \begin{gathered}
l_{1}, m_{1} \text { and } n_{1} \text { are the direction cosines of } \hat{x} \\
l_{1}=\cos \theta_{x} \\
m_{1}=\cos \theta_{y} \\
n_{1}=\cos \theta_{z}
\end{gathered}
$$

UNIVERSITY
Transformation matrix \mathbf{T} relating the local and global displacement and load vectors of the truss element

$$
\hat{\mathrm{d}}=\underline{\mathrm{Td}}
$$

$$
\underline{\hat{f}}=\underline{\mathrm{Tf}}
$$

$$
\frac{\mathrm{T}}{6 \times 6}=\left[\begin{array}{cc}
\underline{\mathrm{T}}^{*} & \underline{0} \\
\underline{0} & \underline{\mathrm{~T}}^{*}
\end{array}\right]
$$

Element stiffness matrix in global coordinates

$$
\underset{6 \times 6}{\mathrm{k}}=\frac{\mathrm{T}}{}^{T} \times \frac{\hat{\mathrm{k}}}{6 \times 6} \frac{\mathrm{~T}}{6 \times 6}
$$

Notice that the direction cosines of only the local \hat{x} axis enter the k matrix

葍 $4|\nabla| D$

Summary:

-The principles of simple beam theory
-Stiffness matrix of a beam element

- Procedures for handling distributed loading and concentrated nodal loading
- Example Problems

Beams: Engineering structures that are long, slender and generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects

Development of Beam Equations

[^0]
\[

$$
\begin{aligned}
& \sum M_{\text {rgMV-side }}=0=(M+d M)-M-V d \hat{x}+w(\hat{x}) d \hat{x}\left(\frac{d \hat{x}}{2}\right) \quad d \hat{x}^{2} \approx 0 \\
& \sum F_{y}=0=V-(V+d V)-w(\hat{x}) d x
\end{aligned}
$$
\]

Abstract

can be derived as follows. Consider the beam shown below.

The differential equation governing simple linear-elastic beam behavior

(a) Beam under load $w(\hat{x})$

(b) Differential beam element

Write the equations of equilibrium for the differential element:

Mahidol University

Faculty of Engineering
where ρ is the radius of the deflected curve, \hat{v} is the transverse displacement function in the \hat{y} direction, E is the modulus of elasticity, and I is the principle moment of inertia about \hat{y} direction

$$
\begin{aligned}
& \sum M_{\text {ragt-sde }}=0 \Rightarrow-V d \hat{x}+d M=0 \quad \text { or } V=\frac{d M}{d \hat{x}} \\
& \sum F_{y}=0 \Rightarrow-w d \hat{x}-d V=0 \quad \text { or } \quad w=-\frac{d V}{d \hat{x}} \quad \Rightarrow \quad w=-\frac{d}{d \hat{x}}\left(\frac{d M}{d \hat{x}}\right)
\end{aligned}
$$

The curvature k of the beam is related to the moment by:

(a) Portion of deflected curve of beam

b) Radius of deflected curve at $\hat{v}(x)$

The curvature for small slopes $\theta=d \hat{v} / d \hat{x}$ is given as:

$$
k=\frac{d^{2} \hat{v}}{d \dot{x}^{2}}
$$

Therefore:

$$
\frac{d^{2} \hat{v}}{d \hat{x}^{2}}=\frac{M}{E I} \quad \Rightarrow \quad M=E I \frac{d^{2} \hat{v}}{d \hat{x}^{2}}
$$

STEP 1: Select Element Type
Consider a linear-elastic beam element shown below

Stiffness Matrix
 A Beam Element

图| $4|D| D$

Mahidol University

Faculty of Engincering

At all nodes, the following sign conventions are used:

1. Moments are positive in the counterclockwise direction.
2. Rotations are positive in the counterclockwise direction.
3. Forces are positive in the positive \hat{y} direction.
4. Displacements are positive in the positive \hat{y} direction.

Neglect all axial effects!
|বID|D

Mahidol University

Faculty of Engineering

STEP 2: Select a displacement function
Assume the transverse displacement function v is

The number of coefficients in the displacement function, \boldsymbol{a}_{i}, is equal to the total number of degrees of freedom associated with the element (displacement and rotation at each node). The boundary conditions are:

$\hat{v}(\hat{x}=0)=\hat{d}_{1 y}$	$\hat{v}(\hat{x}=L)=\hat{d}_{2 y}$
$\frac{d \hat{v}(\hat{x}=0)}{d \hat{x}}=\hat{\phi}_{1}$	$\frac{d \hat{v}(\hat{x}=L)}{d \hat{x}}=\hat{\phi}_{2}$

Applying the boundary conditions

$$
\begin{aligned}
& \hat{v}(0)=\hat{d}_{1 y}=a_{4} \\
& \hat{v}(L)=\hat{d}_{2 y}=a_{1} L^{3}+a_{2} L^{2}+a_{3} L+a_{4} \\
& \frac{d \hat{v}(0)}{d \hat{x}}=\hat{\phi}_{1}=a_{3} \\
& \frac{d \hat{v}(L)}{d x}=\hat{\phi}_{2}=3 a_{1} L^{2}+2 a_{2} L+a_{3}
\end{aligned}
$$

Solving these equations for the unknown coefficient gives
$\hat{v}=\left[\frac{2}{L^{3}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)+\frac{1}{L^{2}}\left(\hat{\phi}_{1}-\hat{\phi}_{2}\right)\right] \hat{x}^{3}+\left[-\frac{3}{L^{2}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)-\frac{1}{L}\left(2 \hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{x}^{2}+\hat{\phi}_{1} \hat{x}+\hat{d}_{1 y}$

$\hat{v}=\left[\frac{2}{L^{3}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)+\frac{1}{L^{2}}\left(\hat{\phi}_{1}-\hat{\phi}_{2}\right)\right] \hat{X}^{3}+\left[-\frac{3}{L^{2}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)-\frac{1}{L}\left(2 \hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{X}^{2}+\hat{\phi}_{1} \hat{x}+\hat{d}_{1 y}$
In matrix form the above equations are: $\quad \hat{v}=[N]\{\hat{d}\}$
where $\quad\{\hat{d}\}=\left\{\begin{array}{c}d_{1 y} \\ \phi_{1} \\ d_{2 y} \\ \phi_{2}\end{array}\right\} \quad \begin{gathered}{[N]=\left[\begin{array}{lll}N_{1} & N_{2} & N_{3} N_{4}\end{array}\right]} \\ \text { Shape Functions for a Beam Element }\end{gathered}$
and

$$
\begin{array}{ll}
N_{1}=\frac{1}{L^{3}}\left(2 \hat{x}^{3}-3 \hat{x}^{2} L+L^{3}\right) & N_{2}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-2 \hat{x}^{2} L^{2}+\hat{x} L^{3}\right) \\
N_{3}=\frac{1}{L^{3}}\left(-2 \hat{x}^{3}+3 \hat{x}^{2} L\right) & N_{4}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-\hat{x}^{2} L^{2}\right)
\end{array}
$$

Shape Functions for a Beam Element

Mahidol University

Faculty of Engineering

STEP 3: Define the strain/displacement + stress/strain relationships
The stress-displacement relationship is: $\quad \varepsilon_{x}(\hat{x}, \hat{y})=\frac{d \hat{u}}{d \hat{x}}$
where \hat{u} is the axial displacement function.
We can relate the axial displacement to the transverse displacement by considering the beam element shown below:

$\hat{u}=-\hat{y} \frac{d \hat{v}}{d \hat{x}} \quad$ One of the basic assumptions in simple beam theory is that planes remain planar after deformation, therefore:

$$
\varepsilon_{x}(\hat{x}, \hat{y})=-\hat{y}\left(\frac{d^{2} \hat{v}}{d \hat{x}^{2}}\right)
$$

Moments and shears are related to the transverse displacement as:

$$
\hat{m}(\hat{x})=E l\left(\frac{d^{2} \hat{v}}{d \hat{x}^{2}}\right) \quad \hat{V}(x)=E I\left(\frac{d^{3} \hat{v}}{d \hat{x}^{3}}\right)
$$

STEP 4: Derive the element stiffness matrix and equations
Using beam theory sign convention for shear force and bending moment, one obtain the following equations:
$\hat{f}_{1 y}=\hat{V}=E I \frac{d^{3} \hat{v}(0)}{d \hat{x}^{3}}=\frac{E I}{L^{3}}\left(12 \hat{d}_{1 y}+6 L \hat{\phi}_{1}-12 \hat{d}_{2 y}+6 L \hat{\phi}_{2}\right)$
$\hat{f}_{2 y}=-\hat{V}=E I \frac{d^{3} \hat{V}(L)}{d \hat{x}^{3}}=\frac{E I}{L^{3}}\left(-12 \hat{d}_{1 y}-6 L \hat{\phi}_{1}+12 \hat{d}_{2 y}-6 L \hat{\phi}_{2}\right)$
$\hat{m}_{1}=-\hat{m}=-E I \frac{d^{2} \hat{v}(0)}{d \hat{x}^{2}}=\frac{E I}{L^{3}}\left(6 L \hat{d}_{1 y}+4 L^{2} \hat{\phi}_{1}-6 L \hat{d}_{2 y}+2 L^{2} \hat{\phi}_{2}\right)$
$\hat{m}_{2}=\hat{m}=E I \frac{d^{2} \hat{v}(L)}{d \hat{x}^{2}}=\frac{E I}{L^{3}}\left(6 L \hat{d}_{1 y}+2 L^{2} \hat{\phi}_{1}-6 L \hat{d}_{2 y}+4 L^{2} \hat{\phi}_{2}\right)$

In the matrix form the above equations are:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{rrrc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

Where the stiffness matrix is:

$$
k=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

Mahidol University
 Faculty of Engineering

STEP 5: Assemble the element equations and Introduce boundary conditions
This will be illustrated in the following example!
Consider a beam modeled by two beam elements, shown below:

The beam element stiffness matrices are:

$$
\begin{array}{r}
d_{1 y} \\
k^{(1)}
\end{array}=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right],
$$

In this example, the local coordinates coincide with the global coordinates of the whole beam (therefore there is no transformation required for this problem). The total stiffness matrix can be assembled as
$\left\{\begin{array}{l}F_{1 y} \\ M_{1} \\ F_{2 y} \\ M_{2} \\ F_{3 y} \\ M_{3}\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{cccc:cc}12 & 6 L & -12 & 6 L & 0 & 0 \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\ -12 & -6 L & 12+12 & -6 L+6 L & -12 & 6 L \\ 6 L & 2 L^{2} & -6 L+6 L & 4 L^{2}+4 L^{2} & -6 L & 2 L^{2} \\ \hdashline 0 & 0 & -12 & -6 L & 12 & -6 L \\ 0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}\end{array}\right]\left\{\begin{array}{l}d_{1 y} \\ \phi_{1} \\ d_{2 y} \\ \phi_{2} \\ d_{3 y} \\ \phi_{3}\end{array}\right\}$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{2 y} \\
\phi_{2} \\
\phi_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{875 L^{3}-375 L^{2}}{12 E l} l b \\
-\frac{125 L^{2}-625 L}{4 E l} \mathrm{rad} \\
-\frac{125 L^{2}-125 L}{E l} \mathrm{rad}
\end{array}\right\}
$$

Example 1 - Beam Problem
Consider the beam shown below. Assume that $\boldsymbol{E I}$ is constant and the length is $2 L$.

The beam element stiffness matrices are:

$$
K^{(1)}=\frac{E I}{L^{3}}\left[\begin{array}{rrrr}
d_{1 y} & \phi_{1} & d_{2 y} & \phi_{2} \\
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \quad k^{(2)}=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
2 y & \phi_{2} & d_{3 y} & \phi_{3} \\
{\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
-12 & 4 L^{2} & -6 L & 2 L^{2} \\
6 L & 2 L^{2} & 12 & -6 L \\
-6 L
\end{array}\right]}
\end{array}\right.
$$

The local coordinates coincide with the global coordinates of the whole beam (therefore there is no transformation required for this problem). The total stiffness matrix can be assembled as

$$
K=\frac{E I}{L^{3}}\left[\begin{array}{cccc:cc}
12 & 6 L & -12 & 6 L & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\
-12 & -6 L & 24 & 0 & -12 & 6 L \\
6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} \\
\hdashline 0 & 0 & -12 & -6 L & 12 & -6 L \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

Mahidol University

Faculty of Engincering

Mahidol University

Faculty of Engineering

By applying the boundary conditions the beam equations reduce to:

$$
\left\{\begin{array}{c}
-P \\
0 \\
0
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{ccc}
12 & 6 L & 6 L \\
6 L & 4 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 8 L^{2}
\end{array}\right]\left\{\begin{array}{l}
d_{1 y} \\
\phi_{1} \\
\phi_{2}
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{1 y} \\
\phi_{1} \\
\phi_{2}
\end{array}\right\}=\frac{P L^{2}}{4 E I}\left\{\begin{array}{c}
-\frac{7 L}{3} \\
3 \\
1
\end{array}\right\}
$$

The positive signs for the rotations indicate that both are in the counterclockwise direction. The negative sign on the displacement indicates a deformation in the - \hat{y} direction.

The local nodal forces for element 2:
$\left\{\begin{array}{l}F_{1 y} \\ M_{1} \\ F_{2 y} \\ M_{2} \\ F_{3 y} \\ M_{3}\end{array}\right\}=\frac{P}{4 L}\left[\begin{array}{cccccc}12 & 6 L & -12 & 6 L & 0 & 0 \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\ -12 & -6 L & 24 & 0 & -12 & 6 L \\ 6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} \\ 0 & 0 & -12 & -6 L & 12 & -6 L \\ 0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}\end{array}\right]\left\{\begin{array}{c}-7 L / 3 \\ 3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right\}$

The local nodal forces for element 1:
$\left\{\begin{array}{l}\hat{f}_{1 y} \\ \hat{m}_{1} \\ \hat{f}_{2 y} \\ \hat{m}_{2}\end{array}\right\}=\frac{P}{4 L}\left[\begin{array}{cccc}12 & 6 L & -12 & 6 L \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} \\ -12 & -6 L & 12 & -6 L \\ 6 L & 2 L^{2} & -6 L & 4 L^{2}\end{array}\right]\left\{\begin{array}{c}-71 / 3 \\ 1 \\ 0 \\ 0\end{array}\right\}=\left\{\begin{array}{c}-P \\ 0 \\ P \\ -P L\end{array}\right\}$

$$
\left\{\begin{array}{l}
\hat{f}_{2 y} \\
\hat{m}_{2} \\
\hat{f}_{3 y} \\
\hat{m}_{3}
\end{array}\right\}=\frac{P}{4 L}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
1.5 P \\
P L \\
-1.5 P \\
0.5 P L
\end{array}\right\}
$$

The free-body diagrams for the each element are shown below.

Combining the elements gives the forces and moments for the original beam.

Mahidol University

Faculty of Engineering

Example 2-Beam Problem

Consider the beam shown below. Assume $E=30 \times 10^{6} \mathrm{psi}$ and $I=500 \mathrm{in} .^{4}$ are constant throughout the beam. Use four elements of equal length to model the beam.

The beam element stiffness matrices are:

$$
k^{(i)}=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
d_{i y} & \phi_{i} & d_{(i+1) y} & \phi_{i+1} \\
{\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]}
\end{array}\right.
$$

Using the direct stiffness method, the four beam element stiffness matrices are superimposed to produce the global stiffness matrix. As shown on the next page. The boundary conditions for this problem are:

$$
d_{1 y}=\phi_{1}=d_{3 y}=d_{5 y}=\phi_{5}=0
$$

Mahidol University

Faculty of Engincering

Mahidol University
 Faculty of Engineering

The global forces and moments can be determined as:

$$
\frac{E I}{L^{3}}\left[\begin{array}{ccccc}
24 & 0 & 6 L & 0 & 0 \\
0 & 8 L^{2} & 2 L^{2} & 0 & 0 \\
6 L & 2 L^{2} & 8 L^{2} & -6 L & 2 L^{2} \\
0 & 0 & -6 L & 24 & 0 \\
0 & 0 & 2 L^{2} & 0 & 8 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{2 y} \\
\phi_{2} \\
\phi_{3} \\
d_{4 y} \\
\phi_{4}
\end{array}\right\}=\left\{\begin{array}{c}
-10,000 \mathrm{lb} \\
0 \\
0 \\
-10,000 \mathrm{Ib} \\
0
\end{array}\right\}
$$

Substituting $L=120 \mathrm{in}$., $E=30 \times 10^{6} \mathrm{psi}$, and $\boldsymbol{I}=500 \mathrm{in} .{ }^{4}$ into the above equations and solving for the unknowns gives:

$$
d_{2 y}=d_{4 y}=-0.048 \text { in } \quad \phi_{2}=\phi_{3}=\phi_{4}=0
$$

The global forces and moments can be determined as:

$$
F_{1 y}=5 \mathrm{kips} \quad M_{1}=25 \mathrm{kips} \mathrm{ft}
$$

$$
\begin{array}{ll}
F_{1 y}=5 \mathrm{kips} & M_{1}=25 \mathrm{kips} \cdot \mathrm{ft} \\
F_{2 y}=10 \mathrm{kips} & M_{2}=0 \\
F_{3 y}=10 \mathrm{kips} & M_{3}=0 \\
F_{4 y}=10 \mathrm{kips} & M_{4}=0 \\
F_{5 y}=5 \mathrm{kips} & M_{5}=-25 \mathrm{kips} \cdot \mathrm{ft}
\end{array}
$$

The local nodal forces for element 1 :

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
-0.048 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
5 \mathrm{kips} \\
25 \mathrm{k} \cdot \mathrm{ft} \\
-5 \mathrm{kips} \\
25 \mathrm{k} \cdot \mathrm{ft}
\end{array}\right\}
$$

The local nodal forces for element 2 :

$$
\left\{\begin{array}{l}
\hat{f}_{2 y} \\
\hat{m}_{2} \\
\hat{f}_{3_{y}} \\
\dot{m}_{3}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
-0.048 \\
0 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-5 \mathrm{kips} \\
-25 \mathrm{k} \cdot \mathrm{ft} \\
5 \mathrm{kips} \\
-25 \mathrm{k} \cdot \mathrm{ft}
\end{array}\right\}
$$

The local nodal forces for element 3 :

$$
\left\{\begin{array}{l}
\hat{f}_{3 y} \\
\hat{m}_{3} \\
\hat{f}_{4 y} \\
\hat{m}_{4}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
-0.048 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
5 \mathrm{kips} \\
25 \mathrm{k} \cdot \mathrm{ft} \\
-5 \mathrm{kips} \\
25 \mathrm{k} \cdot \mathrm{ft}
\end{array}\right\}
$$

The local nodal forces for element 4:

$$
\left\{\begin{array}{l}
\hat{f}_{4 y} \\
\hat{m}_{4} \\
\hat{f}_{5 y} \\
\hat{m}_{5}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{rrrr}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
-0.048 \\
0 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-5 \mathrm{kips} \\
-25 \mathrm{k} \cdot \mathrm{ft} \\
5 \mathrm{kips} \\
-25 \mathrm{k} \cdot f t
\end{array}\right\}
$$

Note: Due to symmetry about the vertical plane at node 3, we could have worked just half the beam, as shown below.

Mahidol University

Faculty of Engineerin

The beam element stiffness matrices are:

The spring element stiffness matrix is:

$$
\begin{gathered}
d_{3 y} \\
d_{4 y} \\
k^{(3)}=\left[\begin{array}{rr}
k & -k \\
-k & k
\end{array}\right]
\end{gathered} \quad \Rightarrow \quad d_{3 y} \phi_{3} d_{4 y}
$$

Using the direct stiffness method and superposition gives the global beam equa tions.

$$
\left\{\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2} \\
F_{3 y} \\
M_{3} \\
F_{4 y}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{cccc:ccc}
12 & 6 L & -12 & 6 L & 0 & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 & 0 \\
-12 & -6 L & 24 & 0 & -12 & 6 L & 0 \\
6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} & 0 \\
\hdashline 0 & 0 & -12 & -6 L & 12+k^{\prime} & -6 L & -k^{\prime} \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2} & 0 \\
0 & 0 & 0 & 0 & -k^{\prime} & 0 & k^{\prime}
\end{array}\right]\left\{\begin{array}{l}
d_{1 y} \\
\phi_{1} \\
d_{2 y} \\
\phi_{2} \\
d_{3 y} \\
\phi_{3} \\
d_{4 y}
\end{array}\right\} \quad k^{\prime}=\frac{k L^{3}}{E l}
$$

The boundary conditions for this problem are:

$$
d_{1 y}=\phi_{1}=d_{2 y}=d_{4 y}=0
$$

After applying the boundary conditions the global beam equations reduce to:

$$
\left\{\begin{array}{l}
M_{2} \\
F_{3 y} \\
M_{3}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{ccc}
8 L^{2} & -6 L & 2 L^{2} \\
-6 L & 12+k^{\prime} & -6 L \\
2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
\phi_{2} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-P \\
0
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
\phi_{2} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\}=\left\{\begin{array}{l}
-\frac{3 P L^{2}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right) \\
-\frac{7 P L^{3}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right) \\
-\frac{9 P L^{2}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right)
\end{array}\right\} \quad k^{\prime}=\frac{k L^{3}}{E I}
$$

Mahidol University

Faculty of Engineering

A free-body diagram, including forces and moments acting on the beam is shown below.

$\left\{\begin{array}{l}F_{1 y} \\ M_{1} \\ F_{2 y} \\ M_{2} \\ F_{3 y} \\ M_{3} \\ F_{4 y}\end{array}\right\}=\left\{\begin{array}{c}-69.9 \mathrm{kN} \\ -69.7 \mathrm{kN} \cdot \mathrm{m} \\ 116.4 \mathrm{kN} \\ 0 \\ -50 \mathrm{kN} \\ 0 \\ 3.5 \mathrm{kN}\end{array}\right\}$

Distributed Loadings

Beam members can support distributed loading as well as concentrated nodal loading. Therefore, we must be able to account for distributed loading. Consider the fixed-fixed beam subjected to a uniformly distributed loading \boldsymbol{w} shown the figure below. The reactions, determined from structural analysis theory, are called fixed-end reactions. In general, fixed-end reactions are those reactions at the ends of an element if the ends of the element are assumed to be fixed (displacements and rotations are zero). Therefore, guided by the results from structural analysis for the case of a uniformly distributed load, we replace the load by concentrated nodal forces and moments tending to have the same effect on the beam as the actual distributed load.

The figure below illustrates the idea of equivalent nodal loads for a general beam. We can replace the effects of a uniform load by a set of nodal forces and moments.

Work Equivalence Method

This method is based on the concept that the work done by the distributed load is equal to the work done by the discrete nodal loads. The work done by the distributed load is:

$$
W_{\text {asstroxeed }}=\int_{0} w(\hat{x}) \hat{v}(\hat{x}) d \hat{x}
$$

where $\hat{v}(\hat{x})$ is the transverse displacement. The work done by the discrete nodal forces is:

$$
W_{\text {noxts }}=\hat{m}_{1} \hat{\phi}_{1}+\hat{m}_{2} \hat{\phi}_{2}+\hat{f}_{1 y} \hat{d}_{1 y}+\hat{f}_{2 y} \hat{d}_{2 y}
$$

The nodal forces can be determined by setting $\mathrm{W}_{\text {distributed }}=\mathrm{W}_{\text {nodes }}$ for arbitrary displacements and rotations.

$$
W_{\text {asstronead }}=W_{\text {nodeses }}
$$

Mahidol University
 Faculty of Engineering
 Wisdom of the

Example 4 - Load Replacement
Consider the beam, shown below, and determine the equivalent nodal forces for the given distributed load.

Using the work equivalence method or:

$$
W_{\text {distrobuled }}=W_{\text {nodese }}
$$

we get:
$\int_{0}^{\hat{1}} w(\hat{x}) \hat{v}(\hat{x}) d \hat{x}=\hat{m}_{1} \hat{\phi}_{1}+\hat{m}_{2} \hat{\phi}_{2}+\hat{f}_{1 y} \hat{d}_{1 y}+\hat{f}_{2 y} \hat{d}_{2 y}$

Using another set of arbitrary nodal displacements, such as:

$$
d_{1 y}=d_{2 y}=\phi_{1}=0 \quad \phi_{2}=1
$$

The resulting nodal equivalent force or moment is:

$$
\hat{m}_{2}(1)=-\left(\frac{w L^{2}}{4}-\frac{w L^{2}}{3}\right)=\frac{w L^{2}}{12}
$$

Setting the nodal rotations equal zero except for the $\hat{d}_{1 y}$ and $\hat{d}_{2 y}$ gives:

$$
\begin{aligned}
& \hat{f}_{1 y}(1)=-\frac{L W}{2}+L w-L w=-\frac{L w}{2} \\
& \hat{f}_{2 y}(1)=\frac{L W}{2}-L w=-\frac{L w}{2}
\end{aligned}
$$

$$
\hat{m}_{1}(1)=-\left(\frac{w L^{2}}{4}-\frac{2}{3} L^{2} w+\frac{L^{2}}{2} w\right)=-\frac{w L^{2}}{12}
$$

Faculty of Engineering

Evaluating the left-hand-side of the above expression using $w(\hat{x})=-w$ and $\hat{v}(\hat{x})$ equal to:

$$
\hat{v}(\hat{x})=\left[\frac{2}{L^{3}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)+\frac{1}{L^{2}}\left(\hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{x}^{3}+\left[-\frac{3}{L^{2}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)-\frac{1}{L}\left(2 \hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{x}^{2}+\hat{\phi_{1}} \hat{x}+\hat{d}_{1 y}
$$

gives:

$$
\int_{0} w \hat{v}(\hat{x}) d \hat{x}=\frac{L w}{2}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)-\frac{L^{2} w}{4}\left(\hat{\phi}_{1}+\hat{\phi}_{2}\right)-L w\left(\hat{d}_{2 y}-\hat{d}_{1 y}\right)+\frac{L^{2} w}{3}\left(2 \hat{\phi}_{1}+\hat{\phi}_{2}\right)-\frac{L^{2} w}{2} \hat{\phi}_{1}-w L \hat{d}_{1 y}
$$

Using a set of arbitrary nodal displacements, such as:

$$
d_{1 y}=d_{2 y}=\phi_{2}=0 \quad \phi_{1}=1
$$

The resulting nodal equivalent force or moment is:

Example 5 - Load Replacement

Consider the beam shown below, determine the equivalent nodal forces for the given distributed load.

The work equivalent nodal forces are shown above. Using the beam stiffness equations, with the boundary conditions applied, we can solve for the displacements

$$
\left\{\begin{array}{c}
-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{rr}
12 & -6 L \\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

Therefore:

$$
\left\{\begin{array}{|l|}
\hat{\alpha}_{2 v} \\
\hat{\phi}_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{w L^{4}}{8 E I} \\
-\frac{w L^{3}}{6 E I}
\end{array}\right\}
$$

In this case, the method of equivalent nodal forces gives the exact solution for the displacements and rotations.
To obtain the global nodal forces, we will first define the product of $\boldsymbol{K} \boldsymbol{d}$ to be \boldsymbol{F}^{e}, where F° is called the effective global nodal forces. Therefore:

$$
\left\{\begin{array}{l}
F^{e}{ }_{1 y} \\
M^{e}{ }_{1} \\
F^{e}{ }_{2 y} \\
M^{e}{ }_{1}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
-w^{4} / 8 E l \\
-\mathrm{wL}^{3} / 6 \mathrm{El}
\end{array}\right\}
$$

Simplifying the above expression gives:

$$
\left\{\begin{array}{l}
F^{e}{ }_{1 y} \\
M^{e}{ }_{1} \\
F^{e}{ }_{2 y} \\
M^{e}{ }_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{w L}{2} \\
\frac{5 w L^{2}}{12} \\
-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{w L}{2} \\
\frac{5 w L^{2}}{12} \\
-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}-\left\{\begin{array}{c}
-\frac{w L}{2} \\
-\frac{w L^{2}}{12} \\
-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}=\left\{\begin{array}{c}
w L \\
\frac{w L^{2}}{2} \\
0 \\
0
\end{array}\right\}
$$

Using the above expression and the fix-end moments in:

$$
F=K d-F_{0}
$$

gives the correct global nodal forces as:

Mahidol University

Faculty of Engineering

Example 6 - Cantilever Beam

Consider the beam, shown below, determine the vertical displacement and rotation at the free-end and the nodal forces, including reactions. Assume $\boldsymbol{E I}$ is constant throughout the beam.

(a)

We will use one element and replace the concentrated load with the appropriate nodal forces. The beam stiffness equations become:

$$
\left\{\begin{array}{c}
-\frac{P}{2} \\
\frac{P L}{8}
\end{array}\right\}=\frac{E l}{L^{3}}\left[\begin{array}{rr}
12 & -6 L \\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

Mahidol University
 Faculty of Engineering

Therefore:

$$
\left\{\begin{array}{c}
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{5 P L^{3}}{48 E I} \\
-\frac{P L^{2}}{8 E I}
\end{array}\right\}
$$

To obtain the global nodal forces, we begin by evaluating the effective nodal forces.

$$
\left\{\begin{array}{l}
F^{e}{ }_{1 y} \\
M^{e}{ }_{1} \\
F^{e}{ }_{2 y} \\
M^{e}{ }_{1}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
-5 P L^{3} / 48 E I \\
-P L^{2} / 8 E I
\end{array}\right\}
$$

Simplifying the above expression gives:

Using the above expression in the following equation, gives:

$$
F=K d-F_{0}
$$

The correct global nodal forces as:
$\left\{\begin{array}{l}F_{1 y} \\ M_{1} \\ F_{2 y} \\ M_{2}\end{array}\right\}=\left\{\begin{array}{c}\frac{P}{2} \\ \frac{3 P L}{8} \\ -\frac{P}{2} \\ \frac{P L}{8}\end{array}\right\}-\left\{\begin{array}{c}-\frac{P}{2} \\ -\frac{P L}{8} \\ -\frac{P}{2} \\ \frac{P L}{8}\end{array}\right\}=\left\{\begin{array}{c}P \\ \frac{P L}{2} \\ 0 \\ 0\end{array}\right\}$

In general, for any structure in which an equivalent nodal force replacement is made, the actual nodal forces acting on the structure are determined by first evaluating the effective nodal forces F^{e} for the structure and then subtracting off the equivalent nodal forces F_{0} for the structure. Similarly, for any element of a structure in which equivalent nodal force replacement is made, the actual local nodal forces acting on the element are determined by first evaluating the effective local nodal forces $\hat{f}^{(e)}$ for the element and then subtracting off the equivalent local nodal forces \hat{f}_{0} associated only with the element.

Beam Element with Nodal Hinge

Consider the beam, shown below, with an internal hinge. An internal hinge causes a discontinuity in the slope of the deflection curve at the hinge and the bending moment is zero at the hinge.

For a beam with a hinge on the right end, the moment \hat{m}_{2} is zero and we can partition the matrix to eliminate the degree of freedom associated with $\hat{\phi}_{2}$.

Mahidol University

Faculty of Engineering

For a beam with a hinge on the right end, the moment \hat{m}_{2} is zero and we can partition the matrix to eliminate the degree of freedom associated with $\hat{\phi}_{2}$.

$$
\hat{k}=\frac{E l}{L^{3}}\left[\begin{array}{rrr:r}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
\hdashline 6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

We can condense out the degree of freedom by using the partitioning method discussed earlier. Recall, the form of $\boldsymbol{k}_{\boldsymbol{c}}$

$$
\begin{aligned}
& k_{c}=\left[K_{11}\right]-\left[K_{12}\right]\left[K_{22}\right]^{-1}\left[K_{21}\right] \\
& k_{c}=\frac{E I}{L^{3}}\left[\begin{array}{rrr}
12 & 6 L & -12 \\
6 L & 4 L^{2} & -6 L \\
-12 & -6 L & 12
\end{array}\right]-\frac{E I}{L^{3}}\left\{\begin{array}{c}
6 L \\
2 L^{2} \\
-6 L
\end{array}\right\} \frac{1}{4 L^{2}}\left[\begin{array}{lll}
6 L & 2 L^{2} & -6 L
\end{array}\right]
\end{aligned}
$$

Therefore, the condensed stiffness matrix is:

$$
k_{c}=\frac{3 E I}{L^{3}}\left[\begin{array}{ccc}
1 & L & -1 \\
L & L^{2} & -L \\
-1 & -L & 1
\end{array}\right]
$$

The element force-displacement equations are:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y}
\end{array}\right\}=\frac{3 E I}{L^{3}}\left[\begin{array}{ccc}
1 & L & -1 \\
L & L^{2} & -L \\
-1 & -L & 1
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y}
\end{array}\right\}
$$

Expanding the element force-displacement equations and maintaining $\hat{m}_{2}=0$ gives:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\frac{3 E I}{L^{3}}\left[\begin{array}{cccc}
1 & L & -1 & 0 \\
L & L^{2} & -L & 0 \\
-1 & -L & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

The element force-displacement equations maintaining $\hat{m}_{1}=0$ gives:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\frac{3 E l}{L^{3}}\left[\begin{array}{cccc}
1 & 0 & -1 & L \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -L \\
L & 0 & -L & L^{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

Example 7-Beam With Hinge

In the following beam, shown below, determine the vertical displacement and rotation at node 2 and the element forces for the uniform beam with an internal hinge at node 2. Assume $E l$ is constant throughout the beam.

The stiffness matrix for element 1 (with hinge) is:

$$
\begin{gathered}
d_{1 y} \\
\phi_{1}
\end{gathered} d_{2 y} \phi_{2}, k^{(1)}=\frac{3 E I}{a^{3}}\left[\begin{array}{cccc}
1 & a & -1 & 0 \\
a & a^{2} & -a & 0 \\
-1 & -a & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
d_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}, ~
$$

The stiffness matrix for element 2 (without hinge) is:

$$
k^{(2)}=\frac{E l}{d^{3}}\left[\begin{array}{rrrr}
12 & \phi_{2} & d_{3 y} & \phi_{3} \\
6 b & 6 b & -12 & 6 b \\
6 b & 4 b^{2} & -6 b & 2 b^{2} \\
-12 & -6 b & 12 & -6 b \\
6 b & 2 b^{2} & -6 b & 4 b^{2}
\end{array}\right] ~ \$ ~
$$

The element force-displacement equations for element 1 are:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y}
\end{array}\right\}=\frac{3 E l}{a^{3}}\left[\begin{array}{ccc}
1 & a & -1 \\
a & a^{2} & -a \\
-1 & -a & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
-\frac{a^{3} b^{3} P}{3\left(b^{3}+a^{3}\right) E l}
\end{array}\right\}
$$

Therefore:

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{b^{3} P}{b^{3}+a^{3}} \\
\frac{a b^{3} P}{b^{3}+a^{3}} \\
-\frac{b^{3} P}{b^{3}+a^{3}}
\end{array}\right\}
$$

- Many bridges and buildings are composed of frames and grids.

Development of Plane Frame Equations

Rigid Plane Frame

- A rigid plane frame is defined as a series of beam elements rigidly connected to each other.
- The angles made between elements at joints remained unchanged after the deformation.
- Moments are transmitted from one element to another at joints.
- The element centroid and the applied load lie in a common plane.

Two-Dimensional Arbitrarily Oriented Beam Element

We can derive the stiffness matrix for an arbitrarily oriented beam element, shown in the figure below, in a manner similar to that used for the bar element. The local axes \hat{x} and \hat{y} are located along the beam element and transverse to the beam element, respectively, and the global axes x and y are located to be convenient for the total structure.

For a beam we will define the following as the transformation matrix:

$$
T=\left[\begin{array}{cccccc}
-S & C & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -S & C & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Notice that the rotations are not affected by the orientation of the beam. Substituting the above transformation into the general form of the stiffness matrix $k=T^{\top} \hat{k} T$ gives:
$k=\frac{E I}{L^{3}}\left[\begin{array}{ccc:ccc}12 S^{2} & -12 S C & -6 L S & -12 S^{2} & 12 S C & -6 L S \\ -12 S C & 12 C^{2} & 6 L C & 12 S C & -12 C^{2} & 6 L C \\ -6 L S & 6 L C & 4 L^{2} & 6 L S & -6 L C & 2 L^{2} \\ \hdashline-12 S^{2} & 12 S C & 6 L S & 12 S^{2} & -12 S C & 6 L S \\ 12 S C & -12 C^{2} & -6 L C & -12 S C & 12 C^{2} & -6 L C \\ -6 L S & 6 L C & 2 L^{2} & 6 L S & -6 L C & 4 L^{2}\end{array}\right]$

The effect of axial force

in the beam transformation

Recall the simple axial deformation, define in the spring element:

$$
\left\{\begin{array}{l}
\hat{f}_{1 x} \\
\hat{f}_{2 x}
\end{array}\right\}=\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
\hat{d}_{1 x} \\
\hat{d}_{2 x}
\end{array}\right\}
$$

Combining the axial effects with the shear force and bending moment effects, in local coordinates,
gives:

$$
\left\{\begin{array}{l}
\hat{f}_{1 x} \\
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 x} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\left[\begin{array}{ccc:ccc}
C_{1} & 0 & 0 & -C_{1} & 0 & 0 \\
0 & 12 C_{2} & 6 L C_{2} & 0 & -12 C_{2} & 6 L C_{2} \\
0 & 6 L C_{2} & 4 C_{2} L^{2} & 0 & -6 L C_{2} & 2 C_{2} L^{2} \\
\hdashline-C_{1} & 0 & 0 & C_{1} & 0 & 0 \\
0 & -12 C_{2} & -6 L C_{2} & 0 & 12 C_{2} & -6 L C_{2} \\
0 & 6 L C_{2} & 2 C_{2} L^{2} & 0 & -6 L C_{2} & 4 C_{2} L^{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 x} \\
\hat{d}_{1 x} \\
\hat{\phi}_{1} \\
\hat{d}_{2 x} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

甾 $|\triangle|||D|$

where

$$
C_{1}=\frac{A E}{L} \quad C_{2}=\frac{E l}{L^{3}}
$$

Therefore:

$$
\hat{k}=\left[\begin{array}{cccccc}
C_{1} & 0 & 0 & -C_{1} & 0 & 0 \\
0 & 12 C_{2} & 6 L C_{2} & 0 & -12 C_{2} & 6 L C_{2} \\
0 & 6 L C_{2} & 4 C_{2} L^{2} & 0 & -6 L C_{2} & 2 C_{2} L^{2} \\
-C_{1} & 0 & 0 & C_{1} & 0 & 0 \\
0 & -12 C_{2} & -6 L C_{2} & 0 & 12 C_{2} & -6 L C_{2} \\
0 & 6 L C_{2} & 2 C_{2} L^{2} & 0 & -6 L C_{2} & 4 C_{2} L^{2}
\end{array}\right]
$$

The above stiffness matrix include the effects of axial force in the \hat{x} direction, shear force in the \hat{y}, and bending moment about the \hat{z} axis.

The local degrees of freedom may be related to the global degrees of freedom by:
$\left\{\begin{array}{c}\hat{d}_{1 x} \\ \hat{d}_{1 x} \\ \hat{\phi}_{1} \\ \hat{d}_{2 x} \\ \hat{d}_{2 y} \\ \hat{\phi}_{2}\end{array}\right\}=\left[\begin{array}{cccccc}C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & C & S & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{c}d_{1 x} \\ d_{1 x} \\ \phi_{1} \\ d_{2 x} \\ d_{2 y} \\ \phi_{2}\end{array}\right\}$
where the transformation matrix, including axial effects is:
$\bar{T}=\left[\begin{array}{cccccc}C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & C & S & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Mahidol University

Faculty of Engineering
-The analysis of a rigid plane frame can be undertaken by applying stiffness matrix.
-The element stiffnesses of a frame are
Rigid Plane Frame Example

Substituting the above transformation into the general form of the stiffness matrix $k=\bar{T}^{\top} \hat{k} \bar{T}$ gives:

 functions of E, A, L, I, and the angle of orientation of the element with respect to the global-coordinate axes.

Example 1

Consider the frame shown in the figure below.

The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force of $10,000 \mathrm{lb}$ applied at node 2 and to a positive moment of $5,000 \mathrm{lb}-\mathrm{in}$. applied at node 3. Let $E=30 \times 10^{6} \mathrm{psi}$ and $A=10 \mathrm{in} .^{2}$ for all elements, and let $I=200 \mathrm{in} .^{4}$ for elements 1 and 3 , and $I=100$ in. ${ }^{4}$ for element 2 .
Element 1: The angle between x and \hat{x} is 90°

$$
C=0 \quad S=1
$$

where

$$
\begin{aligned}
& \frac{12 \mathrm{I}}{L^{2}}=\frac{12(200)}{(120)^{2}}=0.167 \mathrm{in}^{2} \quad \frac{6 /}{L}=\frac{6(200)}{120}=10.0 \mathrm{in}^{3} \\
& \frac{E}{L}=\frac{30 \times 10^{6}}{120}=250,000 \mathrm{lb} / \mathrm{in}^{3}
\end{aligned}
$$

Element 2: The angle between x and \hat{x} is 0°

$$
\begin{aligned}
& C=1 \quad S=0 \\
& \frac{121}{L^{2}}=\frac{12(100)}{(120)^{2}}=0.0835 \mathrm{in}^{2} \quad \frac{61}{L}=\frac{6(100)}{120}=5.0 \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 2

$$
\begin{aligned}
d_{2 x} & d_{2 y} \\
\phi_{2} & d_{3 x}
\end{aligned} d_{3 y} \phi_{3}{ }^{(2)}=250,000\left[\begin{array}{cccccc}
10 & 0 & 0 & -10 & 0 & 0 \\
0 & 0.0835 & 5 & 0 & 0.0835 & 5 \\
0 & 5 & 400 & 0 & -5 & 200 \\
-10 & 0 & 0 & 10 & 0 & 0 \\
0 & 0.0835 & -5 & 0 & 0.0835 & -5 \\
0 & 5 & 200 & 0 & -5 & 400
\end{array}\right] \mathrm{lb} / \mathrm{in}
$$

Element 3: The angle between x and \hat{x} is 270°

$$
\begin{aligned}
& C=0 \quad S=-1 \\
& \frac{121}{L^{2}}=\frac{12(200)}{(120)^{2}}=0.167 \mathrm{in}^{2} \quad \frac{61}{L}=\frac{6(200)}{120}=10.0 \mathrm{in}^{3} \\
& \frac{E}{L}=\frac{30 \times 10^{6}}{120}=250,000 \mathrm{lb} / \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 3 :

$$
\begin{gathered}
k^{(3)}=250,000\left[\begin{array}{cccccc}
d_{3 x} & d_{3 y} & \phi_{3} & d_{4 x} & d_{4 y} & \phi_{4} \\
0.167 & 0 & 10 & -0.167 & 0 & 10 \\
0 & 10 & 0 & 0 & -10 & 0 \\
10 & 0 & 800 & -10 & 0 & 400 \\
-0.167 & 0 & -10 & 0.167 & 0 & -10 \\
0 & -10 & 0 & 0 & 10 & 0 \\
10 & 0 & 400 & -10 & 0 & 800
\end{array}\right] \mathrm{lb} / \mathrm{in}
\end{gathered}
$$

The boundary conditions for this problem are:

$$
d_{1 x}=d_{1 y}=\phi_{1}=d_{4 x}=d_{4 y}=\phi_{4}=0
$$

After applying the boundary conditions the global beam equations reduce to:
$\left\{\begin{array}{c}10,000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5,000\end{array}\right\}=2.5 \times 10^{5}\left[\begin{array}{cccccc}10.167 & 0 & 10 & -10 & 0 & 0 \\ 0 & 10.0835 & 5 & 0 & -0.0835 & 5 \\ 10 & 5 & 1200 & 0 & -5 & 200 \\ -10 & 0 & 0 & 10.167 & 0 & 10 \\ 0 & -0.0835 & -5 & 0 & 10.0835 & -5 \\ 0 & 5 & 200 & 10 & -5 & 1200\end{array}\right]\left[\begin{array}{c}d_{2 x} \\ d_{2 y} \\ \phi_{2} \\ d_{3 x} \\ d_{3 y} \\ \phi_{3}\end{array}\right\}$

Solving the above equations gives:
$\left\{\begin{array}{l}d_{2 x} \\ d_{2 y} \\ \phi_{2} \\ d_{3 x} \\ d_{3 y} \\ \phi_{3}\end{array}\right\}=\left\{\begin{array}{r}0.211 \mathrm{in} \\ 0.00148 \mathrm{in} \\ -0.00153 \mathrm{rad} \\ 0.209 \mathrm{in} \\ -0.00148 \mathrm{in} \\ -0.00149 \mathrm{rad}\end{array}\right\}$

Element 1: The element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$. Therefore, $\bar{T} d$ is:

$$
\bar{T} d=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
d_{1 x}=0 \\
d_{1 y}=0 \\
\phi_{1}=0 \\
d_{2 x}=0.211 \mathrm{in} \\
d_{2 y}=0.00148 \mathrm{in} \\
\phi_{2}=-0.00153 \mathrm{rad}
\end{array}\right\}=\left\{\begin{array}{r}
0 \\
0 \\
0 \\
0.00148 \mathrm{in} \\
-0.211 \mathrm{in} \\
-0.00153 \mathrm{rad}
\end{array}\right\}
$$

Mahidol University

Faculty of Engineering

Recall the elemental stiffness matrix is:

$$
\hat{k}=\left[\begin{array}{cccccc}
C_{1} & 0 & 0 & -C_{1} & 0 & 0 \\
0 & 12 C_{2} & 6 L C_{2} & 0 & -12 C_{2} & 6 L C_{2} \\
0 & 6 L C_{2} & 4 C_{2} L^{2} & 0 & -6 L C_{2} & 2 C_{2} L^{2} \\
-C_{1} & 0 & 0 & C_{1} & 0 & 0 \\
0 & -12 C_{2} & -6 L C_{2} & 0 & 12 C_{2} & -6 L C_{2} \\
0 & 6 L C_{2} & 2 C_{2} L^{2} & 0 & -6 L C_{2} & 4 C_{2} L^{2}
\end{array}\right]
$$

Therefore, the local force-displacement equations are:

$$
\hat{f}^{(1)}=\hat{k} \bar{T} d=2.5 \times 10^{5}\left[\begin{array}{cccccc}
10 & 0 & 0 & -10 & 0 & 0 \\
0 & 0.167 & 10 & 0 & -0.167 & 10 \\
0 & 10 & 800 & 0 & -10 & 400 \\
-10 & 0 & 0 & 10 & 0 & 10 \\
0 & -0.167 & -10 & 0 & 0.167 & -10 \\
0 & 10 & 400 & 0 & -10 & 800
\end{array}\right]\left\{\begin{array}{r}
0 \\
0 \\
0 \\
0.00148 \mathrm{in} \\
-0.211 \mathrm{in} \\
-0.00153 \mathrm{rad}
\end{array}\right\}
$$

Element 2: The element force-displacement equations are:

$$
\bar{T} d=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
d_{2 x}=0.211 \mathrm{in} \\
d_{2 y}=0.00148 \mathrm{in} \\
\phi_{2}=-0.00153 \mathrm{rad} \\
d_{3 x}=0.209 \mathrm{in} \\
d_{3 y}=-0.00148 \mathrm{in} \\
\phi_{3}=-0.00149 \mathrm{rad}
\end{array}\right\}=\left\{\begin{array}{r}
-0.211 \mathrm{in} \\
0.00148 \mathrm{in} \\
-0.00153 \mathrm{rad} \\
0.209 \mathrm{in} \\
-0.00148 \mathrm{in} \\
-0.00149 \mathrm{rad}
\end{array}\right\}
$$

Therefore, the local force-displacement equations are:

$$
\hat{f}^{(2)}=\hat{k} \bar{T} d=2.5 \times 10^{5}\left[\begin{array}{cccccc}
10 & 0 & 0 & -10 & 0 & 0 \\
0 & 0.0833 & 5 & 0 & -0.0833 & 5 \\
0 & 5 & 400 & 0 & -5 & 200 \\
-10 & 0 & 0 & 10 & 0 & 0 \\
0 & -0.0833 & -5 & 0 & 0.0833 & -5 \\
0 & 5 & 200 & 0 & -5 & 400
\end{array}\right]\left\{\begin{array}{r}
0.211 \mathrm{in} \\
0.00148 \mathrm{in} \\
-0.00153 \mathrm{rad} \\
0.209 \mathrm{in} \\
-0.00148 \mathrm{in} \\
-0.00149 \mathrm{rad}
\end{array}\right\}
$$

Simplifying the above equations gives:
$\left\{\begin{array}{l}\hat{f}_{1 x} \\ \hat{f}_{1 y} \\ \hat{m}_{1} \\ \hat{f}_{2 x} \\ \hat{f}_{2 y} \\ \hat{m}_{2}\end{array}\right\}=\left\{\begin{array}{r}-3,700 \mathrm{lb} \\ 4,990 \mathrm{lb} \\ 376 \mathrm{k} \cdot \mathrm{in} \\ 3,700 \mathrm{lb} \\ -4,990 \mathrm{lb} \\ 223 \mathrm{k} \cdot \mathrm{in}\end{array}\right\}$

Therefore, the local force-displacement equations are:

$$
\hat{f}^{(3)}=\hat{k} \bar{T} d=2.5 \times 10^{5}\left[\begin{array}{cccccc}
10 & 0 & 0 & -10 & 0 & 0 \\
0 & 0.167 & 10 & 0 & -0.167 & 10 \\
0 & 10 & 800 & 0 & -10 & 400 \\
-10 & 0 & 0 & 10 & 0 & 10 \\
0 & -0.167 & -10 & 0 & 0.167 & -10 \\
0 & 10 & 400 & 0 & -10 & 800
\end{array}\right]\left\{\begin{array}{c}
0.00148 \mathrm{in} \\
0.209 \mathrm{in} \\
-0.00149 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right]
$$

Simplifying the above equations gives
$\left\{\begin{array}{l}\hat{f}_{3 x} \\ \hat{f}_{3 y} \\ \hat{m}_{3} \\ \hat{f}_{4 x} \\ \hat{f}_{4 y} \\ \hat{m}_{4}\end{array}\right\}=\left\{\begin{array}{c}3,700 \mathrm{lb} \\ 5,010 \mathrm{lb} \\ 226 \mathrm{k} \cdot \mathrm{in} \\ -3,700 \mathrm{lb} \\ -5,010 \mathrm{lb} \\ 375 \mathrm{k} \cdot \mathrm{in}\end{array}\right\}$

自| $4|||D|$

Example 2

Consider the frame shown in the figure below.

The frame is fixed at nodes 1 and 3 and subjected to a positive distributed load of $1,000 \mathrm{lb} / \mathrm{ft}$ applied along element 2 . Let $E=30 \times 10^{6} \mathrm{psi}$ and $A=100 \mathrm{in}^{2}$. for all elements, and let $I=1,000$ in. ${ }^{4}$ for all elements.

First we need to replace the distributed load with a set of equivalent nodal forces and moments acting at nodes 2 and 3 . For a beam with both end fixed, subjected to a uniform distributed load, w, the nodal forces and moments are:

$$
\begin{aligned}
& f_{2 y}=f_{3 y}=-\frac{w L}{2}=-\frac{(1,000 \mathrm{lb} / \mathrm{ft}) 40 \mathrm{ft}}{2}=-20 \mathrm{k} \\
& m_{2}=-m_{3}=-\frac{w L^{2}}{12}=-\frac{(1,000 \mathrm{lb} / \mathrm{ft})(40 \mathrm{ft})^{2}}{12}=-133,333 \mathrm{lb} \cdot \mathrm{ft}=1,600 \mathrm{k} \cdot \mathrm{in}
\end{aligned}
$$

If we consider only the parts of the stiffness matrix associated with the three degrees of freedom at node 2, we get:

Element 1: The angle between x and \hat{x} is 45°

$$
C=0.707 \quad S=0.707
$$

where

$$
\begin{aligned}
& \frac{E}{L}=\frac{30 \times 10^{6}}{509}=58.93 \mathrm{k} / \mathrm{in}^{3} \quad \frac{12 \mathrm{l}}{L^{2}}=\frac{12(1,000)}{(12 \times 30 \sqrt{2})^{2}}=0.0463 \mathrm{in}^{2} \\
& \frac{61}{L}=\frac{6(1,000)}{12 \times 30 \sqrt{2}}=11.78551 \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 1:
Simplifying the above equation:
$k^{(1)}=58.93\left[\begin{array}{ccc}d_{2 x} & d_{2 y} & \phi_{2} \\ 50.02 & 49.98 & 8.33 \\ 49.98 & 50.02 & -8.33 \\ 8.33 & -8.33 & 4000\end{array}\right] k / i n \quad k^{(1)}=\left[\begin{array}{ccc}2,948 & 2,945 & 491 \\ 2,945 & 2,948 & -491 \\ 491 & -491 & 235,700\end{array}\right] k / i n$

Element 2: The angle between x and x is 0°

$$
C=1 \quad S=0
$$

where

$$
\begin{aligned}
& \frac{E}{L}=\frac{30 \times 10^{6}}{480}=62.5 \mathrm{k} / \mathrm{in}^{3} \quad \frac{12 \mathrm{I}}{L^{2}}=\frac{12(1,000)}{(12 \times 40)^{2}}=0.0521 \mathrm{in}^{2} \\
& \frac{6 /}{L}=\frac{6(1,000)}{12 \times 40}=12.5 \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 2:
Simplifying the above equation:

$$
k^{(2)}=62.50\left[\begin{array}{ccc}
d_{2 x} & d_{2 y} & \phi_{2} \\
{\left[\begin{array}{ccc}
100 & 0 & 0 \\
0 & 0.052 & 12.5 \\
0 & 12.5 & 4,000
\end{array}\right] k / \text { in }}
\end{array} \quad k^{(2)}=\left[\begin{array}{ccc}
d_{2 x} & d_{2 y} & \phi_{2} \\
6,250 & 0 & 0 \\
0 & 3.25 & 781.25 \\
0 & 781.25 & 250,000
\end{array}\right] \mathrm{k} / \mathrm{in}\right.
$$

The global beam equations reduce to:

$$
\left\{\begin{array}{c}
0 \\
-20 k \\
-1,600 k \cdot i n
\end{array}\right\}=\left[\begin{array}{ccc}
9,198 & 2,945 & 491 \\
2,945 & 2,951 & 290 \\
491 & 290 & 485,700
\end{array}\right]\left\{\begin{array}{c}
d_{2 x} \\
d_{2 y} \\
\phi_{2}
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{2 x} \\
d_{2 y} \\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
0.0033 \mathrm{in} \\
-0.0097 \mathrm{in} \\
-0.0033 \mathrm{rad}
\end{array}\right\}
$$

Element 1: The element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$. Therefore, $\bar{T} d$ is:

$$
\bar{T} d=\left[\begin{array}{cccccc}
0.707 & 0.707 & 0 & 0 & 0 & 0 \\
-0.707 & 0.707 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.707 & 0.707 & 0 \\
0 & 0 & 0 & -0.707 & 0.707 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0.0033 \mathrm{in} \\
-0.0097 \mathrm{in} \\
-0.0033 \mathrm{rad}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.00452 \mathrm{in} \\
-0.0092 \mathrm{in} \\
-0.0033 \mathrm{rad}
\end{array}\right\}
$$

Recall the elemental stiffness matrix is a function of values C_{1}, C_{2}, and L

$$
C_{1}=\frac{A E}{L}=\frac{(100) 30 \times 10^{6}}{12 \times 30 \sqrt{2}}=5,893 \mathrm{k} / / \mathrm{m} \quad C_{2}=\frac{E l}{L^{3}}=\frac{30 \times 10^{6}(1,000)}{(12 \times 30 \sqrt{2})^{3}}=0.2273 \mathrm{k} / \mathrm{in}
$$

Mahidol University

Faculty of Engineering

Therefore, the local force-displacement equations are:

$$
\hat{f}_{(1)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
5,893 & 0 & 10 & -5,893 & 0 & 0 \\
0 & 2.730 & 694.8 & 0 & -2.730 & 694.8 \\
10 & 694.8 & 117,900 & 0 & -694.8 & 117,000 \\
-5,893 & 0 & 0 & 5,983 & 0 & 0 \\
0 & -2.730 & -694.8 & 0 & 2.730 & -694.8 \\
0 & 694.8 & 117,000 & 0 & -694.8 & 235,800
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.00452 \mathrm{in} \\
-0.0092 \mathrm{in} \\
-0.0033 \mathrm{rad}
\end{array}\right\}
$$

Element 2: The element force-displacement equations are:

$$
\bar{T} d=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0.0033 \mathrm{in} \\
-0.0097 \mathrm{in} \\
-0.0033 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
0.0033 \mathrm{in} \\
-0.0097 \mathrm{in} \\
-0.0033 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}
$$

Recall the elemental stiffness matrix is a function of values $\mathrm{C}_{1}, \mathrm{C}_{2}$, and L

$$
C_{1}=\frac{A E}{L}=\frac{(100) 30 \times 10^{6}}{12 \times 40}=6,250 \mathrm{k} / \mathrm{m} \quad C_{2}=\frac{E l}{L^{3}}=\frac{30 \times 10^{6}(1,000)}{(12 \times 40)^{3}}=0.2713 \mathrm{k} / \mathrm{m}
$$

Therefore, the local force-displacement equations are:

$$
\hat{f}_{(2)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
6,250 & 0 & 0 & -6,250 & 0 & 0 \\
0 & 3.25 & 781.1 & 0 & -3.25 & 781.1 \\
0 & 781.1 & 250,000 & 0 & -781.1 & 125,000 \\
-6,250 & 0 & 0 & 6,250 & 0 & 0 \\
0 & -3.25 & -781.1 & 0 & 3.25 & -781.1 \\
0 & 781.1 & 125,000 & 0 & -781.1 & 250,00
\end{array}\right]\left\{\begin{array}{c}
-0.0033 \mathrm{in} \\
-0.0097 \mathrm{in} \\
-0.0033 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}
$$

Simplifying the above equations gives:

$$
\hat{k} \hat{d}=\left\{\begin{array}{r}
20.63 k \\
-2.58 k \\
-832.57 k \cdot i n \\
-20.63 k \\
2.58 k \\
-412.50 k \cdot i n
\end{array}\right\}
$$

To obtain the actual element local forces, we must subtract the equivalent nodal forces
$\left\{\begin{array}{l}\hat{f}_{2 x} \\ \hat{f}_{2 y} \\ \hat{m}_{2} \\ \hat{f}_{3 x} \\ \hat{f}_{3 y} \\ \hat{m}_{3}\end{array}\right\}=\left\{\begin{array}{c}20.63 k \\ -2.58 k \\ -832.57 k \cdot i n \\ -20.63 k \\ 2.58 k \\ -412.50 k \cdot i n\end{array}\right\}-\left\{\begin{array}{c}0 \\ -20 k \\ -1600 k \cdot i n \\ 0 \\ -20 k \\ 1600 k \cdot i n\end{array}\right\}=\left\{\begin{array}{c}20.63 k \\ 17.42 k \\ 767.4 k \cdot i n \\ -20.63 k \\ 22.58 k \\ -2,013 k \cdot i n\end{array}\right\}$

The frame is fixed at nodes 1,2 , and 3 and subjected to a concentrated load of 15 k applied at mid-length of element 1 . Let $E=30 \times 10^{6} \mathrm{psi}, A=8 \mathrm{in}^{2}$, and let $I=$ $800 \mathrm{in}^{4}$ for all elements.

Example 3

Consider the frame shown in the figure
In this example will illustrate the equivalent joint force replacement method for a frame subjected to a load acting on an element instead of at one of the joints of the structure. Since no distributed loads are present, the point of application of the concentrated load could be treated as an extra joint in the analysis.

Solution Procedure

1. Express the applied load in the element 1 local coordinate system (here \hat{x} is directed from node 1 to node 4).

2．Next，determine the equivalent joint forces at each end of element 1， using the table in Appendix D （see figure below）．

｜l｜l｜

Table D－1 Equivalent joint forces f_{0} for different types of loads

	$f_{1 y}$	m_{1}	Loading case	$f_{2 y}$	m_{2}
1.	$\frac{-P}{2}$	$\frac{-P L}{8}$	$\left.\mathbb{N}^{L / 2}\right\|^{P} \quad L / 2 \quad-N$	$\frac{-P}{2}$	$\frac{P L}{8}$
2.	$\frac{-P b^{2}(L+2 a)}{L^{3}}$	$\frac{-P a b^{2}}{L^{2}}$		$\frac{-P a^{2}(L+2 b)}{L^{3}}$	$\frac{P a^{2} b}{L^{2}}$
3.	－P	$-\alpha(1-\alpha) P L$	$\underset{L}{\left.\left.y \propto \alpha\right\|^{P} \quad\right\|_{\alpha L} ^{P}}$	－P	$\alpha(1-\alpha) P L$
4.	$\frac{-w L}{2}$	$\frac{-w L^{2}}{12}$	年1＋11＋11－1	$\frac{-w L}{2}$	$\frac{w L^{2}}{12}$
5.	$\frac{-7 w L}{20}$	$\frac{-w L^{2}}{20}$		$\frac{-3 w L}{20}$	$\frac{w L^{2}}{30}$
6.	$\frac{-w L}{4}$	$\frac{-5 w L^{2}}{96}$ ．		$\frac{-w L}{4}$	$\frac{5 w L^{2}}{96}$
7.	$\frac{-13 w L}{32}$	$\frac{-11 w L^{2}}{192}$		$\frac{-3 w L}{32}$	$\frac{5 w L^{2}}{192}$

3．Then transform the equivalent joint forces from the local coordinate system forces into the global coordinate system forces，using the equation $f=T^{T} \hat{f}$ ．These global joint forces are shown below．

4．Then we analyze the structure，using the equivalent joint forces（plus actual joint forces，if any）in the usual manner．

5．The final internal forces developed at the ends of each element may be obtained by subtracting Step 2 joint forces from Step 4 joint forces．

Element 1: The angle between x and \hat{x} is 63.43°

$$
C=0.447 \quad S=0.895
$$

where

$$
\begin{aligned}
& \frac{12 I}{L^{2}}=\frac{12(800)}{(44.7 \times 12)^{2}}=0.0334 \mathrm{in}^{2} \quad \frac{6 /}{L}=\frac{6(800)}{44.7 \times 12}=8.95 \mathrm{in}^{3} \\
& \frac{E}{L}=\frac{30 \times 10^{6}}{44.7 \times 12}=55.9 \mathrm{k} / \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 1 :

$$
\begin{gathered}
d_{4 x} \\
k^{(1)}=\left[\right] \kappa / / i n
\end{gathered}
$$

Element 3: The angle between x and \hat{x} is 0° (The author of your textbook directed the element from node 4 to 3 . In general, as we have discussed in class, we usually number the element numerically or from 3 to 4 . In this case the angle between x and \hat{x} is 180°)

$$
\begin{aligned}
& C=1 \quad S=0 \quad \frac{E}{L}=\frac{30 \times 10^{6}}{50 \times 12}=50 \mathrm{k} / \mathrm{in}^{3} \\
& \frac{12 I}{L^{2}}=\frac{12(800)}{(50 \times 12)^{2}}=0.0267 \mathrm{in}^{2} \quad \frac{6 I}{L}=\frac{6(800)}{50 \times 12}=8.0 \mathrm{in}^{3}
\end{aligned}
$$

Therefore, for element 3:

$$
\begin{gathered}
d_{4 x} \\
d_{4 y}
\end{gathered} \quad \begin{gathered}
\phi_{4} \\
k^{(2)}=\left[\begin{array}{rcr}
400 & 0 & 0 \\
0 & 1.334 & 400 \\
0 & 400 & 160,000
\end{array}\right] k / i / n
\end{gathered}
$$

Element 2: The angle between x and \hat{x} is 116.57°

$$
C=-0.447 \quad S=0.895
$$

where

$$
\frac{12 I}{L^{2}}=\frac{12(800)}{(44.7 \times 12)^{2}}=0.0334 \mathrm{in}^{2} \quad \frac{6 I}{L}=\frac{6(800)}{44.7 \times 12}=8.95 \mathrm{in}^{3}
$$

$$
\frac{E}{L}=\frac{30 \times 10^{6}}{44.7 \times 12}=55.9 \mathrm{k} / \mathrm{in}^{3}
$$

Therefore, for element 2 :

$$
K^{(2)}=\left[\begin{array}{crr}
d_{4 x} & d_{4 y} & \phi_{4} \\
90.0 & -178 & 448 \\
-178 & 359 & 244 \\
448 & 244 & 179,000
\end{array}\right] K / i n
$$

Mahidol University

Faculty of Engineering

The global beam equations reduce to:

$$
\left\{\begin{array}{c}
-7.5 k \\
0 \\
-900 k \cdot i n
\end{array}\right\}=\left[\begin{array}{rrr}
582 & 0 & 896 \\
0 & 719 & 400 \\
896 & 400 & 518,000
\end{array}\right]\left\{\begin{array}{c}
d_{4 x} \\
d_{4 y} \\
\phi_{4}
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{4 x} \\
d_{4 y} \\
\phi_{4}
\end{array}\right\}=\left\{\begin{array}{c}
-0.0103 \mathrm{in} \\
0.000956 \mathrm{in} \\
-0.00172 \mathrm{rad}
\end{array}\right\}
$$

Element 1: The element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$. Therefore, $\bar{T} d$ is:

$$
\begin{aligned}
& \bar{T}=\left[\begin{array}{cccccc}
C & S & 0 & 0 & 0 & 0 \\
-S & C & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & C & S & 0 \\
0 & 0 & 0 & -S & C & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad C=0.447 \quad S=0.895 \\
& \bar{T} d=\left[\begin{array}{cccclc}
0.447 & 0.895 & 0 & 0 & 0 & 0 \\
-0.895 & 0.447 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.447 & 0.895 & 0 \\
0 & 0 & 0 & -0.895 & 0.447 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.0103 \text { in } \\
0.000956 \text { in } \\
-0.00172 \mathrm{rad}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.00374 \mathrm{in} \\
0.00963 \mathrm{in} \\
-0.00172 \mathrm{rad}
\end{array}\right\}
\end{aligned}
$$

Therefore, the local force-displacement equations are:
$\hat{f}_{(1)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}447 & 0 & 0 & -447 & 0 & 0 \\ 0 & 1.868 & 500.5 & 0 & -1.868 & 500.5 \\ 0 & 500.5 & 179,000 & 0 & -500.5 & 89,490 \\ -447 & 0 & 0 & 447 & 0 & 0 \\ 0 & -1.868 & -500.5 & 0 & 1.868 & -500.5 \\ 0 & 500.5 & 89,490 & 0 & -500.5 & 179,000\end{array}\right]\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ -0.00374 \mathrm{in} \\ 0.00963 \mathrm{in} \\ -0.00172 \mathrm{rad}\end{array}\right\}$

Simplifying the above equations gives:

$$
\hat{f}_{(1)}=\hat{k} \hat{d}=\left\{\begin{array}{r}
1.67 k \\
-0.88 k \\
-158 k \cdot i n \\
-1.67 k \\
0.88 k \\
-311 k \cdot i n
\end{array}\right\}
$$

Recall the elemental stiffness matrix is:

$$
\begin{aligned}
& \hat{k}=\left[\begin{array}{cccccc}
C_{1} & 0 & 0 & -C_{1} & 0 & 0 \\
0 & 12 C_{2} & 6 L C_{2} & 0 & -12 C_{2} & 6 L C_{2} \\
0 & 6 L C_{2} & 4 C_{2} L^{2} & 0 & -6 L C_{2} & 2 C_{2} L^{2} \\
-C_{1} & 0 & 0 & C_{1} & 0 & 0 \\
0 & -12 C_{2} & -6 L C_{2} & 0 & 12 C_{2} & -6 L C_{2} \\
0 & 6 L C_{2} & 2 C_{2} L^{2} & 0 & -6 L C_{2} & 4 C_{2} L^{2}
\end{array}\right] \\
& C_{1}=\frac{A E}{L}=\frac{(8) 30 \times 10^{6}}{12 \times 44.72}=447.2 \mathrm{k} / \text { in } \quad C_{2}=\frac{E l}{L^{3}}=\frac{30 \times 10^{6}(800)}{(12 \times 44.72)^{3}}=0.155 \mathrm{k} / \text { in }
\end{aligned}
$$

Faculty of Engineering

To obtain the actual element local forces, we must subtract the equivalent nodal forces.

Element 2: The element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$. Therefore, $\bar{T} d$ is:

$$
\begin{aligned}
& \bar{T}=\left[\begin{array}{cccccc}
C & S & 0 & 0 & 0 & 0 \\
-S & C & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & C & S & 0 \\
0 & 0 & 0 & -S & C & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \bar{T} d=\left[\begin{array}{cccccc}
-0.447 & 0.895 & 0 & 0 & 0 & 0 \\
-0.895 & -0.447 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.447 & 0.895 & 0 \\
0 & 0 & 0 & -0.895 & -0.447 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.0103 \mathrm{in} \\
0.000956 \mathrm{in} \\
-0.00172 \mathrm{rad}
\end{array}\right\}=\left\{\begin{array}{c}
0.847 \\
0.00546 \mathrm{in} \\
0.00879 \mathrm{in} \\
-0.00172 \mathrm{rad}
\end{array}\right\}
\end{aligned}
$$

Mahidol University

Faculty of Engineering

Therefore, the local force-displacement equations are:

$$
C_{1}=\frac{A E}{L}=\frac{(8) 30 \times 10^{6}}{12 \times 44.72}=447.2 \mathrm{k} / / \mathrm{m} \quad C_{2}=\frac{E l}{L^{3}}=\frac{30 \times 10^{6}(800)}{(12 \times 44.72)^{3}}=0.155 \mathrm{k} / \mathrm{m}
$$

$$
\hat{f}_{(2)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
447 & 0 & 0 & -447 & 0 & 0 \\
0 & 1.868 & 500.5 & 0 & -1.868 & 500.5 \\
0 & 500.5 & 179,000 & 0 & -500.5 & 89,490 \\
-447 & 0 & 0 & 447 & 0 & 0 \\
0 & -1.868 & -500.5 & 0 & 1.868 & -500.5 \\
0 & 500.5 & 89,490 & 0 & -500.5 & 179,000
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0.00546 \mathrm{in} \\
0.00879 \mathrm{in} \\
-0.00172 \mathrm{rad}
\end{array}\right\}
$$

Element 3: The element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$. Therefore, $\bar{T} d$ is:
$\bar{T} d=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{c}-0.0103 \mathrm{in} \\ 0.000956 \mathrm{in} \\ -0.00172 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}=\left\{\begin{array}{c}-0.0103 \mathrm{in} \\ 0.000956 \mathrm{in} \\ -0.00172 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}$

Since there are no applied loads on element 2, there are no equivalent nodal forces to account for. Therefore, the above equations are the final local nodal forces

Therefore, the local force-displacement equations are:

$$
C_{1}=\frac{A E}{L}=\frac{(8) 30 \times 10^{6}}{12 \times 50}=400 \mathrm{k} / \text { in } \quad C_{2}=\frac{E l}{L^{3}}=\frac{30 \times 10^{6}(800)}{(12 \times 50)^{3}}=0.111 \mathrm{k} / \mathrm{in}
$$

$$
\hat{f}_{(3)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
400 & 0 & 0 & -400 & 0 & 0 \\
0 & 1.335 & 400 & 0 & -1.335 & 400 \\
0 & 400 & 160,000 & 0 & -400 & 80,000 \\
-400 & 0 & 0 & 400 & 0 & 0 \\
0 & -1.335 & -400 & 0 & 1.335 & -400 \\
0 & 400 & 80,000 & 0 & -400 & 160,000
\end{array}\right]\left\{\begin{array}{c}
-0.0103 \text { in } \\
0.000956 \text { in } \\
-0.00172 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}
$$

Simplifying the above equations gives:
$\hat{f}_{(3)}=\hat{k} \hat{d}=\left\{\begin{array}{c}-4.12 k \\ -0.687 k \\ -275 k \cdot i n \\ 4.12 k \\ 0.687 k \\ -137 k \cdot i n\end{array}\right\}$

Since there are no applied loads on element 3, there are no equivalent nodal forces to account for. Therefore, the above equations are the final local nodal forces. The free-body diagrams are shown below.

$\mid\langle || | \mid$

Example 4

The frame shown on the right is fixed at nodes 2 and 3 and subjected to a concentrated load of 500 kN applied at node 1 . For the bar, $A=1 \times 10^{-3} \mathrm{~m}^{2}$, for the beam, $A=2 \times 10^{-3} \mathrm{~m}^{2}, I=5 \times 10^{-5} \mathrm{~m}^{4}$, and $L=3 \mathrm{~m}$. Let $E=210 \mathrm{GPa}$ for both elements.

Mahidol University

Faculty of Engineering

Beam Element 1: The angle between x and \hat{x} is 0°

$$
C=1 \quad S=0
$$

where

$$
\begin{aligned}
& \frac{12 l}{L^{2}}=\frac{12\left(5 \times 10^{-5}\right)}{(3)^{2}}=6.67 \times 10^{-5} \mathrm{~m}^{2} \quad \frac{6 /}{L}=\frac{6\left(5 \times 10^{-5}\right)}{3}=10^{-4} \mathrm{~m}^{3} \\
& \frac{E}{L}=\frac{210 \times 10^{6}}{3}=70 \times 10^{6} \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

Therefore, for element 1 :

$$
k^{(1)}=70 \times 10^{3}\left[\begin{array}{ccc}
d_{1 x} & d_{1 y} & \phi_{1} \\
2 & 0 & 0 \\
0 & 0.067 & 0.10 \\
0 & 0.10 & 0.20
\end{array}\right] \mathrm{kN} / \mathrm{m}
$$

Bar Element 2: The angle between x and \hat{x} is 45°

$$
C=0.707 \quad S=0.707
$$

where

$$
\begin{aligned}
k^{(2)} & \left.=\frac{10^{-3} \mathrm{~m}^{2}\left(210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}\right)}{d_{1 x}} \begin{array}{ll}
d_{1 y} \\
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right] \mathrm{kN} / \mathrm{m} \\
d_{1 x} & d_{1 y} \\
k^{(2)} & =70 \times 10^{3}\left[\begin{array}{ll}
0.354 & 0.354 \\
0.354 & 0.354
\end{array}\right] \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Assembling the elemental stiffness matrices we obtain the global stiffness matrix

$$
K=70 \times 10^{3}\left[\begin{array}{ccc}
2.354 & 0.354 & 0 \\
0.354 & 0.421 & 0.10 \\
0 & 0.10 & 0.20
\end{array}\right] \mathrm{kN} / \mathrm{m}
$$

The global equations are:

$$
\left\{\begin{array}{c}
0 \\
-500 \mathrm{kN} \\
0
\end{array}\right\}=70 \times 10^{3} \mathrm{kN} / \mathrm{m}\left[\begin{array}{ccc}
2.354 & 0.354 & 0 \\
0.354 & 0.421 & 0.10 \\
0 & 0.10 & 0.20
\end{array}\right]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
\phi_{1}
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
\phi_{1}
\end{array}\right\}=\left\{\begin{array}{c}
0.00388 \mathrm{~m} \\
-0.0225 \mathrm{~m} \\
0.0113 \mathrm{rad}
\end{array}\right\}
$$

Beam Element: The beam element force-displacement equations can be obtained using $\hat{f}=\hat{k} \hat{d}$. Since the local axis coincides with the global coordinate
Bar Element: The bar element force-displacement equations can be obtained using $\hat{f}=\hat{k} \bar{T} d$

$$
\left\{\begin{array}{l}
\hat{f}_{1 x} \\
\hat{f}_{3 x}
\end{array}\right\}=\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{llll}
C & S & 0 & 0 \\
0 & 0 & C & S
\end{array}\right]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right\}
$$

Therefore, the forces in the bar element are:

$$
\begin{aligned}
& \hat{f}_{1 x}=\frac{A E}{L}\left(C d_{1 x}+S d_{1 y}\right)=-670 \mathrm{kN} \\
& \hat{f}_{3 x}=-\frac{A E}{L}\left(C d_{1 x}+S d_{1 y}\right)=670 \mathrm{kN}
\end{aligned}
$$

Substituting numerical values into the above equations gives

Inclined or Skewed Supports Frame Example Problems

Example 5

If a support is inclined, or skewed, at some angle α for the global x axis, as shown below, the boundary conditions on the displacements are not in the global $x-y$ directions but in the $x^{\prime}-y^{\prime}$ directions.

Mahidol University

Faculty of Engineering

We must transform the local boundary condition of $\boldsymbol{d}^{\prime}{ }_{3 y}=0$ (in local coordinates) into the global $x-y$ system. Therefore, the relationship between of the components of the displacement in the local and the global coordinate systems at node 3 is:

$$
\left\{\begin{array}{l}
d_{3 x}^{\prime} \\
d_{3 y}^{\prime} \\
\phi_{3}^{\prime}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
d_{3 x} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\}
$$

We can rewrite the above expression as:

$$
\left\{d_{3}^{\prime}\right\}=\left[t_{3}\right]\left\{d_{3}\right\} \quad\left[t_{3}\right]=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We can apply this sort of transformation to the entire displacement vector as:

$$
\left\{d^{\prime}\right\}=\left[T_{1}\right]\{d\} \quad \text { or } \quad\{d\}=\left[T_{1}\right]^{\top}\left\{d^{\prime}\right\}
$$

where the matrix $\left[T_{i}\right]$ is:

$$
\left[T_{i}\right]=\left[\begin{array}{lll}
{[/]} & {[0]} & {[0]} \\
{[0]} & {[/]} & {[0]} \\
{[0]} & {[0]} & {\left[t_{3}\right]}
\end{array}\right]
$$

Both the identity matrix [I] and the matrix [t_{3}] are 3×3 matrices.
The force vector can be transformed by using the same transformation.
$\left\{f^{\prime}\right\}=\left[T_{i}\right]\{f\}$
In global coordinates, the force-displacement equations are:

$$
\{f\}=[K]\{d\}
$$

Applying the skewed support transformation to both sides of the forcedisplacement equation gives:

$$
\left[T_{i}\right]\{f\}=\left[T_{i}\right][K]\{d\}
$$

By using the relationship between the local and the global displacements, the force-displacement equations become

$$
\left[T_{i}\right]\{f\}=\left[T_{i}\right][K]\left[T_{i}\right]^{\top}\left\{d^{\prime}\right\} \quad \Rightarrow \quad\left\{f^{\prime}\right\}=\left[T_{i}\right][K]\left[T_{i}\right]^{\top}\left\{d^{\prime}\right\}
$$

Therefore the global equations become:
$\left\{\begin{array}{c}F_{1 x} \\ F_{1 y} \\ M_{1} \\ F_{2 x} \\ F_{2 y} \\ M_{2} \\ F_{3 x}^{\prime} \\ F_{3 y}^{\prime} \\ M_{3}\end{array}\right\}=\left[T_{i}\right][K]\left[T_{i}\right]^{\top}\left\{\begin{array}{c}\top \\ d_{2 x} \\ d_{2 y} \\ \phi_{2} \\ d_{3 x} \\ d_{3 y}^{\prime} \\ \phi_{1}\end{array}\right\}$

$|\triangle|||D|$

Development of Grid Equations

Grid Structures

- A grid is a structure on which the loads are applied perpendicular to the plane of the structure as opposed to a plane frame where loads are applied in the plane.
- Both torsional and bending moment continuity are maintained at each node in a grid element.
- Examples are floors and bridge deck systems.

A typical grid structure is shown in the figure

 below.

Summary:

-Derivation of the torsional components of the element matrix .

- Local stiffness matrix of a beam element oriented in space.
- Example Problems

Let's derive the torsional rotation components of the element stiffness matrix. Consider the sign convention for nodal torque and angle of twist shown the figure below.

A linear displacement function $\hat{\phi}$ is assumed.

$$
\phi=a_{1}+a_{2} \hat{x}
$$

Or in matrix form:

$$
\hat{\phi}=\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right]=\left\{\begin{array}{l}
\hat{\phi}_{1 x} \\
\hat{\phi}_{2 x}
\end{array}\right\}
$$

Applying the boundary conditions and solving for the unknown coefficients gives:

$$
\phi=\left(\frac{\hat{\phi}_{2 x}-\hat{\phi}_{1 x}}{L}\right) \hat{x}+\hat{\phi}_{1 x} \quad N_{1}=1-\frac{\hat{x}}{L} \quad N_{2}=\frac{x}{L} \quad N_{1} \text { and } N_{2} \text { are the interpolation functions }
$$

To obtain the relationship between the shear strain γ and the angle of twist $\hat{\phi}$ consider the torsional deformation of the bar as shown below.

From elementary mechanics of materials, we get:

$$
\hat{m}_{x}=\frac{\tau J}{R}
$$

where J is the polar moment of inertia for a circular cross section or the
torsional constant for non-circular cross sections. Rewriting the above equation
we get:

$$
\hat{m}_{x}=\frac{G J}{L}\left(\hat{\phi}_{2 x}-\hat{\phi}_{1 x}\right)
$$

The nodal torque sign convention gives:

$$
\hat{m}_{1 x}=-\hat{m}_{x} \quad \hat{m}_{2 x}=\hat{m}_{x}
$$

Therefore;

$$
\hat{m}_{1 x}=\frac{G J}{L}\left(\hat{\phi}_{1 x}-\hat{\phi}_{2 x}\right) \quad \hat{m}_{2 x}=\frac{G J}{L}\left(\hat{\phi}_{2 x}-\hat{\phi}_{1 x}\right) \rightarrow\left\{\begin{array}{l}
\hat{m}_{1 x} \\
\hat{m}_{2 x}
\end{array}\right\}=\frac{G J}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{c}
\hat{\phi}_{1 x} \\
\hat{\phi}_{2 x}
\end{array}\right\}
$$

If we assume that all radial lines, such as $O A$, remain straight during twisting or torsional deformation, then the arc length $A B$ is:

$$
\overline{A B}=\gamma_{\max } d \hat{x}=R d \hat{\phi}
$$

Therefore;

$$
\gamma_{\text {max }}=\frac{R d \hat{\phi}}{d \hat{x}}
$$

At any radial position, r, we have, from similar triangles $O A B$ and $O C D$

$$
\gamma=r \frac{d \hat{\phi}}{d \hat{x}}=\frac{r}{L}\left(\hat{\phi}_{2 x}-\hat{\phi}_{1 x}\right)
$$

The relationship between shear stress and shear strain is:

$$
\tau=\boldsymbol{G} \gamma \quad \text { where } \boldsymbol{G} \text { is the shear modulus of the material. }
$$

Combining the torsional effects with shear and bending effects, we obtain the local stiffness matrix equations for a grid element.

$$
\left\{\begin{array}{c}
\hat{f}_{1 y} \\
\hat{m}_{1 x} \\
\hat{m}_{1 z} \\
\hat{f}_{2 y} \\
\hat{m}_{2 x} \\
\hat{m}_{2 z}
\end{array}\right\}=\left[\begin{array}{cccccc}
\frac{12 E I}{L^{3}} & 0 & \frac{6 E I}{L^{2}} & -\frac{12 E I}{L^{3}} & 0 & \frac{6 E I}{L^{2}} \\
0 & \frac{G J}{L} & 0 & 0 & -\frac{G J}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{4 E I}{L} & -\frac{6 E I}{L^{2}} & 0 & \frac{2 E I}{L} \\
-\frac{12 E I}{L^{3}} & 0 & -\frac{6 E I}{L^{2}} & \frac{12 E I}{L^{3}} & 0 & -\frac{6 E I}{L^{2}} \\
0 & -\frac{G J}{L} & 0 & 0 & \frac{G J}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{2 E I}{L} & -\frac{6 E I}{L^{2}} & 0 & \frac{4 E I}{L}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1 x} \\
\hat{\phi}_{1 z} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2 x} \\
\hat{\phi}_{2 z}
\end{array}\right\}
$$

The transformation matrix relating local to global degrees of freedom for a grid is:

where θ is now positive taken counterclockwise from x to \hat{x} in the $x-z$ plane: therefore;

$$
C=\cos \theta=\frac{x_{j}-x_{i}}{L} \quad S=\sin \theta=\frac{z_{j}-z_{i}}{L}
$$

The global stiffness matrix for a grid element arbitrary oriented in the $x-z$ plane is given by:

$$
k_{\sigma}=T_{\sigma}^{\top} \hat{k}_{G} T_{\sigma}
$$

Grid Example

To facilitate a timely solution, the boundary conditions at nodes 2,3 , and 4 are applied to the local stiffness matrices at the beginning of the solution.

$$
\begin{aligned}
& d_{2 y}=\phi_{2 x}=\phi_{2 z}=0 \\
& d_{3 y}=\phi_{3 x}=\phi_{3 z}=0 \\
& d_{4 y}=\phi_{4 x}=\phi_{4 z}=0
\end{aligned}
$$

Beam Element 1:

$$
C=\cos \theta=\frac{x_{2}-x_{1}}{L^{(1)}}=\frac{0-20}{22.36}=-0.894 \quad S=\sin \theta=\frac{z_{2}-z_{1}}{L^{(1)}}=\frac{20-10}{22.36}=0.447
$$

where

$$
\frac{12 E I}{L^{3}}=\frac{12\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)^{3}}=7.45 \mathrm{k} / \mathrm{in} \quad \frac{6 E I}{L^{2}}=\frac{6\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)^{2}}=1,000 \mathrm{k}
$$

$$
\frac{4 E I}{L}=\frac{4\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)}=179,000 \mathrm{k} \cdot \text { in } \quad \frac{G J}{L}=\frac{\left(12 \times 10^{3}\right)(110)}{(22.36 \times 12)}=4,920 \mathrm{k} \cdot \text { in }
$$

The global stiffness matrix for element 1, considering only the parts associated with node 1 , and the following relationship:

$$
\begin{array}{ll}
k_{G}=T_{G}^{\top} \hat{k}_{G} T_{G} \\
T_{G}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & 0.447 \\
0 & -0.447 & -0.894
\end{array}\right] & T_{G}^{\top}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & -0.447 \\
0 & 0.447 & -0.894
\end{array}\right]
\end{array}
$$

Therefore, the global stiffness matrix is

$$
\begin{array}{cc}
d_{1 y} & \phi_{1 x} \\
\hat{k}^{(1)}=\left[\begin{array}{ccc}
7.45 & 0 & 1,000 \\
0 & 4,920 & 0 \\
1,000 & 0 & 179,000
\end{array}\right] k / i n & k^{(1)}=\left[\begin{array}{ccc}
d_{1 y} & \phi_{1 x} & \phi_{1 z} \\
7.45 & -447 & -894 \\
-447 & 39,700 & 69,600 \\
-894 & 69,600 & 144,000
\end{array}\right] k / i n
\end{array}
$$

Beam Element 2:

$$
C=\cos \theta=\frac{x_{3}-x_{1}}{L^{(2)}}=\frac{0-20}{22.36}=-0.894 \quad S=\sin \theta=\frac{z_{3}-z_{1}}{L^{(2)}}=\frac{0-10}{22.36}=-0.447
$$

where

$$
\begin{array}{ll}
\frac{12 E I}{L^{3}}=\frac{12\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)^{3}}=7.45 \mathrm{k} / \mathrm{in} & \frac{6 E I}{L^{2}}=\frac{6\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)^{2}}=1,000 \mathrm{k} \\
\frac{4 E I}{L}=\frac{4\left(30 \times 10^{3}\right)(400)}{(22.36 \times 12)}=179,000 \mathrm{k} \cdot \mathrm{in} & \frac{G J}{L}=\frac{\left(12 \times 10^{3}\right)(110)}{(22.36 \times 12)}=4,920 \mathrm{k} \cdot \mathrm{in}
\end{array}
$$

The global stiffness matrix for element 2, considering only the parts associated with node 1 , and the following relationship:

$$
k_{G}=T_{G}^{\top} \hat{k}_{G} T_{G}
$$

$$
K^{(2)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & 0.447 \\
0 & -0.447 & -0.894
\end{array}\right]\left[\begin{array}{ccc}
7.45 & 0 & 1,000 \\
0 & 4,920 & 0 \\
1,000 & 0 & 179,000
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & -0.447 \\
0 & 0.447 & -0.894
\end{array}\right]=\left[\begin{array}{ccc}
7.45 & 447 & -894 \\
447 & 39,700 & -69,600 \\
-894 & -69,600 & 144,000
\end{array}\right] \mathrm{k} / \mathrm{in}
$$

\square

Beam Element 3:

$$
C=\cos \theta=\frac{x_{4}-x_{1}}{L^{(3)}}=\frac{20-20}{10}=0 \quad S=\sin \theta=\frac{z_{4}-z_{1}}{L^{(3)}}=\frac{0-10}{10}=-1
$$

where

$$
\begin{array}{ll}
\frac{12 E I}{L^{3}}=\frac{12\left(30 \times 10^{3}\right)(400)}{(10 \times 12)^{3}}=83.3 \mathrm{k} / \mathrm{in} & \frac{6 E I}{L^{2}}=\frac{6\left(30 \times 10^{3}\right)(400)}{(10 \times 12)^{2}}=5,000 \mathrm{k} \\
\frac{4 E I}{L}=\frac{4\left(30 \times 10^{3}\right)(400)}{(10 \times 12)}=400,000 \mathrm{k} \cdot \mathrm{in} & \frac{G J}{\mathrm{~L}}=\frac{\left(12 \times 10^{3}\right)(110)}{(10 \times 12)}=11,000 \mathrm{k} \cdot \mathrm{in}
\end{array}
$$

The global stiffness matrix for element 3 , considering only the parts associated with node 1 , and the following relationship:

$$
k_{G}=T_{G}^{\top} \hat{k}_{G} T_{G}
$$

Mahidol University

Faculty of Engineering

$$
\boldsymbol{K}^{(3)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
83.3 & 0 & 5,000 \\
0 & 11,000 & 0 \\
5,000 & 0 & 400,000
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

Therefore, the global stiffness matrix is

$$
\begin{gathered}
k_{(3)}=\left[\begin{array}{ccc}
83.3 & 5,000 & 0 \\
5,000 & 400,000 & 0 \\
0 & 0 & 11,000
\end{array}\right]
\end{gathered}
$$

Superimposing the three elemental stiffness matrices gives:

$$
K=\left[\begin{array}{ccc}
d_{1 y} & \phi_{1 x} & \phi_{1 z} \\
98.2 & 5,000 & -1,790 \\
5,000 & 479,000 & 0 \\
-1,790 & 0 & 299,000
\end{array}\right]
$$

The global equations are:

$$
\left\{\begin{array}{c}
F_{1 y}=-100 k \\
M_{1 x}=0 \\
M_{1 z}=0
\end{array}\right\}=\left[\begin{array}{ccc}
98.2 & 5,000 & -1,790 \\
5,000 & 479,000 & 0 \\
-1,790 & 0 & 299,000
\end{array}\right]\left\{\begin{array}{l}
d_{1 y} \\
\phi_{1 x} \\
\phi_{1 z}
\end{array}\right\}
$$

Solving the above equations gives:

$$
\left\{\begin{array}{l}
d_{1 y} \\
\phi_{\phi_{1 x}} \\
\phi_{1 z}
\end{array}\right\}=\left\{\begin{array}{r}
-2.83 \mathrm{in} \\
0.0295 \mathrm{rad} \\
-0.0169 \mathrm{rad}
\end{array}\right\}
$$

Mahidol University

Faculty of Engineering

Element 1: The grid element force-displacement equations can be obtained using $\hat{f}=\hat{k}_{G} \bar{T}_{G} d$
$\bar{T}_{G} d=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.894 & 0.447 & 0 & 0 & 0 \\ 0 & -0.447 & -0.894 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.894 & 0.447 \\ 0 & 0 & 0 & 0 & -0.447 & -0.894\end{array}\right]\left\{\begin{array}{c}-2.83 \mathrm{in} \\ 0.0295 \mathrm{rad} \\ -0.0169 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}=\left\{\begin{array}{c}-2.83 \mathrm{in} \\ -0.0339 \mathrm{rad} \\ 0.00192 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}$

Therefore, the local force-displacement equations are:

$$
\hat{f}_{(1)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
7.45 & 0 & 1,000 & -7.45 & 0 & 1,000 \\
0 & 4,920 & 0 & 0 & -4,920 & 0 \\
1,000 & 0 & 179,000 & -1,000 & 0 & 89,500 \\
-7.45 & 0 & -1,000 & 7.45 & 0 & -1,000 \\
0 & -4,920 & 0 & 0 & 4,920 & 0 \\
1,000 & 0 & 89,500 & -1,000 & 0 & 179,000
\end{array}\right]\left\{\begin{array}{c}
-2.83 \mathrm{in} \\
-0.0339 \mathrm{rad} \\
0.00192 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}
$$

Element 2: The grid element force-displacement equations can be obtained using $\hat{f}=\hat{k}_{G} \bar{T}_{G} d$.

$$
\bar{T}_{G} d=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.894 & -0.447 & 0 & 0 & 0 \\
0 & 0.447 & -0.894 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.894 & -0.447 \\
0 & 0 & 0 & 0 & 0.447 & -0.894
\end{array}\right]\left\{\begin{array}{c}
-2.83 \mathrm{in} \\
0.0295 \mathrm{rad} \\
-0.0169 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-2.83 \mathrm{in} \\
-0.0188 \mathrm{rad} \\
0.0283 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right\}
$$

Therefore, the local force-displacement equations are:

$$
\hat{f}_{(2)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}
7.45 & 0 & 1,000 & -7.45 & 0 & 1,000 \\
0 & 4,920 & 0 & 0 & -4,920 & 0 \\
1,000 & 0 & 179,000 & -1,000 & 0 & 89,500 \\
-7.45 & 0 & -1,000 & 7.45 & 0 & -1,000 \\
0 & -4,920 & 0 & 0 & 4,920 & 0 \\
1,000 & 0 & 89,500 & -1,000 & 0 & 179,000
\end{array}\right]\left\{\begin{array}{c}
-2.83 \mathrm{in} \\
-0.0188 \mathrm{rad} \\
0.0283 \mathrm{rad} \\
0 \\
0 \\
0
\end{array}\right]
$$

Element 3: The grid element force-displacement equations can be obtained using $\hat{f}=\hat{k}_{G} \bar{T}_{G} d$.
$\bar{T}_{G} d=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]\left\{\begin{array}{c}-2.83 \mathrm{in} \\ 0.0295 \mathrm{rad} \\ -0.0169 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}=\left\{\begin{array}{c}-2.83 \mathrm{in} \\ 0.0169 \mathrm{rad} \\ 0.0295 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}$

Therefore, the local force-displacement equations are:
$\hat{f}_{(3)}=\hat{k} \bar{T} d=\left[\begin{array}{cccccc}83.3 & 0 & 5,000 & -83.3 & 0 & 5,000 \\ 0 & 11,000 & 0 & 0 & -11,000 & 0 \\ 5,000 & 0 & 400,000 & -5,000 & 0 & 200,000 \\ -83.3 & 0 & -5,000 & 83.3 & 0 & -5,000 \\ 0 & -11,000 & 0 & 0 & 11,000 & 0 \\ 5,000 & 0 & 200,000 & -5,000 & 0 & 400,000\end{array}\right]\left\{\begin{array}{c}-2.83 \mathrm{in} \\ 0.0169 \mathrm{rad} \\ 0.0295 \mathrm{rad} \\ 0 \\ 0 \\ 0\end{array}\right\}$

Solving for the forces and moments gives
$\left\{\begin{array}{c}\hat{f}_{1 y} \\ \hat{m}_{1 x} \\ \hat{m}_{1 z} \\ \hat{f}_{2 y} \\ \hat{m}_{2 x} \\ \hat{m}_{2 z}\end{array}\right\}=\left\{\begin{array}{c}-19.2 k \\ -167 k \cdot i n \\ -2,480 k \cdot i n \\ 19.2 k \\ 167 k \cdot i n \\ -2,260 k \cdot i n\end{array}\right\}$

细｜ $4 \mid$｜ \mid｜

Solving for the forces and moments gives：

To check the equilibrium of node 1 the local forces and moments for each element need to be transformed to global coordinates．Recall，that：

$$
\hat{f}=T f \Rightarrow f=T^{\top} \hat{f} \quad T^{\top}=T^{-1}
$$

Since we are only checking the forces and moments at node 1，we need only the upper－left－hand portion of the transformation matrix T_{G} ．

Therefore；for Element 1：

$$
\left\{\begin{array}{c}
f_{1 y} \\
m_{1 x} \\
m_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & -0.447 \\
0 & 0.447 & -0.894
\end{array}\right]\left\{\begin{array}{c}
-19.2 k \\
-167 k \cdot i n \\
-2,480 k \cdot i n
\end{array}\right\}=\left\{\begin{array}{c}
-19.2 k \\
1,260 k \cdot i n \\
2,150 k \cdot i n
\end{array}\right\}
$$

Therefore；for Element 2：

$$
\left\{\begin{array}{l}
f_{1 y} \\
m_{1 x} \\
m_{1 z}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -0.894 & 0.447 \\
0 & -0.447 & -0.894
\end{array}\right]\left\{\begin{array}{r}
-7.23 k \\
-92.5 k \cdot i n \\
-2,240 k \cdot i n
\end{array}\right\}=\left\{\begin{array}{r}
7.23 k \\
1,080 k \cdot i n \\
-1,960 k \cdot i n
\end{array}\right\}
$$

Therefore；for Element 3：

$$
\left\{\begin{array}{l}
f_{1 y} \\
m_{1 x} \\
m_{1 z}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\left\{\begin{array}{c}
-88.1 k \\
-2,340 k \cdot i n \\
-186 k \cdot i n
\end{array}\right\}=\left\{\begin{array}{c}
-88.1 k \\
-2,340 k \cdot i n \\
-186 k \cdot i n
\end{array}\right\}
$$

The forces and moments that are applied to node 1 by each element are equal in magnitude and opposite direction. Therefore the sum of the forces and moments acting on node 1 are:

Mani Faculty of Engincering

Stiffness matrix of a beam element

 oriented in space

The forces and moments accurately satisfy equilibrium considering the amount of truncation error inherent in results of the calculations presented in this example.

Beam Element Arbitrarily Oriented in Space

In this section, we will develop a beam element that is arbitrarily oriented in three-dimensions. This element can be used to analyze three-dimensional frames. Let consider bending about axes, as shown below.

The \hat{y} axis is the principle axis for which the moment of inertia is minimum, $\boldsymbol{I}_{\boldsymbol{y}}$. The right-hand rule is used to establish the \hat{z} axis and the maximum moment of inertia, $\boldsymbol{I}_{\mathbf{z}}$.

Mahidol University
 Faculty of Engineering

Bending in the $\hat{\mathbf{x}}-\hat{\mathbf{z}}$ plane: The bending in the $\hat{\mathbf{x}}-\hat{z}$ plane is defined by \hat{m}_{y} The stiffness matrix for bending the in the $x-z$ plane is:

$$
\hat{k}_{y}=\frac{E I_{y}}{L^{4}}\left[\begin{array}{rrrr}
12 L & 6 L^{2} & -12 L & 6 L^{2} \\
6 L^{2} & 4 L^{3} & -6 L^{2} & 2 L^{3} \\
-12 L & -6 L^{2} & 12 L & -6 L^{2} \\
6 L^{2} & 2 L^{3} & -6 L^{2} & 4 L^{3}
\end{array}\right]
$$

where $\boldsymbol{I}_{\boldsymbol{y}}$ is the moment of inertia about the $\hat{\boldsymbol{y}}$ axis (the weak axis).

Bending in the $\hat{\mathbf{x}}-\hat{\mathbf{y}}$ plane: The bending in the $\hat{\mathrm{x}}-\hat{\mathrm{y}}$ plane is defined by \hat{m}_{z} The stiffness matrix for bending the in the $\hat{x}-\hat{y}$ plane is:

$$
\hat{k}_{z}=\frac{E I_{z}}{L^{4}}\left[\begin{array}{rrrr}
12 L & 6 L^{2} & -12 L & 6 L^{2} \\
6 L^{2} & 4 L^{3} & -6 L^{2} & 2 L^{3} \\
-12 L & -6 L^{2} & 12 L & -6 L^{2} \\
6 L^{2} & 2 L^{3} & -6 L^{2} & 4 L^{3}
\end{array}\right]
$$

where $\boldsymbol{I}_{\boldsymbol{z}}$ is the moment of inertia about the $\hat{\boldsymbol{z}}$ axis (the strong axis).

Direct superposition of the bending stiffness matrices with the effects of axial forces and torsional rotation give:

The \hat{y} axis is selected to be perpendicular to the \hat{x} and the z axes is such a way that the cross product of global z with \hat{x} results in the \hat{y} axis as shown in the figure below

$$
z \times \hat{x}=\hat{y}=\frac{1}{D}\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 0 & 1 \\
1 & m & n
\end{array}\right|=-\frac{m}{D} \vec{i}+\frac{l}{D} \bar{j}
$$

where
$D=\sqrt{l^{2}+m^{2}}$
The \hat{z} axis is determined by the condition that $\hat{z}=\hat{x} \times \hat{y}$

$$
\hat{z}=\hat{x} \times \hat{y}=\frac{1}{D}\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & m & n \\
-m & 1 & 0
\end{array}\right|=-\frac{I n}{D} \vec{i}-\frac{m n}{D} \vec{j}+D \vec{k}
$$

.

Mahidol University
 Faculty of Engineering

The global stiffness matrix may be obtained using:

$k=T^{\top} \hat{k} T$

where

where

The direction cosines of the \hat{x} axis are:
where the direction cosines, $C_{i j}$, are defined as shown below

$\hat{x}=\cos \theta_{x \dot{x}} \vec{i}+\cos \theta_{y \dot{x}} \vec{j}+\cos \theta_{z \bar{x}} \vec{k}$
where
$\cos \theta_{x \dot{x}}=\frac{x_{2}-x_{1}}{L}=1 \quad \cos \theta_{y \dot{x}}=\frac{y_{2}-y_{1}}{L}=m \quad \cos \theta_{z \dot{x}}=\frac{z_{2}-z_{1}}{L}=n$

Mahidol University

Faculty of Engineering

Therefore, the transformation matrix becomes:

$$
\lambda_{3 \times 3}=\left[\begin{array}{lll}
C_{x \dot{z}} & C_{y \dot{z}} & C_{z z} \\
C_{x y} & C_{y y} & C_{z y} \\
C_{x z} & C_{y z} & C_{z z}
\end{array}\right]
$$

$$
\lambda_{3 \times 3}=\left[\begin{array}{ccc}
1 & m & n \\
-\frac{m}{D} & \frac{1}{D} & 0 \\
-\frac{l n}{D} & \frac{m n}{D} & D
\end{array}\right]
$$

There are two exceptions that arise when using the above expressions for mapping the local coordinates to the global system: (1) when the positive \hat{x} coincides with z; and (2) when the positive \hat{x} is in the opposite direction as z. For the first case, it is assumed that y is y. In case two, it is assumed that \hat{y} is y.

$$
\lambda=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad \lambda=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

If the effects of axial force, both shear forces, twisting moment, and both bending moments are considered, the stiffness matrix for a frame element is:
$0 \frac{12 E I_{2}}{I^{3}\left(1+\Phi_{v}\right)}$
$0 \quad 0 \quad \frac{12 E I_{v}}{I^{3}\left(1+\Phi_{z}\right)}$
$0 \quad 0 \quad 0 \quad \underline{G J}$
Symmetric
$0 \quad 0$
$0 \frac{6 E I_{z}}{l^{2}\left(1+\Phi_{y}\right)}$
$\frac{-6 E I_{y}}{l^{2}\left(1+\Phi_{2}\right)}$
0
$\frac{\left(4+\Phi_{z}\right) E I_{v}}{l(1+\Phi)}$
$l\left(1+\Phi_{2}\right)$
$\frac{\left(4+\Phi_{v}\right) E I_{z}}{\left(1+\Phi_{v}\right)}$
$0 \quad A E$
$0 \quad-12 E I_{z}$

$\frac{-6 E I_{z}}{l^{2}(1+\Phi)}$
$\frac{12 E I_{z}}{l^{2}\left(1+\Phi_{v}\right)}$

$0 \quad 0 \quad 0 \quad 0 \quad \frac{-G J}{l} \quad 0 \quad 1 \begin{array}{ccccccc}l^{3}\left(1+\Phi_{2}\right) & 0 & 0 & 0 & 0 & 0 & \frac{G J}{l}\end{array}$
$0 \quad 0 \quad \frac{-6 E I_{v}}{l^{2}\left(1+\Phi_{2}\right)}$
$0 \quad \frac{6 E I_{z}}{l^{2}(1+\Phi)}$ $\left(1+\Phi_{2}\right)$
0
$\frac{\left(2-\Phi_{2}\right) E I_{y}}{l\left(1+\Phi \Phi_{2}\right.}$
0

- $\frac{-6 E I_{z}}{I^{2}(1+\Phi)}$
$\begin{array}{ccc}\frac{6 E I_{v}}{l^{2}\left(1+\Phi_{z}\right)} & 0 & \frac{\left(4+\Phi_{2}\right) E I_{v}}{l\left(1+\Phi_{z}\right)} \\ 0 & 0 & 0\end{array}$
$\begin{array}{llll}0 & 0 & 0 & \frac{\left(4+\Phi_{v}\right) E I_{z}}{\left(1+\Phi_{v}\right)}\end{array}$

In this case the symbol ϕ are:

$$
\phi_{y}=\frac{12 E I_{y}}{G A_{s} L^{2}} \quad \phi_{z}=\frac{12 E I_{z}}{G A_{s} L^{2}}
$$

where A_{s} is the effective beam cross-section in shear. Recall the shear modulus of elasticity or the modulus of rigidity, G, is related to the modulus of elasticity and the Poisson's ratio, v as:

$$
G=\frac{E}{2(1+v)}
$$

Mahidol University

Faculty of Engineering

- So far, we considered only line elements.
- Line elements are connected at common nodes, forming trusses, frames, and grids.

Mahidol University
Faculty of Engineering

2D Finite Elements

- 2D elements are connected at common nodes and/or along common edges to form continuous structures.
- Nodal compatibility is enforced during the formulation of the nodal equilibrium equations.
- If proper displacement functions are chosen, compatibility along common edges is obtained.

Mahidol University
Faculty of Engineering

The 2D elements are extremely important for:

- Plane stress analysis: problems such as plates with holes or other changes in geometry that are loaded in plane resulting in local stress concentrations.
- Plane strain analysis: problems such as long underground box culvert subjected to a uniform loading acting constantly over its length.

Plane Strain

Plane strain is defined to be a state of strain in which the strain normal to the $x-y$ plane ε_{z} and the shear strains $\gamma_{x z}$ and $\gamma_{y z}$ are assumed to be zero. The assumptions of plane strain are realistic for long bodies (say, in the z direction) with constant cross-sectional area subjected to loads that act only in the x and/or y directions and do not vary in the z direction

Plane Strain problems

Summary:

- The review of the principle of minimum potential energy.
- The development of the stiffness matrix of a basic 2D or plane finite element called Constant-Strain Triangular (CST) elements.
- Example Problems.

Potential Energy and Equilibrium
In mechanics of solids, our problem is to determine the displacement \boldsymbol{u} of the body, satisfying the equilibrium equations.

The principle of minimum potential energy

Total Potential Energy

The total potential energy is defined as the sum of the internal strain energy \boldsymbol{U} and the potential energy of the external forces Ω :

$$
\pi_{p}=U+\Omega
$$

Strain energy is the capacity of the internal forces (or stresses) to do work through deformations (strains) in the structure; Ω is the capacity of forces such as body forces, surface traction forces, and applied nodal forces to do work through the deformation of the structure.

$$
U=\int_{t} d U=\int_{0}^{x}(k x) d x=\frac{1}{2} k x^{2}
$$

The strain energy is the area under the force-displacement curve. The potential energy of the external forces is the work done by the external forces: $\Omega=-F X$
Therefore, the total potential energy is:

$$
\pi_{p}=\frac{1}{2} k x^{2}-F X
$$

The differential internal work (or strain energy) $d U$ in the spring is the internal force multiplied by the change in displacement which the force moves through
$d U=F d x=(k x) d x$

The concept of a stationary value of a function \boldsymbol{G} is shown below:

The function \boldsymbol{G} is expressed in terms of \boldsymbol{x}. To find a value of \boldsymbol{x} yielding a stationary value of $\boldsymbol{G}(x)$, we use differential calculus to differentiate \boldsymbol{G} with respect to x and set the expression equal to zero.

$$
\frac{d G}{d x}=0
$$

Mahidol University

Faculty of Engineering

We can replace \boldsymbol{G} with the total potential energy π_{p} and the coordinate x with a discrete value d_{i}. To minimize π_{p} we first take the variation of π_{p} (we will not cover the details of variational calculus):

$$
\delta \pi_{p}=\frac{\partial \pi_{p}}{\partial d_{1}} \delta d_{1}+\frac{\partial \pi_{p}}{\partial d_{2}} \delta d_{2}+\ldots+\frac{\partial \pi_{p}}{\partial d_{n}} \delta d_{n}
$$

The principle states that equilibrium exist when the $\boldsymbol{d}_{\mathrm{i}}$ define a structure state such that $\delta \pi_{\mathrm{p}}=0$ for arbitrary admissible variations $\delta \boldsymbol{d}_{\mathrm{i}}$ from the equilibrium state. An admissible variation is one in which the displacement field still satisfies the boundary conditions and interelement continuity.
To satisfy $\delta \pi_{\mathrm{p}}=0$, all coefficients associated with $\delta \boldsymbol{d}_{\mathrm{i}}$ must be zero independently, therefore:

$$
\frac{\partial \pi_{p}}{\partial d_{i}}=0 \quad i=1,2, \cdots, n \quad \text { or } \quad \frac{\partial \pi_{p}}{\partial\{d\}}=0
$$

Let's assume $\mathrm{F}=1000 \mathrm{lb}, \mathrm{k}=500 \mathrm{lb} / \mathrm{in}$. The total potential energy is defined as $\quad \pi_{p}=U+\Omega \quad U=\frac{1}{2} k x^{2}$
The variation of π_{p} with respect to \boldsymbol{x} is:

$$
\delta \pi_{p}=\frac{\partial \pi_{p}}{\partial x} \delta x=0
$$

Since $\delta \boldsymbol{x}$ is arbitrary and might not be zero, then:

$$
\frac{\partial \pi_{p}}{\partial x}=0
$$

Using our express for π_{p}, we get:
$\pi_{p}=\frac{1}{2} k x^{2}-F X=\frac{1}{2} 500(\mathrm{lb} /$ in $) x^{2}-(1000 / b) x$

$$
\frac{\partial \pi_{p}}{\partial x}=0=500 x-1000 \quad x=2.0 i n
$$

$\Omega=-F x$
If we had plotted the total potential energy function for various values of deformation, we would get:

The development of the stiffness matrix of a basic 2D or plane finite element

To fully understand the development and applicability of the stiffness matrix for the plane stress/plane strain triangular element, the concept of 2D state of stress and strain and the stress/strain relationships for plane stress and plane strain are necessary.

Two-Dimensional State of Stress and Strain

Since $\tau_{x y}$ equals $\tau_{y x}$, three independent stress exist:

$$
\{\sigma\}^{T}=\left[\begin{array}{lll}
\sigma_{x} & \sigma_{y} & \tau_{x y}
\end{array}\right]
$$

The general two-dimensional state of strain at a point is show below.

Also, θ_{p} is the principal angle which defines the normal whose direction is perpendicular to the plane on which the maximum or minimum principle stress acts.

$$
\tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}
$$

The general definitions of normal and shear strains are:

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y}=\frac{\partial v}{\partial x} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

The strain may be written in matrix form as:

$$
\{\varepsilon\}^{\top}=\left[\begin{array}{lll}
\varepsilon_{x} & \varepsilon_{y} & \gamma_{x y}
\end{array}\right]
$$

Mahidol University
Faculty of Engineering
wisam of tax man

Plane Stress

For plane stress, the stresses $\sigma_{z}, \tau_{x z}$, and $\tau_{y z}$ are assumed to be zero.

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

where

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right] \longleftarrow\left[\begin{array}{l}
\text { stress-strain matrix } \\
\text { (constitutive matrix) }
\end{array}\right.
$$

Mahidol University

Faculty of Engineering

Plane Strain

For plane strain, the strains $\varepsilon_{z}, \gamma_{x z}$, and $\gamma_{y z}$ are assumed to be zero.

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x x}
\end{array}\right\}
$$

where

$$
[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right] \longleftarrow \begin{aligned}
& \text { stress-strain matrix } \\
& \text { (constitutive matrix) }
\end{aligned}
$$

Steps in the formulation of element stiffness equations

Consider the problem of a thin plate subjected to a tensile load as shown below

崮| $|\triangle| \triangle|D|$

let u_{i} and v_{i} represent the node i displacement components in the x and y directions, respectively.
The nodal displacements for an element with nodes i, j, and m are:

$$
\{d\}=\left\{\begin{array}{l}
d_{i} \\
d_{j} \\
d_{m}
\end{array}\right\}
$$

where
$\left\{d_{i}\right\}=\left\{\begin{array}{l}u_{i} \\ v_{i}\end{array}\right\}$

Therefore:

$$
\{d\}=\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}
$$

Step 1 : Discretize and Select element types
Discretize the thin plate into a set of triangular elements. Each element is defined by nodes i, j, and m. Each node has 2 DOFs (displacements in $x-, y-$ directions)

We use triangular elements because

1. Boundaries of irregularly shape bodies can be closely approximated 2. The expressions related to the triangular element are simple.

Step 2 : Select Displacement Functions
A linear displacement function is selected for each triangular element, defined as

$\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right\}=\left\{\begin{array}{l}a_{1}+a_{2} x+a_{3} y \\ a_{4}+a_{5} x+a_{6} y\end{array}\right\}$

A linear displacement function ensures that the displacements along each edge of the element and the nodes shared by adjacent elements are equal.

$$
\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right\}=\left[\begin{array}{llllll}
1 & x & y & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x & y
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
$$

The inverse of the $[x]$ matrix is:

$[x]^{-1}=\frac{1}{2 A}\left[\begin{array}{lll}\alpha_{i} & \alpha_{j} & \alpha_{m} \\ \beta_{i} & \beta_{j} & \beta_{m} \\ \gamma_{i} & \gamma_{j} & \gamma_{m}\end{array}\right]$
where

is the determinant of $[x]$

$$
2 A=x_{i}\left(y_{j}-y_{m}\right)+x_{j}\left(y_{m}-y_{i}\right)+x_{m}\left(y_{i}-y_{j}\right)
$$

where \boldsymbol{A} is the area of the triangle and

$\alpha_{i}=x_{j} y_{m}-y_{j} x_{m}$	$\beta_{i}=y_{j}-y_{m}$	$\gamma_{i}=x_{m}-x_{j}$
$\alpha_{j}=x_{i} y_{m}-y_{i} x_{m}$	$\beta_{j}=y_{m}-y_{i}$	$\gamma_{j}=x_{i}-x_{m}$
$\alpha_{m}=x_{i} y_{j}-y_{i} x_{j}$	$\beta_{m}=y_{i}-y_{j}$	$\gamma_{m}=x_{j}-x_{i}$

The values of a may be written matrix form as:

$$
\left\{\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}
$$

and
$\left\{\begin{array}{l}\mathbf{a}_{4} \\ \mathbf{a}_{5} \\ \mathbf{a}_{6}\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}\alpha_{i} & \alpha_{j} & \alpha_{m} \\ \beta_{i} & \beta_{j} & \beta_{m} \\ \gamma_{i} & \gamma_{j} & \gamma_{m}\end{array}\right]\left\{\begin{array}{l}v_{i} \\ v_{j} \\ v_{m}\end{array}\right\}$

$$
\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \quad \Rightarrow \quad\{a\}=[x]^{-1}\{u\}
$$

Mahidol University

Faculty of Engineering

A similar expression can be obtained for the y displacement

$$
v(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) v_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) v_{j}+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) v_{m}\right\}
$$

The displacements can be written in a more convenience form as:

$$
u(x, y)=N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \quad v(x, y)=N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
$$

where

$$
N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \quad N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \quad N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
$$

The elemental displacements can be summarized as:

$$
\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\}=\left\{\begin{array}{l}
N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
\end{array}\right\}
$$

$$
u(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) u_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) u_{j}+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) u_{m}\right\}
$$

In another form the above equations are:

$$
\{\Psi\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\} \quad\{\psi\}=[N]\{d\} \quad \text { where } \quad[N]=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]
$$

The linear triangular shape functions are illustrated below

Step 3 : Define the Strain-Displacement and Stress-Strain Relationships Elemental Strains: The strains over a 2D element are:

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

Substituting our approximation for the displacement gives:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=u_{, x}=\frac{\partial}{\partial x}\left(N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m}\right) \\
& u_{i, x}=N_{i, x} u_{i}+N_{j, x} u_{j}+N_{m, x} u_{m}
\end{aligned}
$$

where the comma indicates differentiation with respect to that variable. The derivatives of the interpolation functions are:

$$
N_{i, x}=\frac{1}{2 A} \frac{\partial}{\partial x}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)=\frac{\beta_{i}}{2 A} \quad N_{j, x}=\frac{\beta_{j}}{2 A} \quad N_{m, x}=\frac{\beta_{m}}{2 A}
$$

Therefore:

$$
\frac{\partial u}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\beta_{j} u_{j}+\beta_{m} u_{m}\right)
$$

In a similar manner, the remaining strain terms are approximated as:

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=\frac{1}{2 A}\left(\gamma_{i} v_{i}+\gamma_{j} v_{j}+\gamma_{m} v_{m}\right) \\
& \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\gamma_{i} v_{i}+\beta_{j} u_{j}+\gamma_{j} v_{j}+\beta_{m} u_{m}+\gamma_{m} v_{m}\right)
\end{aligned}
$$

These equations can be written in matrix form as:

$$
\{\varepsilon\}=[B]\{d\}
$$

Stress-Strain Relationship: The in-plane stress-strain relationship is:

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

where $[D]$ for plane stress is:
and $[D]$ for plane strain is:

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right] \quad[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]
$$

In-plane stress can be related to displacements by:

$$
\{\sigma\}=[D][B]\{d\}
$$

Step 4: Derive the Element Stiffness Matrix and Equations using the Total Potential Energy Approach
The total potential energy is defined as the sum of the internal strain energy U and the potential energy of the external forces Ω :

$$
\pi_{p}=U+\Omega_{b}+\Omega_{p}+\Omega_{s}
$$

where the strain energy is:

$$
U=\frac{1}{2} \int_{V}\{\varepsilon\}^{\top}\{\sigma\} d V \quad \longrightarrow \quad U=\frac{1}{2} \int_{V}\{\varepsilon\}^{\top}[D]\{\varepsilon\} d V
$$

The potential energy of the body force term is:

$$
\Omega_{b}=-\int_{V}\{\Psi\}^{T}\{X\} d V
$$

where $\{\Psi\}$ is the general displacement function, and $\{X\}$ is the body weight per unit volume.

The potential energy of the concentrated forces is:

$$
\Omega_{p}=-\{d\}^{\top}\{P\}
$$

where $\{P\}$ are the concentrated forces, and $\{d\}$ are the nodal displacements.

The potential energy of the distributed loads is:

$$
\Omega_{s}=-\int_{S}\{\Psi\}^{T}\{T\} d S
$$

where $\{\Psi\}$ is the general displacement function, and $\{T\}$ are the surface tractions.
Then the total potential energy expression becomes:

$$
\pi_{p}=\frac{1}{2} \int_{V}\{d\}^{T}[B]^{T}[D][B]\{d\} d V-\int_{V}\{d\}^{T}[N]^{T}\{X\} d V-\{d\}^{T}\{P\}-\int_{S}\{d\}^{T}[N]^{T}\{T\} d S
$$

The nodal displacements $\{d\}$ are independent of the general $x-y$ coordinates, therefore

$$
\pi_{p}=\frac{1}{2}\{d\}^{T} \int_{V}[B]^{T}[D][B] d V\{d\}-\{d\}^{T} \int_{V}[N]^{T}\{X\} d V-\{d\}^{T}\{P\}-\{d\}^{T} \int_{S}[N]^{T}\{T\} d S
$$

We can define the last three terms as:

$$
\{f\}=\int_{V}[N]^{\top}\{X\} d V+\{P\}+\int_{S}[N]^{\top}\{T\} d S
$$

Therefore:

$$
\pi_{p}=\frac{1}{2}\{d\}^{T} \int_{V}[B]^{T}[D][B] d V\{d\}-\{d\}^{T}\{f\}
$$

Minimization of π_{p} with respect to each nodal displacement requires that:

$$
\frac{\partial \pi_{p}}{\partial\{d\}}=\int_{V}[B]^{\top}[D][B] d V\{d\}-\{f\}=0
$$

The above relationship requires:

$$
\int_{V}[B]^{\top}[D][B] d V\{d\}=\{f\}
$$

The stiffness matrix can be defined as:

$$
[k]=\int_{V}[B]^{\top}[D][B] d V
$$

For an element of constant thickness, t, the above integral becomes:

$$
[k]=t \int_{A}[B]^{\top}[D][B] d x d y
$$

Mahidol University

Faculty of Engineering

The integrand in the above equation is not a function of x or y (global coordinates); therefore, the integration reduces to:

$$
[k]=t[B]^{\top}[D][B] \int_{A} d x d y \quad \text { or } \quad[k]=t A[B]^{\top}[D][B]
$$

where A is the area of the triangular element. Expanding the stiffness relationship gives:

$$
[k]=\left[\begin{array}{ccc}
{\left[k_{i j}\right]} & {\left[k_{i j}\right]} & {\left[k_{i m}\right]} \\
{\left[k_{j j}\right]} & {\left[k_{i j}\right]} & {\left[k_{j m}\right]} \\
{\left[k_{m i}\right]} & {\left[k_{m j}\right]} & {\left[k_{m m}\right]}
\end{array}\right]
$$

where each $\left[k_{i]}\right.$ is a 2×2 matrix define as:

$$
\left[k_{i j}\right]=\left[B_{i}\right]^{\top}[D]\left[B_{i}\right] t A \quad\left[k_{i j}\right]=\left[B_{i}\right]^{\top}[D]\left[B_{j}\right] t A \quad\left[k_{i m}\right]=\left[B_{i}\right]^{\top}[D]\left[B_{m}\right] t A
$$

Recall:

$$
\left[B_{i}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{i} & 0 \\
0 & \gamma_{i} \\
\gamma_{i} & \beta_{i}
\end{array}\right] \quad\left[B_{j}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{j} & 0 \\
0 & \gamma_{j} \\
\gamma_{j} & \beta_{j}
\end{array}\right] \quad\left[B_{m}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{m} & 0 \\
0 & \gamma_{m} \\
\gamma_{m} & \beta_{m}
\end{array}\right]
$$

Mahidol University

Faculty of Engineering

Step 5: Assemble the Element Equations to obtain the Global Equations and Introduce the Boundary Conditions
The global stiffness matrix can be found by the direct stiffness method.

$$
[K]=\sum_{e=1}^{N}\left[k^{(e)}\right]
$$

The global equivalent nodal load vector is obtained by lumping body forces and distributed loads at the appropriate nodes as well as including any concentrated loads.

$$
\{F\}=\sum_{e=1}^{N}\left\{f^{(e)}\right\}
$$

The resulting global equations are: $\quad\{F\}=[K]\{d\}$
where $\{d\}$ is the total structural displacement vector.

In the above formulation of the element stiffness matrix, the matrix has been derived for a general orientation in global coordinates. Therefore, no transformation form local to global coordinates is necessary. However, for completeness, we will now describe the method to use if the local axes for the constant-strain triangular element are not parallel to the global axes for the whole structure.

To relate the local to global displacements, force, and stiffness matrices we will use:

$$
\hat{d}=T d \quad \hat{f}=T f \quad k=T^{\top} \hat{k} T
$$

The transformation matrix T for the triangular element is:
$T=\left[\begin{array}{cc:cc:cc}C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ \hdashline 0 & 0 & C & S & 0 & 0 \\ 0 & 0 & -S & C & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0 & C & S \\ 0 & 0 & 0 & 0 & -S & C\end{array}\right]$
where $C=\cos \theta$ and $S=\sin \theta$, and θ is shown in the figure above.

Step 6: Solve for Nodal Displacements

Step 7: Solve for Element Forces and Stresses

Having solved for the nodal displacements, we can obtain strains and stresses in x and y directions in the elements by using:
$\{\varepsilon\}=[B]\{d\}$
$\{\sigma\}=[D][B]\{d\}$

Consider the structure shown in the figure below.

Assume plane stress conditions. All coordinates are shown on the figure. Let $E=$ $30 \times 10^{6} \mathrm{psi}, v=0.25$, and $t=1 \mathrm{in}$. Assume the element nodal displacements have been determined to be $u_{1}=0.0, v_{1}=0.0025$ in., $u_{2}=0.0012$ in., $v_{2}=0.0, u_{3}$ $=0.0$, and $v_{3}=0.0025 \mathrm{in}$. Determine the element stiffness matrix and the element stresses.

For plane stress conditions, the $[D]$ matrix is:

$$
[D]=\frac{30 \times 10^{6}}{1-(0.25)^{2}}\left[\begin{array}{ccc}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right]
$$

Substitute the above expressions for $[D]$ and $[B]$ into the general equations for the stiffness matrix:
$[k]=t A[B]^{\top}[D][B]$

$$
k=\frac{(2) 30 \times 10^{6}}{4(0.9375)}\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & -2 & -1 \\
2 & 0 & 1 \\
2 & 0 & 2 \\
-1 & 0 & 2 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right] \frac{1}{2(2)}\left[\begin{array}{cccccc}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{array}\right]
$$

Performing the matrix triple product gives:

$$
k=4 \times 10^{6}\left[\begin{array}{cccccc}
2.5 & 1.25 & -2 & -1.5 & -0.5 & 0.25 \\
1.25 & 4.375 & -1 & -0.75 & -0.25 & -3.625 \\
-2 & -1 & 4 & 0 & -2 & 1 \\
-1.5 & -0.75 & 0 & 1.5 & 1.5 & -0.75 \\
-0.5 & -0.25 & -2 & 1.5 & 2.5 & -1.25 \\
0.25 & -3.625 & 1 & -0.75 & -1.25 & 4.375
\end{array}\right] \mathrm{lb} / \mathrm{in}
$$

The in-plane stress can be related to displacements by:
$\{\sigma\}=[D][B]\{d\}$
$\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\frac{30 \times 10^{6}}{0.9375}\left[\begin{array}{ccc}1 & 0.25 & 0 \\ 0.25 & 1 & 0 \\ 0 & 0 & 0.375\end{array}\right] \frac{1}{2(2)}\left[\begin{array}{cccccc}-1 & 0 & 2 & 0 & -1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 2 \\ -2 & -1 & 0 & 2 & 2 & -1\end{array}\right]\left[\begin{array}{l}0.0 \\ 0.0025 \text { in } \\ 0.0012 \text { in } \\ 0.0 \\ 0.0 \\ 0.0025 \text { in }\end{array}\right\}$
The stresses are:
$\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\left[\begin{array}{r}19,200 p s i \\ 4,800 p s i \\ -15,000 p s i\end{array}\right]$

Recall, the relationships for principal stresses and principal angle in two-
dimensions are:

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sigma_{\max } \\
& \sigma_{2}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sigma_{\min } \\
& \theta_{\rho}=\frac{1}{2} \tan ^{-1}\left[\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}\right]
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \sigma_{1}=\frac{19,200+4,800}{2}+\sqrt{\left(\frac{19,200-4,800}{2}\right)^{2}+(-15,000)^{2}}=28,639 \mathrm{psi} \\
& \sigma_{1}=\frac{19,200+4,800}{2}-\sqrt{\left(\frac{19,200-4,800}{2}\right)^{2}+(-15,000)^{2}}=-4,639 \mathrm{psi}
\end{aligned}
$$

Treatment of Body and Surface Forces

The general force vector is defined as:

$$
\{f\}=\int_{V}[N]^{\top}\{X\} d V+\{P\}+\int_{S}[N]^{\top}\{T\} d S
$$

Body Force

Let's consider the first term of the above equation.

$$
\left\{f_{b}\right\}=\int_{V}[N]^{\top}\{X\} d V
$$

where

$$
\{X\}=\left\{\begin{array}{l}
X_{b} \\
Y_{b}
\end{array}\right\}
$$

where X_{b} and Y_{b} are the weight densities in the x and y directions, respectively. The force may reflect the effects of gravity, angular velocities, or dynamic inertial forces.

The integration of the $\left\{f_{b}\right\}$ is simplified if the origin of the coordinate system is chosen at the centroid of the element, as shown in the figure below. With the origin placed at the centroid, we can use the definition of a centroid

For a given thickness, t, the body force term becomes:
$\left\{f_{b}\right\}=\int_{V}[N]^{\top}\{X\} d V=t \int_{A}[N]^{\top}\{X\} d A$

Mahidol University

Faculty of Engineering

Recall the interpolation functions for a place stress/strain triangle:
$N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \quad N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \quad N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)$
Therefore the terms in the integrand are:

$$
\int_{A} \beta_{i} x d A=\int_{A} \gamma_{i} y d A=0
$$

and

$$
\alpha_{i}=\alpha_{j}=\alpha_{m}=\frac{2 A}{3}
$$

The body force at node i is given as:

$$
\left\{f_{b i}\right\}=\frac{t A}{3}\left\{\begin{array}{l}
X_{b} \\
Y_{b}
\end{array}\right\}
$$

The general body force vector is:

$$
\left\{f_{b}\right\}=\left\{\begin{array}{l}
f_{b i x} \\
f_{b i y} \\
f_{b j x} \\
f_{b j y} \\
f_{b m x} \\
f_{b m y}
\end{array}\right\}=\frac{t A}{3}\left\{\begin{array}{c}
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b}
\end{array}\right\}
$$

Surface Force

The third term in the general force vector is defined as:

$$
\left\{f_{s}\right\}=\int_{S}[N]^{\top}\{T\} d S
$$

Let's consider the example of a uniform stress p acting between nodes 1 and 3 on the edge of element 1 as shown in figure below.

The surface traction becomes

$$
\{T\}=\left\{\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right\}=\left\{\begin{array}{l}
p \\
0
\end{array}\right\}
$$

Therefore, the traction force vector is:
and $[M]^{\top}$ is:
$[N]^{\top}=\left[\begin{array}{cc}N_{1} & 0 \\ 0 & N_{1} \\ N_{2} & 0 \\ 0 & N_{2} \\ N_{3} & 0 \\ 0 & N_{3}\end{array}\right]$
evaluated at $x=a$

The interpolation function for $i=1$ is

$$
N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)
$$

For convenience, let's choose the coordinate system shown in the figure below.

Recall:

$$
\alpha_{i}=x_{j} y_{m}-y_{j} x_{m}
$$

$$
\text { with } i=1, j=2 \text {, and } m=3 \text {, we get }
$$

$$
\alpha_{1}=x_{2} y_{3}-y_{2} x_{3}
$$

Substituting the interpolation function in the traction force vector expression gives:

Explicit Expression for the Constant-Strain Triangle Stiffness Matrix for plain strain case

Recall that: $\quad[k]=t A[B]^{\top}[D][B]$
where $[D]$ for plane strain is: $\left\lvert\, \quad[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & 0.5-v\end{array}\right]\right.$
Substituting the appropriate definition into the above triple product gives:
$[k]=\frac{t E}{4 A(1+v)(1-2 v)}\left[\begin{array}{ccc}\beta_{i} & 0 & \gamma_{i} \\ 0 & \gamma_{i} & \beta_{1} \\ \beta_{j} & 0 & \gamma_{j} \\ 0 & \gamma_{j} & \beta_{j} \\ \beta_{m} & 0 & \gamma_{m} \\ 0 & \gamma_{m} & \beta_{m}\end{array}\right]\left[\begin{array}{ccc}1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & 0.5-v\end{array}\right]$

Therefore the global stiffness matrix is
$\underline{k}=\frac{t E}{4 A(I+v)(1-2 v)}$

$$
\begin{aligned}
& \beta_{j}^{2}(1-v)+v_{j}^{2}\left(\frac{1-2 v}{2}\right) \\
& \text { Symmerry } \\
& \beta_{i v} v+\beta_{i v}\left(\frac{1-2 v}{2}\right) \quad \beta_{1} \beta_{m}(1-v)+\gamma_{i v m}\left(\frac{1-2 v}{2}\right) \quad \beta_{i \gamma_{m} v}+\beta_{m} v_{i}\left(\frac{1-2 v}{2}\right) \\
& \gamma_{i v}(1-v)+\beta_{i} \beta_{j}\left(\frac{1-2 v}{2}\right) \quad \beta_{m} \eta_{v} v+\beta_{v_{m}}\left(\frac{1-2 v}{2}\right) \quad \gamma_{i \gamma_{m}}(1-v)+\beta_{i} \beta_{m}\left(\frac{1-2 v}{2}\right) \\
& \beta_{i j} v_{v} v+\beta_{j v}\left(\frac{1-2 v}{2}\right) \quad \beta_{j} \beta_{m}(1-v)+\gamma_{j} \gamma_{m}\left(\frac{1-2 v}{2}\right) \quad \beta_{j} \gamma_{m} v+\gamma_{j} \beta_{m}\left(\frac{1-2 v}{2}\right) \\
& \gamma_{j}^{2}(1-v)+\beta_{j}^{2}\left(\frac{1-2 v}{2}\right) \quad \beta_{m i j} v+\beta_{j} y_{m}\left(\frac{1-2 v}{2}\right) \\
& \beta_{m}^{2}(1-v)+\gamma_{m}^{2}\left(\frac{1-2 v}{2}\right) \\
& \gamma_{m}(1-v)+\beta_{j} \beta_{m}\left(\frac{1-2 v}{2}\right) \\
& \gamma_{m} \beta_{m} v+\beta_{m} \gamma_{m}\left(\frac{1-2 v}{2}\right) \\
& \text { The stiffness matrix is a } \\
& \text { function of the global } \\
& \text { coordinates } x \text { and } y \text {, the } \\
& \text { material properties, the } \\
& \text { thickness and area of the } \\
& \text { element }
\end{aligned}
$$

Mahidol University

Faculty of Engineering

FINITE ELEMENT SOLUTION OF A PLANE STRESS EXAMPLE
the boundary supports.

Consider the thin plate subjected to the surface traction shown in the figure below.

Assume plane stress conditions. Let $E=30 \times 10^{6} \mathrm{psi}, v=0.30$, and $t=1 \mathrm{in}$. Determine the nodal displacements and the element stresses.

 Mahidol University
 Faculty of Engineering
 0

Discretization

Let's discretize the plate into two elements as shown below:

This level of discretization will probably not yield practical results for displacement and stresses: however; it is useful example for a longhand solution.

Expanding the above matrices gives:
$\left\{\begin{array}{l}F_{1 x} \\ F_{1 y} \\ F_{2 x} \\ F_{2 y} \\ F_{3 x} \\ F_{3 y} \\ F_{4 x} \\ F_{4 y}\end{array}\right\}=\left\{\begin{array}{c}R_{1 x} \\ R_{1 y} \\ R_{2 x} \\ R_{2 y} \\ 5,000 \mathrm{lb} \\ 0 \\ 5,000 \mathrm{lb} \\ 0\end{array}\right\}=[K]\left\{\begin{array}{l}d_{1 x} \\ d_{1 y} \\ d_{2 x} \\ d_{2 y} \\ d_{3 x} \\ d_{3 y} \\ d_{4 x} \\ d_{4 y}\end{array}\right\}=[K]\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ d_{3 x} \\ d_{3 y} \\ d_{4 x} \\ d_{4 y}\end{array}\right\}$
where $[K]$ is an 8×8 matrix before deleting the rows and columns accounting for

```
|||||D
```

```
|||||D
```


The tensile traction forces can be converted into nodal forces as follows:
$\left\{f_{s}\right\}=\left\{\begin{array}{l}f_{s 1 x} \\ f_{s 1 y} \\ f_{s 2 x} \\ f_{s 2 y} \\ f_{s 3 x} \\ f_{s 3 y}\end{array}\right\}=\frac{p L t}{2}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]=\frac{1,000 p \operatorname{si}(1 \mathrm{in}) 10 \mathrm{in}}{2}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}5,000 \mathrm{lb} \\ 0 \\ 0 \\ 0 \\ 5,000 \mathrm{lb} \\ 0\end{array}\right]$
The governing global matrix equations are:

$$
\{F\}=[K]\{d\}
$$

Mahidol University
 Faculty of Engineering

Assemblage of the Stiffness Matrix

The global stiffness matrix is assembled by superposition of the individual element stiffness matrices. The element stiffness matrix is:

$$
[k]=t A[B]^{\top}[D][B]
$$

For element 1: the coordinates are $x_{i}=0, y_{i}=0, x_{j}=20, y_{j}=10, x_{m}=0$, and $y_{m}=$
10. The area of the triangle is:

The matrix $[B]$ is:

$$
[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{1} & \beta_{l} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]
$$

We need to calculate the element β^{\prime} s and γ 's as:

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=10-10=0 & \gamma_{i}=x_{m}-x_{j}=0-20=-20 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
\beta_{m}=y_{i}-y_{j}=0-10=-10 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Therefore, the $[B]$ matrix is:

$$
[B]=\frac{1}{200}\left[\begin{array}{cccccc}
0 & 0 & 10 & 0 & -10 & 0 \\
0 & -20 & 0 & 0 & 0 & 20 \\
-20 & 0 & 0 & 10 & 20 & -10
\end{array}\right] 1 / i n
$$

For plane stress conditions, the $[D]$ matrix is:

$$
[D]=\frac{30 \times 10^{6}}{0.91}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right] p s i
$$

The element stiffness matrix is:
$[k]=t A[B]^{\top}[D][B]$
therefore:
$t A[B]^{\top}[D][B]=1(100) \frac{(0.15)\left(10^{6}\right)}{0.91}\left[\begin{array}{rrl}0 & 0 & -7 \\ -6 & -20 & 0 \\ 10 & 3 & 0 \\ 0 & 0 & 3.5 \\ -10 & -3 & 7 \\ 6 & 20 & -3.5\end{array}\right]$

Simplifying the above expression gives:

$$
[B]^{\top}[D]=\frac{30\left(10^{6}\right)}{200(0.91)}\left[\begin{array}{rrl}
0 & 0 & -7 \\
-6 & -20 & 0 \\
10 & 3 & 0 \\
0 & 0 & 3.5 \\
-10 & -3 & 7 \\
6 & 20 & -3.5
\end{array}\right]
$$

For element 2: the coordinates are $x_{i}=0, y_{i}=0, x_{j}=20, y_{j}=0, x_{m}=20$, and $y_{m}=$
10. The area of the triangle is:

$$
A=\frac{(20)(10)}{2}=100 \mathrm{in}^{2}
$$

We need to calculate the element β^{\prime} s and γ 's as:

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=0-10=-10 & \gamma_{i}=x_{m}-x_{j}=20-20=0 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-20=-20 \\
\beta_{m}=y_{i}-y_{j}=0-0=0 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Therefore, the $[B]$ matrix is:

$$
[B]=\frac{1}{200}\left[\begin{array}{cccccc}
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & 0 & 20 \\
0 & -10 & -20 & 10 & 20 & 0
\end{array}\right] 1 / i n
$$

Mahidol University

Faculty of Engineering

The element stiffness matrix is:
$[k]=t A[B]^{\top}[D][B]$
therefore:

$$
t A[B]^{\top}[D][B]=1(100) \frac{(0.15)\left(10^{6}\right)}{0.91}\left[\begin{array}{ccc}
-10 & -3 & 0 \\
0 & 0 & -3.5 \\
10 & 3 & -7 \\
0 & -20 & 3.5 \\
-6 & 0 & 7 \\
6 & 20 & 0
\end{array}\right] \times \frac{1}{200}\left[\begin{array}{cccccc}
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & 0 & 20 \\
0 & -10 & -20 & 10 & 20 & 0
\end{array}\right]
$$

Simplifying the above expression gives:

$$
[k]=\frac{75,000}{0.91}\left[\begin{array}{cccccc}
u_{1} & v_{1} & u_{4} & v_{4} & u_{3} & v_{3} \\
100 & 0 & -100 & 60 & 0 & -60 \\
0 & 35 & 70 & -35 & -70 & 0 \\
-100 & 70 & 240 & -130 & -140 & 60 \\
60 & -35 & -130 & 435 & 70 & -400 \\
0 & -70 & -140 & 70 & 140 & 0 \\
-60 & 0 & 60 & -400 & 0 & 400
\end{array}\right]
$$

Element 1:
$[k]=\frac{375,000}{0.91}\left[\begin{array}{cccccccc}u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{3} & u_{4} & v_{4} \\ 28 & 0 & -28 & 14 & 0 & -14 & 0 & 0 \\ 0 & 80 & 12 & -80 & -12 & 0 & 0 & 0 \\ -28 & 12 & 48 & -26 & -20 & 14 & 0 & 0 \\ 14 & -80 & -26 & 87 & 12 & -7 & 0 & 0 \\ 0 & -12 & -20 & 12 & 20 & 0 & 0 & 0 \\ -14 & 0 & 14 & -7 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Element 2:
$[k]=\frac{375,000}{0.91}\left[\begin{array}{cccccccc}u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{2} & u_{4} & v_{4} \\ 20 & 0 & 0 & 0 & 0 & -12 & -20 & 12 \\ 0 & 7 & 0 & 0 & -14 & 0 & 14 & -7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -14 & 0 & 0 & 28 & 0 & -28 & 14 \\ -12 & 0 & 0 & 0 & 0 & 80 & 12 & -80 \\ -20 & 14 & 0 & 0 & -28 & 12 & 48 & -26 \\ 12 & -7 & 0 & 0 & 14 & -80 & -26 & 87\end{array}\right]$

The governing global matrix equations are:
$\{F\}=[K]\{d\}$

Applying the boundary conditions:

$$
d_{1 x}=d_{1 y}=d_{2 x}=d_{2 y}=0
$$

The governing equations are:

$$
\left\{\begin{array}{c}
5,000 \mathrm{lb} \\
0 \\
5,000 \mathrm{lb} \\
0
\end{array}\right\}=\frac{375,000}{0.91}\left[\begin{array}{cccc}
48 & 0 & -28 & 14 \\
0 & 87 & 12 & -80 \\
-28 & 12 & 48 & -26 \\
14 & -80 & -26 & 87
\end{array}\right]\left[\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

Solving the equations gives:

$$
\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=\left(10^{-6}\right)\left\{\begin{array}{r}
609.6 \\
4.2 \\
663.7 \\
104.1
\end{array}\right\} \text { in }
$$

The exact solution for the displacement at the free end of the one-dimensional bar subjected to a tensile force is:

$$
\delta=\frac{P L}{A E}=\frac{(10,000) 20}{10\left(30 \times 10^{6}\right)}=670 \times 10^{-6} \text { in }
$$

The in-plane stress can be related to displacements by:
$\{s\}=[D][B]\{d\}$

$$
\{\sigma\}=\frac{E}{2 A\left(1-v^{2}\right)}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]\left\{\begin{array}{l}
d_{\alpha x} \\
d_{i y} \\
d_{j x} \\
d_{d y} \\
d_{m x} \\
d_{m y}
\end{array}\right\}
$$

Element 1:

$$
\begin{aligned}
& \{\sigma\}=\frac{E}{2 A\left(1-v^{2}\right)}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{3} & 0 & \beta_{2} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{3} & 0 & \gamma_{2} \\
\gamma_{1} & \beta_{1} & \gamma_{3} & \beta_{3} & \gamma_{2} & \beta_{2}
\end{array}\right]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{3 x} \\
d_{3 y} \\
d_{2 x} \\
d_{2 y}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{30\left(10^{6}\right)\left(10^{-6}\right)}{0.96(200)}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & 10 & 0 & -10 & 0 \\
0 & -20 & 0 & 0 & 0 & 20 \\
-20 & 0 & 0 & 10 & 20 & -10
\end{array}\right]\left\{\begin{array}{r}
0.0 \\
0.0 \\
0.6 \\
4.2 \\
0.0 \\
0.0
\end{array}\right\}
\end{aligned}
$$

The stresses are:
$\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\left[\begin{array}{r}1,005 p s i \\ 301 p s i \\ 2.4 p s i\end{array}\right]$

Element 2:

$$
\{\sigma\}=\frac{E}{2 A\left(1-v^{2}\right)}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{4} & 0 & \beta_{3} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{4} & 0 & \gamma_{3} \\
\gamma_{1} & \beta_{1} & \gamma_{4} & \beta_{4} & \gamma_{3} & \beta_{3}
\end{array}\right]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{4 x} \\
d_{4 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right\}
$$

The principal stresses and principal angle are:

$$
\begin{aligned}
& s_{1}=\frac{995-1.2}{2}+\sqrt{\left(\frac{995+1.2}{2}\right)^{2}+(-2.4)^{2}}=995 p s i \\
& \sigma_{2}=\frac{995-1.2}{2}-\sqrt{\left(\frac{995+1.2}{2}\right)^{2}+(-2.4)^{2}}=-1.1 p s i \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{2(-2.4)}{995+1.2}\right] \approx 0^{\circ}
\end{aligned}
$$

The stresses are:
$\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\left[\begin{array}{c}995 p s i \\ -1.2 p s i \\ -2.4 p s i\end{array}\right]$

[^0]: deal beams are straight and have constant cross-sectional area.

