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Physical Problem

Question regarding the problem
...how large are the deformations?
...how much is the heat transfer?

Mathematical model || Assumptions regarding
Geometry
Governed by differential Kinematics

equations Material law

Loading
Boundary conditions
Etc.

Introduction to FEM

Exact

e Chapter 1 Overview

Questions: What is the bending moment at section AA? What is the deflection at the pin?
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Physical Problem

W= 1000 N

In

A L+ry=28cm

M = WL Mathematical model

=27,500 N cm
. 1TW(L+r)®  W(L+r)
balloadW = g El + 5
=AG
6
=0.053 cm

Difficult to solve by hand!

Introduction to FEM
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= = FEM analysis scheme
o | o
= 1. Create a geometric model & Step 1: Divide the problem domain into non overlapping
2 2. Develop the finite element model (numerical approximation) g regions (“elements”) connected to each other through
O @) special points (“nodes”)
— (. T Mlement
- ) | B (-
Q L BN e _ O/ «— Node
o o | o -
CG — - , // CU i
c I R c . 4 - i
@) - @)
[ ] — [
Solid model Finite element model

Finite element model
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Finite element analysis

Step 2: Describe the approximate behavior of each element
(spatially discretized by displacement-formulated FEM).

FEM solution to mathematical model 2 (plane stress)

FEM analysis scheme

Moment at section AA M =27500N cm

. Ontioagw = 0-064cm
Step 3: Describe the approximate behavior of the entire body Deflection at load
by putting together the behavior of each of the elements (this is

a process known as “assembly”)

Preprocessing
POSTPROCESSING
Y Step 1
=
Compute moment at m% Step 3
section AA Step3

Conclusion: With respect to the questions we posed, the beam
model is reliable if the required bending moment is to be predicted
within 1% and the deflection is to be predicted within 20%. The beam
model is also highly effective since it can be solved easily (by hand).
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Postprocessing

Introduction to FEM Introduction to FEM




Physical

Steps in engineeing mechanics analysis

model
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Phenomenon

» Chapter 1 Overview

Heat conduction
in concrete

| Differential Approx'maﬂon‘ Finite Element
Equations Equations
y Boundary element

Approximation

Finite element
model

Diff. equation for
heat conduction
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T, degrees of freedom

Temperature distribution along 1-dim. fin

Nodal points & temperature values at nodes

4 elements with linear temp within each element
resulting an approximation along the fin.

2 elements with quadratic temp within each
element resulting a better approximation

Introduction to FEM

IPhysiciroblem [

problem
Mathematical Improve
mathematical
Model |

A |

I Numerical model I
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¥

No!

—-I Reflne analysls l

Design Impravements
Structural optimization
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Fixed boundary

uniform loading

In summary, FEM involves...

JulNERNERE

» Approximate method
» Geometric model

Element .
1 1 Node
Finite element * Element
model * Mesh

* Discretization

N

Node

Problem: Obtain the
stresses/strains in the plate

Introduction to FEM
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Verification
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Physical Problem

!' Validation

Mathematical model
Governed by differential
equations

b Numerical model

e.g., finite element
model

Introduction to FEM
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FINITE ELEMENT ms.?“‘ﬁ“
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Upcoming Course content
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“Direct Stiffness” approach for springs

Bar elements and truss analysis

Introduction to boundary value problems: strong form, principle
of minimum potential energy and principle of virtual work.
Displacement-based finite element formulation in 1D: formation
of stiffness matrix and load vector, numerical integration.
Displacement-based finite element formulation in 2D: formation
of stiffness matrix and load vector for CST and quadrilateral
elements.

Discussion on issues in practical FEM modeling

Convergence of finite element results

Higher order elements

Isoparametric formulation

10 Numerical integration in 2D
11. Solution of linear algebraic equations

Introduction to FEM
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Summary:

» Developing the finite element equations for a
system of springs using the “direct stiffness”
approach

» Application of boundary conditions

* Physical significance of the stiffness matrix

» Direct assembly of the global stiffness matrix

* Problems

e Direct Stiffness - springs
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FEM analysis scheme

Step 1: Divide the problem domain into non
overlapping regions (“elements”) connected to
each other through special points (“nodes”)

Step 2: Describe the behavior of each element
Step 3: Describe the behavior of the entire body by

putting together the behavior of each of the
elements (this is a process known as “assembly”)

* Direct Stiffness - springs
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Problem
Analyze the behavior of the system composed of the two
springs loaded by external forces as shown above

Given

F... Fo ,F3, are external loads. Positive directions of the
forces are along the positive x-axis

k, and k, are the stiffnesses of the two springs

e Direct Stiffness - springs
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Solution

Step 1: In order to analyze the system we break it up into
smaller parts, i.e., “elements” connected to each other
through “nodes”

le kl FZx I'(2 F3x X
o NN ——\\/\,—¢
1 2 3
L Element 1 |, Element2 L.
Nodel X O ax

Unknowns: nodal displacements d,,, d,,, d,,
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|, Element2

\—> Element 1
d2x

Node1l X

Step 2: Analyze the behavior of a single element (spring)

Two nodes: 1, 2 .

« Nodal displacements: d,, d,,
Nodal forces: f,, f
Spring constant: k

i L3 2

f;y -d.: « !f_‘:1 F'i:i'
[ L I

2X

© 2002 Brooks/Cole Publishing / Thomson Learning™
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e Direct Stiffness - springs

Local (X,¥,Z) and global (x,y,z) coordinate systems

* Direct Stiffness - springs
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Behavior of a linear spring (recap)

'y

d

| —>

F = Force in the spring
d = deflection of the spring
k = “stiffness” of the spring

Hooke’s Law
F =kd
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1 k 2
— NNV VN \NNNNN—ee—
flx F sz
> L !1—‘51,. _..I
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fZX =k (aZX _alx) Ea (1)

Hooke’s law for our spring element

Force equilibrium for our spring element

fi, +f2x =0
= 121x = _fzx =—k (azx - alx) =
Collect Eq (1) and (2) in matrix form
N
/ /T f,| |-k k ifL

Element —
Element f d
— Element nodal f k d

vector stiffness  displacement i

matrix vector

e Direct Stiffness - springs
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* Direct Stiffness - springs

Note ot

1. The element stiffness matrix is “symmetric”, i.e. k =
2. The element stiffness matrix is singular, i.e.,

det (k) =k2-k2=0

The consequence is that the matrix is NOT invertible. It is not possible
to invert it to obtain the displacements. Why?

The spring is not constrained in space and hence it can attain multiple
positions in space for the same nodal forces

L
be)% 2t

|=>

e Direct Stiffness - springs
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Step 3: Now that we have been able to describe the behavior of
each spring element, lets try to obtain the behavior of the original
structure by assembly

Split the original structure into component elements
Element 1

1 K, 2

Element 2

2k 3

- A R 2@ 40 f@q@
£ o fody W S

fa - qa £ - @
fl(x) _ |: kl kl} dix) {flx } — |: kz kz}{dlx }
co Tl £ - @
fz(x) - kl kl d(zx) fox K, Kk, d3
—_— T/ — —— %’2)—/%/—/
;@ i @ HO) il 3@

= B ) @<

* Direct Stiffness - springs
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To assemble these two results into a single description of the
response of the entire structure we need to link between the local and
global variables.

Question 1: How do we relate the local (element) displacements
back to the global (structure) displacements?

le kz I:3

m:-—x
/L Element 1 %’ Element 2 %

d

Node 1 - 2x 3
aﬁ) = dlx
d =d? =d,, | Eq@
5 = da EIEISE

e Direct Stiffness - springs

Hence, equations (3) and (4) may be rewritten as

(0] [k -k]fdy] [E2]_[ke -k,][dx

fz(}() B 'kl kl d2x fz(i) 'kz k2 d3x

Element 1 Element 2
1 Ky 2 - & =

fa F0AQ) : 2 4@
2 d&) fz(x)dzx fo dix) 249

Or, we may expand the matrices and vectors to obtain
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d
d
d

d

* Direct Stiffness - springs

Expanded element stiffness matrix of element 1 (local)
Expanded nodal force vector for element 1 (local)

d  Nodal load vector for the entire structure (global) [ER[EIEIEH

e Direct Stiffness - springs
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Question 2: How do we relate the local (element) nodal
forces back to the global (structure) forces? Draw 5 FBDs
_FlX, kl _FZX_, k2 ]—st X
| 4
A Be C
L le L dZX d3X
I @ 2 @ 3
le fl(xl) . fz(i) F2x fl(f) fz(i) F3x
Atnodel: F, -f® =0
Atnode?2: F, -f¥—f@ =0
Atnode3: F, -f?=0

Mahidol University
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% E fFO
= In vector form, the nodal x A
5 F=4F, t={f0+{®
o force vector (global) L 2x x Tl
& F f@
! 3x 2X
A .
3] Recall that the expanded £ 0
c swe =0 ;e |fO
h= element force vectorswere f = =4f;) ¢ and f = =<l
Z 0 £
o Hence, the global force vector is simply the sum of the
5 expanded element nodal force vectors
I "o ~De  ~(e
E = I:2x = t f

Fax [e[<[>T>]

e Direct Stiffness - springs
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But we know the expressions for the expanded local
force vectors from Eqs (6) and (7)

Le  ~(e ~(2)e e

f =k dand f =k d

Hence
~(1) ~(2) ~ (1) 2 ~ (1) ~(2)
F=f” f? =k +k%d= (Ke+K jg

E = Global nodal force vector
F=Kd | d=Global nodal displacement vector
K

= Global stiffness matrix
=sum of expanded element stiffness matrices




For our original structure with two springs, the
global stiffness matrix is

k, -k, 0] o 0 0

* Direct Stiffness - springs

The system equations

F. K, -k, 0 d,

e Direct Stiffness - springs

K=|-k;, k, 0[+/0 k, -k, Fo = 'kl k1+k2 _kz d2x
0 0 0| |0 -k, Kk, Fax 0 -k, Ky | (s
R K2
k, -k, 0 Fiy = kidy, —kid,,
=(-k, ki+k, -k, = Fy =-kidy, + (K +k,)dy, —k,dy,
NOTE 0 -k, K, Ry = -Kady +Kydy,
1. The global stiffness matrix is symmetric These are the 3 equilibrium equations at the 3 nodes.
2. The global stiffness matrix is singular A<D
Pk Fa, K, ~Fae Mahidol University
.—T—/\M—T—. i i ; X Faculty of Engineerin
'LAdlx ’ zbchX L. g,

® 3
F, f(l); :f(l): iif@) :fz(f)

© 2002 Brooks/Cole Publishing / Thomson Learning™

F3x

£ E —k(d —d.)=f®
At nodel: le —fl(j) =0 1x 1( 1x ZX) 1x
Atnode2: F_-fO_f@_0 Fp =Ky, + (K, +K,)dy, —K,ds,
2x ,\ZX 1x :_kl(dlx_d2x)+ k2(d2x_d3x)
Atnode3: F, -f2 =0 )

Notice that the sum of the forces equal zero, i.e., the
structure is in static equilibrium.

le + I:2x+ I:3x =0

Given the nodal forces, can we solve for the
displacements?

e Direct Stiffness - springs

To obtain unique values of the displacements, at least
one of the nodal displacements must be specified.




Global —=

Local Element 1
1 K, 2

£ PPN
fl(x) d&) fZ(X)dZX

L» E|ement 1 %» Element 2 \_'

® 2
3

de

2X

Element 2

£ A@
£ diy

Node element connectivity chart : Specifies the global
node number corresponding to the local (element) node
numbers

ELEMENT |[Node 1 | Node 2«t——Local node number
1 1 2

——Global node number

e Direct Stiffness - springs

Stiffness matrix of element 1
CIlx d2x

O _ {klfkl}dn
B 'k1§ K, dyy

Faculty of Engineering
Wisdom of th

Stiffness matrix of element 2
d?_x d3x

R _ {szkﬂdm
B 'k2§ K, dsy

Global stiffness matrix

Examples:
Problems
2.1 & 2.3 of Logan

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

) k, = 1000 Ib/in.  k, = 2000 Ib/in. ky = 3000 Ib/in.
Example 2.1 | 2 3 p 4 N
5000 Ib
© ® ® 4
Compute the global stiffness matrix of the assemblage of springs
shown above
dlx d2x d3x ; d4x
100 0 000 ¢ 0 | 0 ]dy
_|-1000 {1000+2000); 2000 | O |d,,
0 | -2000 (2000+3000) -3000 d,
o ¢ o0 . =000 3000 |4
| | | e
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Example 2.3
@ [
ky 3
@ 7

© 2002 Brooks/Cole Publishing / Thomson Learning™

Compute the global stiffness matrix of the assemblage of springs
shown above

K, &, 0
K=[-k, k+k,+k; '(k2+k3)
0 -(k,+k;) (k,+k;)

Imposition of boundary conditions
Consider 2 cases

Case 1: Homogeneous boundary conditions (e.g., d,,=0)
Case 2: Nonhomogeneous boundary conditions (e.g., one of the
nodal displacements is known to be different from zero)

Homogeneous boundary condition at node 1

, k.=500N/m k,=100N/m F,,=5N
% 1

% 1

_

dlx:

2
OElement 1 \—> Element 2
d2x

Mahidol University
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500 500 0 |[d-T [F,
-500 600 -100 | d, |=| 0
0 -100 100 ||d, | | 5

Global Stiffness (I:I_odal :\Iogal
matrix ISp 0d
vector  vector
Note that F,, is the wall reaction which is to be computed as part of the
solution and hence is an unknown in the above equation

System equations

-500d,, = F,, Eq(1)
Writing out the equations explicitly 600d. —100d. =0 Eq(2)
2X 3x

-100d,, +100d, =5  Eq(3)

Mahidol University

Faculty of Engineering

8
=

600 -100|(d, | |O
Eq(2) and (3) are used to ~100 100 || d,, | |5

find d,, and d;, by solving . d,,] [0.01m
d, | |0.06m

NOTICE: The matrix in the above equation may be obtained from

the global stiffness matrix by deleting the first row and column

500 -500 O

600 -100
500 600 -100 ‘ 100 100

0 -100 100

Note use Eq(1) to compute F;,=-500d,, =—-5N




* Direct Stiffness - springs

NOTICE:

1. Take care of homogeneous boundary conditions

by deleting the appropriate rows and columns from the
global stiffness matrix and solving the reduced set of
equations for the unknown nodal displacements.

2. Both displacements and forces CANNOT be known at
the same node. If the displacement at a node is known, the
reaction force at that node is unknown (and vice versa)

Imposition of boundary conditions...contd.

Nonhomogeneous boundary condition: spring 2 is pulled at
node 3 by 0.06 m)

- K,=100N/m
% . k1—500N/m 2 «
/ : °
/4—» |ement 1 \—> Element 2 L’
dp=0" a, d,,=0.06m

* Direct Stiffness - springs

System equations

500 -500 O
-500 600 -100
0 -100 100

0.06
Note that now F,, and F5, are not known.

Writing out the equations explicitly

-500d,, = F, Eq(1)
600d,, ~100(0.06)=0 g

~100d,, +100(0.06) = F,, g
‘ B R 11313]

Now use only equation (2) to compute d,,

600d,, =100(0.06)
= d,, =0.01m

Now use Eq(1) and (3) to
compute F,, =-5N and F3;,=5N

e Direct Stiffness - springs




Mahidol University

Faculty of Engineering

Recap of what we did

Step 1: Divide the problem domain into non overlapping regions
(“elements”) connected to each other through special points

(“nodes”) Element
R R nodal

Step 2: Describe the behavior of each element ( f =k d) Sés(g'oarcemem

Step 3: Describe the behavior of the entire body (by “assembly™).

This consists of the following steps

1. Write the force-displacement relations of each spring in
expanded form

Global

e 3 nodal

k— Q/ displacement
vector

-]

Recap of what we did...contd.

2. Relate the local forces of each element to the global forces at
the nodes (use FBDs and force equilibrium).
~g
F=3f

Finally obtain

=Kd

Where the global stiffness matrix

K=Yk

Recap of what we did...contd.

Apply boundary conditions by partitioning the matrix and vectors

521 KZZ gZ E2
Solve for unknown nodal displacements
5229'2 =F, _Kzﬂl

Compute unknown nodal forces

El = 51191 +512§|2




Physical significance of the stiffness matrix

—F1X—> k1 _FZL. k2 FS:: X
— \/\/\,—¢ °
L’ Element 1 %’ Element 2 %—'

le 2X ~ 3x

In general, we will have a Ky Kp Ky

stiffness matrix of the form K=k, k k
- 21 22 23

(assume for now that we do not Kk K

know Ky, Ky,, tc) st Ra2 R

The finite element ky Kp o Kkygl[di] [R

force-displacement K, Ky Kyld,p=1F

relations: ki, Ky kg l|ld, F,

The first equation is

Force equilibrium
Kiy0; + K0, +Kisds = F equation at node 1

Columns of the global stiffness matrix

What if d,=1, d,=0, d;=0 ?
While nodes 2 and 3 are held fixed

F, =k, | Force along node 1 due to unit displacement at node 1
F, = Ka | Force along node 2 due to unit displacement at node 1
F, =K5, | Force along node 3 due to unit displacement at node 1

Similarly we obtain the physical significance of the other
entries of the global stiffness matrix

In general

. = Force at node ‘i’ due to unit displacement at node ‘j’
1] keeping all the other nodes fixed

This is an alternate route to generating the global stiffness matrix
e.g., to determine the first column of the stiffness matrix

Set d,=1, d,=0, d,=0

F F k F
—1> k1 i 2 3§ X
1 2
L, Element 1 L. Element 2 L.
dl d2 d3

Find F,=?, F,=?, F,=? PR

For this special case, Element #2 does not have any contribution.
Look at the free body diagram of Element #1

~ q@)

d 8() d 2X X
M
ik f)

(l) =k (d(l) (l)) k (0 1) =—k

£ _ £ _
flx __f2x _kl
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Force equilibrium at node 1
Fl

FO
Force equxilibrium at node 2
F2
%.‘Ai F, :fz(i) = -k,
T Fp=ked; = ky=kqy

Fy=-F = -ki=ks

Of course, F;=0

Hence the first column of the stiffness matrix is

I:1 kl
F,l={-k
Kl (o

To obtain the second column of the stiffness matrix, calculate the
nodal reactions at nodes 1, 2 and 3 when d,=0, d,=1, d,=0

Check that
Fl _kl
F, p =1k +k,

Mahidol University
Faculty of Engineering
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To obtain the third column of the stiffness matrix, calculate the
nodal reactions at nodes 1, 2 and 3 when d,=0, d,=0, d;=1

Check that
F 0
Fz - _kz
FS k2

Mahidol University

Faculty of Engineering
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Steps in solving a problem

Step 1. Write down the node-element connectivity table
linking local and global displacements

Step 2: Write down the stiffness matrix of each element

Step 3: Assemble the element stiffness matrices to form the
global stiffness matrix for the entire structure using the node
element connectivity table

Step 4: Incorporate appropriate boundary conditions

Step 5: Solve resulting set of reduced equations for the unknown
displacements

Step 6: Compute the unknown nodal forces iﬁi
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Summary:
« Stiffness matrix of a bar/truss element

» Coordinate transformation

« Stiffness matrix of a truss element in 2D space

* Problems in 2D truss analysis (including multipoint
constraints)

* Direct Stiffness — bar / truss

* 3D Truss element

Mahidol University

Faculty of Engineerin
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Trusses: Engineering structures that are composed only
of two-force members. e.g., bridges, roof supports

Actual trusses: Airy structures composed of slender members (I-
beams, channels, angles, bars etc) joined together at their ends by
welding, riveted connections or large bolts and pins

T/

Gusset plate

Mahidol University

Faculty of Engineering
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Ideal trusses: Assumptions

* Ideal truss members are connected only at their ends.

* Ideal truss members are connected by frictionless pins (no moments)
* The truss structure is loaded only at the pins

» Weights of the members are neglected

| | /* -

A typical truss structure

Frictionless pin RERC

Mahidol University
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These assumptions allow us to idealize each truss member as a
two-force member (members loaded only at their extremities by equal
opposite and collinear forces)

member in
compression

member in
tension

L —

Connecting pin
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FEM analysis scheme

Step 1: Divide the truss into bar/truss elements connected to each
other through special points (“nodes”)

Step 2: Describe the behavior of each bar element (i.e. derive its
stiffness matrix and load vector in local AND global coordinate
system)

Step 3: Describe the behavior of the entire truss by putting together the
behavior of each of the bar elements (by assembling their stiffness
matrices and load vectors)

Step 4: Apply appropriate boundary conditions and solve

Stiffness Matrix
A Bar/Truss Element

MAHIDOL
UNIVERSITY

Derivation: stiffness matrix of a bar element

E A

2

>y -2 3

[]
al

-
=

© 2002 Brooks/Cole Publishing / Thomson Learning™

L: Length of bar

A: Cross sectional area of bar

E: Elastic (Young’s) modulus of bar

U(X) :displacement of bar as a function of local coordinate X of bar

The strain in the bar at X i
e(X) =—

dx

The stress in the bar (Hooke’s law)

o(X) =E g(x)

MAHIDOL
UNIVERSITY

Tension in the bar
T(R) = EAe

d.

Assume that the displacement a(X) is varying linearly along the bar

~n X))y X
ar=(1-2Y 53, -
L L di d, —d,

Then, strain is constant along the bar: €= & L

. E(n =~
Stress is also constant along the bar: o =Ee= f(dz" - dlx)

.. EA (4 ~

Tension is constant along the bar: T=EAe= T(d2x - dlx)

k

The bar is acting like a spring with stiffness | _ EA
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Recall the lecture on springs

E, A 2

j‘l 1"‘dll.1' Jaw .i'f;_*
]

b L i

©2002 Brooks/Cole Publishing / Thomson Learning™
Two nodes: 1, 2 A
Nodal displacements: d,, d,,
Noc}al forces: f,  f,,
Spring constant: k =

L
Element stiffness matrix in local coordinates
A f,. k -kj|d,
f=kd (T X
/ ﬁ; f2X - k k d2X
Element force Element nodal —— ;ﬁk/—JH,_/
k d

Element  gisplacement | d

vector .
SUFMESS  vector [EI<[>To]

EA

MAHIDOL
UNIVERSITY

What if we have 2 bars?
N El’ Al

N
N L,
This is equivalent to the following system of springs

-
R
>
7

E A E A -
k=2 g =% N
 Byyyye B
§1 Element 1, Element 23§
) k
L, L.
d d,, ds,

1x

matrix
MAHIDOL
UNIVERSITY

Problem 1: Find the stresses in the two-bar assembly loaded as
shown below

E, 2A
N E. AN
1 : §
s
Solution: This is equivalent to the following system of springs
2EA EA S
Nk, ="—— k,=— \
§1 Element 1, Element 23§
\ - Tl
le d2X d3X

We will first compute the displacement at node 2 and then the

stresses within each element _-

MAHIDOL
UNIVERSITY

The global set of equations can be generated using the technique
developed in the lecture on “springs”

K, -k, 0 |[d,
_kl kl + kz _kz d2x =
0 _kz kz d3x

x

snoon m

here  d,=d, =0 and F, =P

Hence, the above set of equations may be explicitly written as
—kd,, = F, QY
(k, +ky)d, =P (2)

—k,d,, =F;, 3)
i o _PL
rom equation (2) 0, k,+k, 3EA




To calculate the stresses: e i TGRS
6 or element #1 first compute the element strain \
e = d2x _dlx — d2x — P
L L 3EA
and then the stress as P
o _ ™ _
o’ =EkE&" =— - -
\ 3A (element in tensmn)j
(Slmllarly’ in element # 2 \ © 2002 Brooks/Cole Publishing / Thomson Learning™
8(2):d3x_d2x :_d2x - _ P
L P L 3EA Inter-element continuity of a two-bar structure
2 2 : :
o? =Ee? =—— (element in compression)
3A
MAHIDOL d. f . MAHIDOL

Bars in a truss have various orientations

member in
compression

member in
tension

UNIVERSITY

e o

Connecting pin

UNIVERSITY

At node 1: .
il
ya
d, \
ly = 0
- £
e flx ’
f,

Atnode 2:

=
d,,




MAHIDOL
UNIVERSITY

In the global coordinate system, the vector of nodal
displacements and loads

MAHIDOL

The key is to look at the local coordinates UNIVERSITY

dlx flx dlx }
d — dly f — fly d2x
N d2x ’ B f2x
d2y \f2y
Our objective is to obtain a relation of the form Rewrite as x| [k 0 -k 0]]dy
f=kd fy|_[0 0 0 0fd, | |f=kd
4x] 4x4 4x1 2% = k 0 k 0 d2x
e 0 0 0 0]J|g
Where k is the 4x4 element stiffness matrix in global coordinate & Y
system
[a[<]>]] [al<>]>]
MAHIDOL MAHIDOL
UNIVERSITY NOTES _ _ _ UNIVERSITY
5. In local coordinates we have |f =k d
NOTES 4x1 4x4 4x1
) . ' N But or goal is to obtain the following relationship
1. Assume that there is no stiffness in the local’y direction. F -k d
M

2. If you consider the displacement at a point along the local x
direction as a vector, then the components of that vector along the
global x and y directions are the global x and y displacements.

3. The expanded stiffness matrix in the local coordinates is
symmetric and singular.

Hence, need a relationship between é and d

and between fand

d ) d,

g

dl

y

Need to understand
how the components
of a vector change
with coordinate
transformation
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Transformation of a vector in two dimensions

A

vyl o N\, cos0 5 Angle 0 is N

9 N\ . measured positive
o\’ in the counter

VA v, ’\V< ity 0 clockwise direction

from the +x axis)
f / .

NV sme X
y
V cos 0™

<>

The vector v has components (vy, Vy) in the global coordinate system
and (V ) in the local coordinate system. From geometry

A

vV, =V, cos0+v, sinb

v, =-v,sin@+v, cos 0

MAHIDOL
UNIVERSITY

In matrix form

v, cos® sin0 ||v,
{Oy} B {—sin 0 cos 6}{%}
Or Direction cosines
v, o myv, | =cos @
{Qy} B {_m I :Hvy} where m=sin&

Transformation matrix for a single vector in 2D

I*z[l rln} relates |[¥=T v

e G {V} Al e {V} are components of the same
W ~ |VyJ vector in local and global

coordinates, respectively.

. 0 2 MAHIDOL
Relationship between d and d for the truss element Q UNIVERSITY

Atnode 1 d,, { } /
1 [~ a,

d,, ‘
d
At node 2 {&2 } {dz } /‘ ’
=T Y d
dZy dzy AM ’
Putting these together |§=Td
del T1 m o0 o0 7J(d,.
o[ ]o o 1 mldf =IL0TI
A 0 0O —-m | dz
d2y L - _\ﬁ,y_J
— T d iﬁ

MAHI[!O[T
Relationship between f and f for the truss element |
At node 1 {flx} /‘
5 tﬂ
A
At node 2 {f:zx} . { /‘
=T
N A@
Putting these together |f =Tf
S T1 m oo o],
il [-m 10 o ||f, {I Q}
3.7 b= . *
1o o 1 mlf w01
f‘zy i 0 0O —m | ] fzy
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Important property of the transformation matrix T |

The transformation matrix is orthogonal, i.e. its inverse is its
transpose

Use the property that 12+m?=1

Putting all the pieces together

MAHIDOL
UNIVERSITY

%f_/
The desired relationshipis |f =k d .
4x1 4x4 4x1
Where | k = IT E T | isthe elemeqt stiffness matrix in the
4x4  4x4 4x4 4x4| global coordinate system
[al<>]p] [al<]>]P]
bt Computation of the direction cosines L
'l m 0 0 | 'k 0 -k 0
X. — X L 2 (XZ’Y2)
T Il R ;|00 00 | =cos =211
— 10 0 I m “ |-k 0 k 0 N 0
0 0 -m | mesing=" 1
- - - U O— (X1,¥1)
_ _ : 5
|2 Im =12 —Im What happens if I reverse the node numbers?
A 2 -m? _ 1
k=TT :% Im m Im —-m e cosg= 7% _ | L (X1,¥1)
- T 7 L|-IP -Im I Im
—Im _m2 Im m2 m':siné?:LLyz:—m 0
L - 2
(X2,¥2)
Question: Does the stiffness matrix change?
[ [<[> ] [ [<]>>]




Example Bar element for stiffness matrix evaluation

MAHIDOL
UNIVERSITY

Computation of element strains

MAHIDOL
UNIVERSITY

© 2002 Brooks/Cole Publishing / Thomson Learning™ E = 30 X 106 pS| @2002“'[3 e
1 L 4 Recall that the element strain is
A=2In 5
£ L=60 in C}IX
_30° d, —d, 1 d
0=30 |=cos30=£ g=—2_—1x =—[—1 0 1 0]<A1y
9 L L d,
30° | ; X
= ) _ m=sin30 =1 < dyy
308 3 2 .
4 4 4 4 =—[-1 0 1 0]d
( - N 3o L
_Box10°N2)] 4 4 T4 T4 | 1
S 60 | 3 N3 3 4B [in :f[_l 0 1 0]Td
4 4 4 4
B 1Bl
L 4 4 4 4
[a[<>p] [aT<>]p]
MAHIDOL MAHIDOL
UNIVERSITY o 8 UNIVERSITY
|l m 0 0 Computation of element stresses stress and tension
1 -m | 0 O _
e=—[-1 0 1 0] d Recall that the element stress is
L 0 I m
0 0 -m |
E (~ ~ E
1 = = — — = —|— —_
:E[_I “m o m](_l o =Ee L<2X 1x) L[ | m | m](_l
d, Recall that the element tension is
1 d
- E[— | -m I m dly
2x
d T=EA8=%[—| -m | m]d
2y L
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Steps in SOlVIﬂg a problem UNIVERSITY

Step 1: Write down the node-element connectivity table
linking local and global nodes; also form the table of
direction cosines (I, m)

Step 2: Write down the stiffness matrix of each element in
global coordinate system with global numbering

Step 3: Assemble the element stiffness matrices to form the
global stiffness matrix for the entire structure using the
node element connectivity table

Step 4: Incorporate appropriate boundary conditions
Step 5: Solve resulting set of reduced equations for the unknown

displacements
Step 6: Compute the unknown nodal forces B>

Node element connectivity table

ELEMENT

Node 1

Node 2

1

1

2

2

2

3

El 1 60

El3

60

El12

MAHIDOL
UNIVERSITY

2 (X29YZ)

MAHIDOL
UNIVERSITY

Stiffness matrix of element 1 Stiffness matrix of element 2
_db‘% dly? dZX§ dyy _dz){ d2y§ d3x§ ds,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FEC I O (PR O O

Stiffness matrix of element 3

o There are 4 degrees of
_d3x§ d3y§ d1x§ d;,

freedom (dof) per
S element (2 per node)

I 0 N T [

diy [e[<[>T>]

Global stiffness matrix

How do you incorporate boundary conditions?

—d1x§ d1y§ d2x§

MAHIDOL
UNIVERSITY




MAHIDOL

UNIVERSITY MadlIDUL
Example 2 - Table of nodal coordinates Lt
The length of bars 12 and 23 are equal (L) Node % y
E: Young’s modulus
A: Cross sectional area of each bar 1 0 0
Solve for 2 Lcos45 | Lsin45
(1) dyand d,,
(2) Stresses in each bar 3 0 2Lsin45
Solution
. Table of direction cosines
Step 1: Node element connectivity table
ELEMENT | Length IRt T O Pt
ELEMENT |Node 1 |Node 2 length length
1 1 7 1 cos45 sin45
2 2 3 2 -cos45 sin45
[a[<]>]] [al<>]>]
. . . MAHIDOL MAHIDOL
Step 2: Stiffness matrix of each element in global UNIVERSITY Stiffness matrix of element 2 UNIVERSITY
coordinates with global numbering
d i d s id i d
Stiffness matrix of element 1 e e e
P om - m ] R W - S
o _EA|Im m*  —Im -m K = BA|-1i 1+ 1¢ -1 14,
= L |-I*> -Im Im - 2L -1 1/ 1§ =1 | ds,
-Im -m* Im m’ 18 -1 -1 1 | dy
dlx dly d2 d2y
(1 i1 -1 -1 4,
_EAIL 1 - -1 d,
2L | -1 -1 1 @y
Y EEIDC




. . MAHIDOL L. MAHIDOL
Step 3: Assemble the global stiffness matrix UNIVERSITY Step 4: Incorporate boundary conditions UNIVERSITY
; 0
L = =l . 0
[ 0 O q
d 2 X
-1 -1 o -1 1 4=
K:% d2y
2L (E1L -] e 0
0 0 |-1 1 -1 0
(0 o1 -1 -1 1]
Hence reduced set of equations to solve for unknown
The final set of equations is KQ = E displacements at node 2
EA[2 O0]]|d, | [P
2L |0 2||d, | [P
[al<>]p] [al<]>]P]
. MAHIDOL MAHIDOL
Step 5: Solve for unknown displacements UNIVERSITY UNIVERSITY
P L For element #2: d,,
doe| _ ) EA 0<2>:E[L 11 L} day 0
d,, P,L Llv2 V2 V2 2]/d 0
EA ;
Step 6: Obtain stresses in the elements 0 2 (d, —d, )= R-F
V) T W5
For element #1: 0
o E{ 1 11 1 } ;
o' '=—|—F= —F— 7= =
LL V2 V2 2 2]|d,
2y
Ig) P+P
=——(d,, +d, ) =———F
\/EL( 2X 2y) A\/E
(s[> [s]<>]>]
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Multi-point constraints

© 2002 Brooks/Cole Publishing / Thomson Learning™

Problem 3: For the plane truss

Step 1: Node element connectivity table

Solution

MAHIDOL

P=1000 kN,
L=length of elements 1 and 2 = Im
E=210 GPa

A = 6%x10“*m? for elements 1 and 2
= 62 x104m2 for element 3

Determine the unknown displacements
and reaction forces.

ELEMENT |Node 1 | Node 2
Figure 3-19 Plane truss with inclined boundary 1 1 2
conditions at node 3 (see problem worked out in class) 9 9 3
EIEISE] 3 T BRI
MAHIDOL ) . ] MAHIDOL
Table of nodal coordinates UNIVERSITY Step 2: Stiffness matrix of each element in global UNIVERSITY
coordinates with global numbering
Node X y
. . Stiffness matrix of element 1
P Im -1 —m ]
2 0 = (o _EA Im m —Im -m’
3 L L - L —|2 —Im |2 Im
-Im -m* Im m*
Table of direction cosines
ELEMENT |[Length | _x-%] _y,-y iy oy by
length length 1000 0 | d,
! L 0 ! _(210x10)(6x10%)|0 (1 0 1 | 4
’ - : 0 1 0.0 0 0 | . dy
’ L2 fe | o | 0 =100 1 ] oy




MAHIDOL

Stiffness matrix of element 2 do: d d d Step 3: Assemble the gIObaI stiffness matrix UNIVERSITY
R 2x3 2y 3x i 3y_
100 -1:0 d, (05 05 0 0 -05 —0.5]
Lo _ (210x10°)(6x10")[ 0 0 10 0 | dzy """"" 05 15 0 -1 -05 -05
- 1 -1 0i1:0 ds, K=1260x10° 0 0 L 0 L0 N/m
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff - 0 -1 0 1 0 0
O O f O ' O d3
- ’ ST Y -0.5 =05 -1 0 15 0.5
Stiffness matrix of element 3 | 05 =05 0 0 05 05
dlx dly d3x d3y - . . -
[o5 05 -05 -057 9
L 210x10°)(652 x10%)| 0.5 1 0.5 =05 (0.5 d, The final set of equationsis KA =F  Eq)
= Ak cooscosoosadbossoescamaliscosasescdboassassoses possos Ycoomooos
N 2 0505705 105 | g
1205705705705 g
i 5 5 3y
[a[<>p] [aT<>]p]
. = MAHIDOL = MAHIDOL
Step 4: Incorporate boundary conditions | y UNIVERSITY y UNIVERSITY

|D_
Il
>

Also,

d3y :O in the local coordinate system of element 3

How do I convert this to a boundary condition in the global (x,y)

coordinates?

1x

oL

ly

T

2y

oL

3x

T

3y

Also,

s =0

in the local coordinate system of element 3

How do I convert this to a boundary condition in the global (x,y)

coordinates?




Using coordinate transformations ERBIEE Similarly for the forces at node 3 e
ngx_{l m} d,, I—m—l ng_[l m} F.. I—m—l
dsy -m 1 ][d;, V2 = -m n|]|F,, N5
1 1 1 1 1 1
~ —_ — —(d,, +d —_ — —(F,, + F
o 7z (G 4, LfEel | e 77 (Pt Fos
dsy L1 gy 1_(d —d Py 1 LRy 1_(|: S =
V2o 2 J2 N > > NSNS
d3y —()| (Multi-point constraint) ﬁx —=()
~ 1 1
= d3y:ﬁ(d3y_d3x =0 = E3x=f(F3y+F3x =0
= d,, -d,, =0 E40 = F,, +F,, =0  EaQ
[al<>]p] [al<]>]P]
MAHIDOL MAHIDOL
Therefore we need to solve the following equations il Write these equations out explicitly ol
simultaneousl
’ 1260x10°(d,, —d,, )=P Eq(4)
Kd=F Eq(1) 1260x10°(—d,, +1.5d,, + 0.5d,,) = F,, Eq(5)
d3y — d3x =0 Eq(2) 1260x10°(0.5d,, +0.5d,,) = F;, Eq(6)
F,, + F,, =0 Eq(3)
Add Eq (5) and (6)
Incorporate boundary conditions and reduce Eq(1) to 1960 5 107 - d. )= F - i )
X -0, F 3x T 3y ) = 3x T 3y = Jusing &£q
1 -1 0 d,, P
1260x10°| -1 1.5 0.5({d,, +=1F,, = 1260x10°(-d,, +3d;,) = 0 using Eq(2)
0 05 05 d3y F3y f— d2>( =] 3d3>( Eq(7)
s _
Plug this into Eq(4) = IACURID7 (G0, = Eoy )= P
= 2520x10°d,, =10°
[ [<[> ] [ [<]>>]




MAHIDOL

oL MAHIDOL
— d,, =0.003968m e Physical significance of the stiffness matrix PrivHEeT
d,,=3d,,=0.0119m
' In general, we will have a stiffness matrix of the form
Compute the reaction forces
F i - -0.5]
le 3 32 g z k, k, ki
b s ' ' 2 K=k, ky k23
F,, 1 =1260x10"| 0 0 0 d,,
ky ki ks
Fi. -1 1.5 0.5 3y
Fi, 0 0.5 0.5 And the finite element force-displacement relation
—-500 ki ko kyld F
—-500 Ky ky  ky idy p=1F,
= 0 kN k31 ksz k33 d3 F,
-500
500 [a[<>p] [aT<>]p]
MAHIDOL MAHIDOL

UNIVERSITY

Physical significance of the stiffness matrix

The first equation is

klldl + k12d2 + k13d3 =K

Force equilibrium
equation at node 1

Columns of the global stiffness matrix

What if d,=1, d,=0, d;=0 ?
While d.o.f 2 and 3 are held fixed

k,; | Force along d.0.f 1 due to unit displacement at d.o.f 1

—_

Force along d.0.f 2 due to unit displacement at d.o.f 1
Force along d.o.f 3 due to unit displacement at d.o.f 1

oot
I

k,
k

3

—_

Similarly we obtain the physical significance of the other
entries of the global stiffness matrix [E[<>]>]

UNIVERSITY

In general

k .. =Force at d.o.f ‘i’ due to unit displacement at d.o.f j’
IJ keeping all the other d.o.fs fixed




MAHIDOL
Exam ple UNIVERSITY

The length of bars 12 and 23 are equal (L)
E: Young’s modulus

A: Cross sectional area of each bar

Solve for d,, and d,, using the “physical
interpretation’ approach

. ) X Solution

Notice that the final set of equations will be of the form

kll k12 d2X Pl

k21 k22 d 2y PZ
Where Ky;, Ky, Ky, and k,, will be determined using the
“physical interpretation” approach EERD

MAHIDOL

K d,, =1
i i 11 — 0 UNIVERSITY
To obtain the first column1 apply 2%
y | A7lestiy=o K, . d2y ~0
F2y:k21

5 leosds)=——L 1!

Force equilibrium Force-deformation relations
EA
D F, =k, T, cos(45)—T, cos(45) =0 T :Ta‘
D °F, =k, —T, sin(45)+T, sin(45) =0 EA
Tz :Té‘z

Combining force equilibrium and force-deformation relations

(T+T,) EA MAHIDOL
k., = 5 +0. UNIVERSITY
= F A

— (Tl _Tz) — EA

k21 _T_E(é‘l _52)

Now use the geometric (compatibility) conditions (see figure)
1

8 =1.cos(45) =

-
52=.1.cos(4$—%
Finally
EA EA 2 EA
K 0,+9, (=)=——
=0+ e = (=T
A 5-6)=0

k=
L IS

— MAHIDOL
To obtain_the second column 12 appldeX = 0 @ v

Force equilibrium Force-deformation relations
EA

ZFX =k, —T, cos(45)—T, cos(45) =0 T :Td

D F, =k, —T,sin(45)+T, sin(45) =0 - _EA
2=
L

2




Combining force equilibrium and force-deformation relations

T+T EA MAHIDOL
k12 =( 1\/5 2) =E(é; —|—§2) UNIVERSITY
_ (Tl _Tz) _ EA

kzz _T_E(é} _52)

Now use the geometric (compatibility) conditions (see figure)

3D Truss (space truss)

© 2002 Brooks/Cole Publishing / Thomson Learning™

YA

\'.

MAHIDOL
UNIVERSITY

1
5 =l.oos45) ==
% =—1.cos(45) This negative is due to compression _
Finally
EA
=——(6,+0,)=0
k12 \/EL( 1 2)
EA EA 2.  EA
szﬁ(@ —@)ZE(EFT
MAH[E‘OO['J MAHID‘O[',
In local coordinate system | — d e The transformation matrix for a single vector in 3D URIVERSITY
2 a é:I*(_l
L k 0 0 -k 0 0] &
Aly 0O 00 0 0 0 aly - I|1 m,_ n l;, m; and n, are the direction cosines of £
£ 0 00 0 0 0lld =Tz M | —cos 0,
Alz — - 1z |3 m3 n3 R Hy
f2X R k 00 dzx 2002 Brooks C. . n, =cos 6,
f 0 00 0 0 0y4g
2y 2y f
A 0O 0 0 O 0 O0f]~ .
f2Z ) - dZZ \y |
; 0, =
[e[<[>[p] ’ BRI




Transformation matrix T relating the local and global
displacement and load vectors of the truss element

d=Td

A

f=Tf

Element stiffness matrix in global coordinates

T
6x6

oh

T 0
0 T

6x6 6x

6

=)
(=)}
=)}

k=T kT

(=)}

MAHIDOL
UNIVERSITY

|
Il

__|1n1

2

1 |1m1 |1n1
m, ml2 mn,

|1n1 mn, nl2
I12 _|1m1 _|1n1
_Ilml _m12 —mn,
—-mn - n12

l,°
_Ilml
|1n1
2
|1m1

n,

o |1m1

— m12
mn,
Ilml
m,’

m;n,

MAHIDOL
UNIVERSITY

_|1n1
—mn,
_n12
Ilnl
mn,

n’

Notice that the direction cosines of only the local X axis enter the

k matrix
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Mahidol University

Faculty of Engineering

Wisdom of the Land Wisdom

Bar/Truss

Summary:

u=§ 2"% |y, 4 < Solvefora anda, *The principles of simple beam theory
g G(x=0)=d, =3,

» Direct Stiffness — beam

- _X . :

N, =1 N =T di=L)=d, —al+a, *Stiffness matrix of a beam element
d,, -d, di_dy,-d, ; T=Ac * Procedures for handling distributed loading and

gF L o, =Es, .
concentrated nodal loading

[7 :E{ 1 —1}ld,xl
9/ £Jo L1 ld] « Example Problems

[K]=3 & F{Fl=3 7
T=ks F=Kd ; T-=Ac,

Mahidol University

Mahidol University

Faculty of Engineering Faculty of Engineering

Wisdom of the Land

Wisdom of the Land

Beams: Engineering structures that are long, slender and
generally subjected to transverse loading that produces

significant bending effects as opposed to twisting or axial
effects

Development of
Beam Equations

Ideal beams are straight and have constant cross-sectional ar

-6

S EEED
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The differential equation governing simple linear-elastic beam behavior

can be derived as follows. Consider the beam shown below.

= (=)

v |i£V+a"i/

wif)

(a) Beam under load w(z) (b) Differential beam element

Write the equations of equilibrium for the differential element:

Mahidol University

Faculty of Engine

mng

Wisdom of the Land

S Mgy =0 = (M +dM)— M —Vd5 + w(i)d;?f dx "|
SF, =0=V —(V+dV)-w(X)dx

From force and moment equilibrium of a differential beam element, we get

2M e =0 = Vdi+dM =0 or V= O;M
s :
>F =0 = wdg-dV =0 or w= d.'{ - W dﬂ|' dﬂ:ﬁ' -:
dx dx\ dx )

The curvature k of the beam is related to the moment by:

where pis the radius of the deflected curve, V is the transverse displacement

function in the y direction, E is the modulus of elasticity, and /is the principle
moment of inertia about ¥ direction

Mahidol University

Faculty of Engineering

Wisdom of the Land

w(f)
l—-_'_-
P
v(F)
—1
—t——
6(£)

(a) Portion of deflected curve of beam

o) Radius of deflected curve at ()
The curvature for small slopes ¢ = dv/dx is given as:
d*v
dx?
Therefore:

k

dv_ M g9V
dx’ El

Mahidol University
Faculty of Engineering

Wisdom of the Land

Substituting the moment expression into the moment-load equations gives:

2 2%
d (2]
dx’ |\ dx?)

= —w(X)

For constant values of El, the above equation reduces to:

(d*v) -
EI: W J = —W{X}

AY
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Stiffness Matrix
A Beam Element

STEP 1: Select Element Type
Consider a linear-elastic beam element shown below

¥
&y iy '/l. i b ,5 iy, b
L
J?\_r' aI_k fl” JZ,\

L beam length

X axial local coordinate
m, the bending moments

transverse local coordinate
f, The local nodal forces

y
d, local transverse nodal

¢,— the rotations

Mahidol University
Faculty of Engineering

Wisdom of the Land

Mahidol University
Faculty of Enginee

Wisdom of the

At all nodes, the following sign conventions are used:
1. Moments are positive in the counterclockwise direction.

2. Rotations are positive in the counterclockwise direction.
3. Forces are positive in the positive ¥ direction.
4

Displacements are positive in the positive ¥ direction.

.
<)

Neglect all axial effects!
g [&[<]>1pi]

STEP 2: Select a displacement function

Assume the transverse displacement function v is

v=ax’'+a, X’ +a,x+a,
The number of coefficients in the displacement function, a;, is equal to the total
number of degrees of freedom associated with the element (displacement and

rotation at each node). The boundary conditions are:




Faculty of Engine

Wisdom o

Applying the boundary conditions
o | 2~ - 1~ 3 3(~ = Tinr 2 Vle2 24 5
L?(O):C? —a V:‘:L_a( v Qy) L_2(¢1¢2):|X3 [F( 1ydzv)E(2¢1+¢2):|X2+¢1x+d-w
1y 4
v(L)= C?Qy =al*+al’+al+a, In matrix form the above equations are: VvV = [N]%A}
dv(0) - d,
gx  h% (1| é
wherel ()1 ¢ V= IV, N, N ]
av(L) - ” :
d(x ) ¢, =3al’ +2al +a, &, Shape Functions for a Beam Element
Solving these equations for the unknown coefficient gives and N, = %(2;(3 —3R ¢ ;_S) N, = L_L(;(a;_ — 28717 + RL°)
o | 245 A 10 =\l» 3 (~ - Tins 2 \ls2 2o =
v=|-—>\d, —d, |+ —¢, )X +|——\d,, —d,, |-—2¢ +¢,)|X* +px+d
J:LS ( 1y 25’) LZ (¢1 ¢2):| l: LZ ( 1y 2<V) L( ¢W ¢2):| ¢W 1y 'r\‘[3 _ %(_223 +3)’?2L) N4 _ Lia()’e?:[_ _ 22[_2)

Mahidol University Mahidol University

Faculty of Engineer Faculty of Engineer

Wisdom of the Land Wisdom of the Land

Shape Functions for a Beam Element

1.000 N, 1.000 Ny dn
e 0500 The stress-displacement relationship is: g (%)= —
0.600 0600 dx
o400 0400 where U is the axial displacement function.
0.200 0.200 = o =
0500 oo e — We can relate the axial displacement to the transverse displacement
02007° P ] by considering the beam element shown below:
1.000 Ny 1000 N Fov D
0.800 0800
UL 0,600 .
|
0400 0.400 o
Lo 0200 ,)—L—-—: oo - ——h-c X, u
0.000 0.000
0200 1" Y e S / B
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C -3
A X
\ X8 T
(= _yg_"f One of the basic assumptions in simple beam theory is that
X

planes remain planar after deformation, therefore:
- (d*

EXY)=VY —=

(%) y[ dxzj

Moments and shears are related to the transverse displacement as:

m(%)= EI[ dz""'J V(x)= E{da‘"’]

dx’ dx’

STEP 4. Derive the element stiffness matrix and equations

Using beam theory sign convention for shear force and bending moment,
one obtain the following equations:

f,=V=El 9v(O0) _ El {124, +6Lg, ~12d,, +6LF,)

ax L
£, =—V=El d;i(aL) - ?(7 12d, —6L§, +12d,, —6L4,)
fh, = = El d;‘;(zo) - % (6Ld,, +4L24, —6Ld,, +21°4,)
M, =M= El% - %(GLC?W + 214, —6Ld,, + 4L, )

Mahidol University

In the matrix form the above equations are:

f, 12 6L 12 6L (d,
Lﬁ CEl| 6L 4r 6L 2L [

il rl-12 -eL 12 -6Ll||d
lrﬁ 6L 20 6L 4L l

Where the stiffness matrix is:

12 6L -12 6L
CEI| 6L 4l* 6L 20
T f|-12 -6L 12 -BL

6L 20* 6L 4l

STEP 5: Assemble the element equations and
Introduce boundary conditions

This will be illustrated in the following example!
Consider a beam modeled by two beam elements, shown below:

y f
» El constant 1000 Ib-ft
A =N
?——-—- x @ 2 ) @ 3
Z L e L /]
N
1000 1b




The beam element stiffness matrices are:

dyy #1 dyy )

12 6L -12 6L
Ell 6L 4. -6L 2I°

L°|-12 -6L 12 -6L
6L 21> -6L 4l°

m _

day 45 d3y 43

12 6L -12 6L
o EIl 6L 4 6L 21
T -12 -eL 12 -BL
6L 202 —6L 4l°

Mahidol University
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In this example, the local coordinates coincide with the global coordinates of the
whole beam (therefore there is no transformation required for this problem). The
total stiffness matrix can be assembled as:

F, (12 6L ~12 6L { 0 0 |(d,

M, 6L 4 6L 22 1.0 0. |¢

F,| El|-12 -6L 12412 -6L+6L! -12 6L ||d,,

M,[ L[| 6L 2 i-6L+6L 4L +4L'} -6L 2L |4,

F, 0 0 | -12 6L 12 -6L|d,

M, 0 0 6L 22 —6L 4L ||g,
[al<I>p]

Mahidol University

Faculty of Engi

STEP 6: Introduce boundary conditions

The boundary conditions are: 1600 I

- @ CHIE
d, =¢=d, =0 L 2y ) D]
k@\w

1000 b

By applying the boundary conditions the beam equations reduce to:

[ 1000 /b 24 0 6L [dw
1000 bt} =Ell 0 8z 212 )] g,
l 0 6L 22 4L lgba

Solving the above equations gives:

87513 37512

Ib
12E]

.

[ ” 125(2 — 6251

L T

Lo

12512 _125[
S —————— T |
El
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Example 1 - Beam Problem . L . .
] ) ] The local coordinates coincide with the global coordinates of the whole beam
Consider the beam shown below. Assume that El is constant and the length is

oL (therefore there is no transformation required for this problem). The total stiffness
matrix can be assembled as:

e i L . (12 6L -12 6Li 0 0 ]
] 2SN Y 6L 412 —6L 2020 0 0
«_El|-12 6L 1240 [ -12 6L
The beam element stiffness matrices are: T 7| eL 2L2 0 8[_23 _Bl 2L2
dy 4 Ay 4 dyy  #y day 4y 0 o it12 Zel 12 -eL
12 6L -12 6L [12 6L -12 6L 0 0 ieL 2% —eL 4L?]
w _Ell 6L 4 6L 2° K@ _E 6L 4 -BL 217
L*|-12 -6L 12 —-6L L’1-12 -sL 12 -6L
6L 217 6L 47 | 6L 20 -6L 4L°

Mahidol University 7 > Mahidol University
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i i By applying the boundary conditions the beam equations reduce to:
The governing beam equations are: y applying ry q

. ~ - ] [-P) 12 6L 6.‘_—,['0“_‘_‘
F, 12 6L —-12 6L 0O 0 |(d, lo! ? 6L 412 20! g, |
r - 1l
M, 6L 42 —eL 202 0 0 | ¢ o) lou 2 i
F -12 -6L 24 0 -12 6L ||d
y= Ej 2 2 2 h Solving the above equations gives:
M,| 1*| 6L 2L 0 8L -6L 2L°||% g
F,, 0 0 -12 -6L 12 -6L||d,, (d, | )
2 2 |, |_PL
M, | 0 0 6L 20 -BL 4L° |4, {4 =251 3
o=
The boundary conditions are: The positive sighs fO‘I’ the rotations indicate that both are in the counterclockwise
d, =d, =¢, =0 direction. The negative sign on the displacement indicates a deformation in the
= =g, =

y direction.
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(F 12 6L
M, 6L 42
F,|_P|-12 -s6L
M, [~ aL| 6L 212

_f,}w 12 6L
ji| Pl 6L 4
£ [ aL|-12 -6L
uﬁg‘ 6L 2L

12 6. 0 0 ][y
6L 202 0 o0 | 3
24 0 -12 6L |0
0 82 -eL 202 1]
12 6L 12 6L|| 0
6L 202 —eL 4?0

12 6L
6L 20
12 -6L
-6L 41

Bk
o) 15

The local nodal forces for element 2:

(£, 12 6L -12 6L 0‘ (1.5P
m,|_P|6L 4 -eL 2o ||1] j PL ‘
j;‘ 4L|-12 -6L 12 -6L -0‘ ‘—1.513‘
|, 6L 21 -6L 4|0 [0.5PL

The free-body diagrams for the each element are shown below.

ar P
@ %”L : ©) TJ
I s

Combining the elements gives the forces and moments for the original beam.

3
| 4
. 2 3 PL
I | 2
L L

I |
P

ralua
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Therefore, the shear force and bending moment diagrams are:

3
v 2f
2
1 3
L L |

~P

M

PL
L
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Example 2 - Beam Problem

Consider the beam shown below. Assume E = 30 x 10° psi and /= 500 in.* are
constant throughout the beam. Use four elements of equal length to model the
beam.

Elastic

curve 10,000 1b 10,000 1b
AN ; 1 1
ﬁ‘ -‘l"‘-_‘_-____,_-'"” ) .‘-\"\.‘ ‘__.--""‘ o

f—10 ft 10 ft ! 10 fi 10 ft {
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The beam element stiffness matrices are:

d. b d

Mahidol University
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(i+ty i

12

6L

-12

6L

n _EIl 6L 4* -eL 2°
L'l-12 -6L 12 -6L
6L 20 6L 4L

Using the direct stiffness method, the four beam element stiffness matrices are

superimposed to produce the global stiffness matrix. As shown on the next page.

The boundary conditions for this problem are:

dlr & d:w d:r,r ¢ =0

Element 2
Element 1
F, I,d,u & w2y ¢ d, (A dyy [N dsy $s .
d V12 6L —12 6L 0 0 0 0 0 0 4y,
M, L6l 4L —6L 2wz 0 0 0 0 0 0t ¢
:; 5—12 6L 2412 —6L+6L) 12 6L | 0 0 o 0 ||dy
| pg|leh 27 teL+eL 4?44’} 6L wr | 0 o o 0fle
ai=l 0 0 -2 6L [12+12 —6L+6L | ~I2 6L 1 0 0 (]d,|
Ll B I T R T 2 6L+ 6L 4LPi4L | 6L a1 o o |]4
Es, O o | -1 —-6L || 12412 —6L+6LI —12 6L |||d,,
M, 6 0 0 o | e 2P 6L+ 6L AL+ 'IL‘J —6L 27| ¢,
L::; 0o 0 0 0 /""u [} =12 LT 12 6L | | dy,
& 0 0 0 0 0 0 6L 2L —6L 4L | ¢y |
Element 3 Element 4

Mahidol University
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After applying the boundary conditions the global beam equations reduce to:

24 0 6. 0 0]d,] [-10000/b
0 82 2 0 0|4 0

Ej 6L 207 8% -6L 20| g4 t={ O
0 0 -6L 24 0 ||d,| [-100001b
0 0 2 0 84| 0

Substituting L = 120 in., E = 30 x 10° psi, and / = 500 in.* into the above equa-
tions and solving for the unknowns gives:

d, =d, =-0.048in #=¢,=¢.=0

The global forces and moments can be determined as:

F, =5kips M, =25 kipsft

The global forces and moments can be determined as:

F, =5 kips M, = 25 kipsft

F,, =10kips M, =0
F,, =10kips M, =0
F,, =10kips M, =0
F,, =5kips M, =-25 kips-ft

The local nodal forces for element 1:

(7] 12 6L -12 6L
fm,| EIl 6L 4L -6L 2L ||
i [T |
\rh, ) 6L 200 -6L 4|

0 [ 5 kips
0 | |25kt

Cl-12 -6L 12 -6L "—0.048" "—Skfps{

0 | 25 kft |




The local nodal forces for element 2:

f,, 12 6L -12 6L[[-0.048) [-5kips
m,| EI 6L 4 -6L 2L*|] 0 | |-25kft
f,| L|-12 -6L 12 -6L|| 0 | | 5kips
1, 6L 20> -6L 4| 0O 25 kft
The local nodal forces for element 3:
£, 12 6L -12 6L|[ 0 | [5kips
m,| EI| 6L 4* -6L 2*|| 0 | |25kft
f,| C|-12 —6L 12 —6L||-0.048] |-5kips
1, 6L 2 -6L 4] O 25 kit

Mahidol University

Faculty of Engine
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The local nodal forces for element 4:

de 12 6L -12  6L](-0.048] (-5 kips
m,| EIl 6L 4 -6L 20| 0 | |-25kft
lf&y “rl-12 -eL 12 -6L|| 0 [ | 5kips
m, 6L 2 —6L 4%|| o0 — 25 kft

Note: Due to symmetry about the vertical plane at node 3, we could have worked
just half the beam, as shown below.

10,000 Ib

Mahidol University
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Example 3 - Beam Problem

Consider the beam shown below. Assume E =210 GPa and I = 2 x 10 m*
are constant throughout the beam and the spring constant k = 200 kN/m. Use
two beam elements of equal length and one spring element to model the struc-
ture.

P = 50 kN

| @ @ 3y

ENNANNNNNY

- Im

SSS
-

-y

The beam element stiffness matrices are:

diy 4 9y ¥ 2y f2 Ay 4
12 6L -12 6L 12 6L -12 6L
o_El| 6L 4 6L 2| . El| 6L 4 6L 2U
S Lf]-12 -8L 12 -BL S Lf|-12 -6L 12 —6L
6L 2L* -6L 4l° 6L 2L* -eL 4L
The spring element stiffness matrix is:
dB.V diy day ¢3 ddy
k 0 —k
km{ “ _k} = k=0 0 0
—k k
—k 0 k | SIS
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Using the direct stiffness method and superposition gives the global beam equa

tions. After applying the boundary conditions the global beam equations reduce to:
F, (12 6L -12 6L i O o o0][d, [le [82 -eL 212](¢,) "o]l
M, 6L 41> —6L 21 O 0 0 | ¢ 1F,, -:E_f'—GL 12+k' —-6L|id,, ;=+-P}
| ':________________'i : | : |
Rl |12 6Li24 012 eLio0|d, " '.M:\J |2 -6L 4L || 4, | ‘ 0
M, = 5| 8L 2 10 8 -6L 201 0 |4, k=g
F,, "0“'"“5"";';'{5“;‘&;‘[ 12+k'76L§ g d., Solving the above equations gives:
M, 0 0 (6L 2 :-6L 41 0| 4 el 4
Fuy Lo 0 0 0 -k 0 KJd, (6,1 | El 1217k
) d"‘ | 7P 1) ok
The boundary conditions for this problem are: ' ;. J El {12 7K J El
L P oPLE( 1 )
d,=#=d,, =d,, =0 El .12r?k';|

Mahidol University Mahidol University
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Substituting L=3 m, E=210 GPa, I=2 x 10" m* and k = 200 kN/m in the
above equations gives: A free-body diagram, including forces and moments acting on the beam is shown

d, =-0.0174 m below.

¢, = —0.00249 rad 69.9 kN
¢, = —0.00747 rad

50 kN

Substituting the solution back into the global equations gives:

F,] [ -69.9kN 69.7 kN - m 1164 kN

M, |-69.7kN-m

F,, 116.4 kN

M, b= 0

F,, —50 kN

M, 0

F, 3.5 kN [BT<>]>]
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Distributed Loadings

Beam members can support distributed loading as well as concentrated nodal
loading. Therefore, we must be able to account for distributed loading. Consider
the fixed-fixed beam subjected to a uniformly distributed loading w shown the fig-
ure below. The reactions, determined from structural analysis theory, are called
fixed-end reactions. In general, fixed-end reactions are those reactions at the
ends of an element if the ends of the element are assumed to be fixed (dis-
placements and rotations are zero). Therefore, guided by the results from struc-
tural analysis for the case of a uniformly distributed load, we replace the load by
concentrated nodal forces and moments tending to have the same effect on the
beam as the actual distributed load.

w(lb/ft)

7 L,
/ /
,4 y y
? [
/ 7

L 7
7 2

 — WL2
TR =~
- L |
wiL wl
2 Z

The figure below illustrates the idea of equivalent nodal loads for a general
beam. We can replace the effects of a uniform load by a set of nodal forces and
moments.

Mahidol University
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Work Equivalence Method

This method is based on the concept that the work done by the distributed
load is equal to the work done by the discrete nodal loads. The work done by the
distributed load is:

Wiosnoea = [W(R)V(X) d%

where V(X) is the transverse displacement. The work done by the discrete nodal
forces is:

nodes

W, =mg + g, + f’on‘ + fg_,r_anf.‘,_
The nodal forces can be determined by setting Wiisiinuted = Whades fOr arbitrary
displacements and rotations.

W, =W

distripiRed noves
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Example 4 - Load Replacement

Consider the beam, shown below, and determine the equivalent nodal forces
for the given distributed load.

s li‘ly f2y
r_y S T\
1 2 1= 21"
|L L | (LI LY

t | ¢ ]
Using the work equivalence method or:

Wd/sm‘buled - Wnudes
we get:
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Evaluating the left-hand-side of the above expression using w(x) = -wand v(x)
equal to:

m;:@{a_?_&2,)%{_?;‘“;2}]'2]+i__§[a,,_a&_)_g(zga;@}_lfzﬂs‘;ua,.,
gives:

by o LW (s s Pwi. - - - Pwi . -y LPw . -

[wo(®)d8 ==5(d, ~d,,)- =76+ 4)-Lwld,, -d, )+ =7 (@4 + 4)- 574 - wid,

Using a set of arbitrary nodal displacements, such as:

dlr - d;'; - 96'3 =0 9"| =1

The resulting nodal equivalent force or moment is:

I

wl' 2. oy owl

)= %
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Using another set of arbitrary nodal displacements, such as:

d,=d,, =¢4,=0 ¢ =1

The resulting nodal equivalent force or moment is:

. wl wl)  wl’
(i - T

Setting the nodal rotations equal zero except for the &Iy and c?zy gives:

Fy=—V =
y 2 2

2 Lw Lw
()=t

Mahidol University
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General Formulation

We can account for the distributed loads or concentrated loads acting on a
beam elements by considering the following formulation for a general structure:

F=Kd-F,
where Fg are the equivalent nodal forces, expressed in terms of the global-

coordinate components. These force would yield the same displacements as the

original distributed load. If we assume that the global nodal forces are not pre-
sent (F = 0) then:

F,=Kd
We now solve for the displacements, d, given the nodal forces Fy. Next, substi-

tute the displacements and the equivalent nodal forces Fy back into the original
expression and solve for the global nodal forces.

Wisdom of the Land

Example 5 - Load Replacement

Consider the beam shown below, determine the equivalent nodal forces for
the given distributed load.

¥
W “’_?"L wL
“ 2
RN N S R
7 L wL? ¢ wL?
12 12
(a) (b)

The work equivalent nodal forces are shown above. Using the beam stiffness
equations, with the boundary conditions applied, we can solve for the displace-
ments

Wi

"o | _EI] 12 -6L][d,,
wl [~ 7| -eL 4L’

2

12 RIS

S S
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Therefore:
i wlt
d,|_| sEl
| |
' =]

In this case, the method of equivalent nodal forces gives the exact solution for
the displacements and rotations.

To obtain the global nodal forces, we will first define the product of Kd to be F*
where F° is called the effective global nodal forces. Therefore:

Fey 12 6L -12 6L ][ O
[MJEI 6L 42 —eL 207 [ 0
Feo,| LP|-12 —6L 12 -6L l—w%ﬁ
L\/fﬁ_[ 6L 202 —6L 4L ||—w,
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Simplifying the above expression gives:

wl wl wi
L2 2|2 ™
Fey BSwl? FW} Bl ? wil? wi?
M 12 Ml _ T2 0] 120 )2
P [Tt F, [ w7 Wl (7] ]
e 2 M 2 2
LA wl? : wl? wi? .
12 12 12

Using the above expression and the fix-end moments in:

F=Kd-F,

gives the correct global nodal forces as:

Mahidol University

Faculty of En

Example 6 - Cantilever Beam

Consider the beam, shown below, determine the vertical displacement and ro-

tation at the free-end and the nodal forces, including reactions. Assume El is
constant throughout the beam.

P P
> £ 4 L E E
2 2 (\ L y
7 ] I T
Z L L
8 8
(a)

(h
We will use one element and replace the concentrated load with the appropriate
nodal forces. The beam stiffness equations become:

_EI[ 12 -6L][d,,’
PLITP]-6L 41?] 4,
2 _

N

Mahidol University
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Therefore:
A SPLT
{dzyl_ " a8El |
(52 J _PL2 J
_ 8El .

To obtain the global nodal forces, we begin by evaluating the effective nodal
forces.

_ A2

(= 12 6L -12 6L 0
M| EI| 6L 4 6L 2L 0
Fo, LP|-12 —-6L 12 —6L||-s7%,
Me, 6L 21 6L 4L l

8E!
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[P

P In general, for any structure in which an equivalent nodal force replacement is

(Fv|  |apL , - . S ' ' |

[ae | | Using the above expression in the following equation, gives: made, the actual nodal forces acting on the structure are determined by first

1 J N o s .

. Fo P=1 BP evaluating the effective nodal forces F® for the structure and then subtracting off

i M: 72 F=Kd-F the equivalent nodal forces F, for the structure. Similarly, for any element of a

1 1 s s 5 .

S | RL structure in which equivalent nodal force replacement is made, the actual local
L8 The correct global nodal forces as: nodal forces acting on the element are determined by first evaluating the effec-

‘P [ P) ) tive local nodal forces £ for the element and then subtracting off the equivalent

(F 2| | 2] i local nodal forces ﬁ associated only with the element.
| } P | AL PL
e T
F, _P _F | 0
M. 2| | 2| .
el & & 0 |
)l [e1<>p1]
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For a beam with a hinge on the right end, the moment r, is zero and we can
partition the matrix to eliminate the degree of freedom associated with &2.

Beam Element with Nodal Hinge

Consider the beam, shown below, with an internal hinge. An internal hinge
causes a discontinuity in the slope of the deflection curve at the hinge and the 12 6L _12 BL
bending moment is zero at the hinge. 1
y Cl-12 -6L 12} -6L

| &, &z, iy = 0 by iy =0 (. 6L 202 —6L: 4L
TN Hinge "\
1) (%—/»f ) )
jr/ 1 2 Hinge r/ ’D We can condense out the degree of freedom by using the partitioning method
L L 1 b discussed earlier. Recall, the form of k.
fU’ d')’ f!y' d!y f|y. dly f2_w dZ_v .
k. =K =K IK, TR,
For a beam with a hinge on the right end, the moment m, is zero and we can 12 8L -12 6L
i, . . . " El El 1
partition the matrix to eliminate the degree of freedom associated with ¢, . k, e 6L 47 -6L i 207 E[&L 20 —6L]
-12 -6L 12 -6L




Mahidol University

Faculty of Engineerin

Wisdom of the Land

Mahidol University

Faculty of Engineering

Therefore, the condensed stiffness matrix is:

e
k=To|L L L
1L 1

The element force-displacement equations are:

ﬁ},l 1 L -1 CH
1, :Sf’ L 2 -L|{4
~ L =
fQJ,J -1 -L 1 dzy[

Expanding the element force-displacement equations and maintaining 1, =0

gives:
f, 1 L -1 0]d,
m| 3EIL L* -L 0|]4
fzy{_ Cl1 L 1 olaﬂ
m, 0 0 0 O0Jg

The element force-displacement equations maintaining rh, = 0 gives:

f 1.0 -1 L][d,
m| 3E//0 0 0 0|4
| C|-1 0 1 -4,
m, L 0 -L L*]|4

Mahidol University
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Example 7 - Beam With Hinge

In the following beam, shown below, determine the vertical displacement and
rotation at node 2 and the element forces for the uniform beam with an internal
hinge at node 2. Assume El is constant throughout the beam.

P
Hinge
/ 1 /
O V4ON
1? (@) 3
2 ,4
Z %
e

The stiffness matrix for element 1 (with hinge) is:

[| 2

al|l-1-a 1 olld |
0 0 0 0llg

The stiffness matrix for element 2 (without hinge) is:

04'23'r sy d

12 6b -12  6b]

o _El| b 4b® —6b 2b?
b'|-12 -eb 12 -6b

6b 2b* -6b 4b? |

3y "3
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The boundary conditions for this problem are:

d1y :d3),:¢1:¢320

0
After applying the boundary conditions the global beam equations reduce to: [fw 3E) 1 -1
= * —a 0
3 12 6 N L
' v |y [-P) 2 -1 - a'b’P
El A= - 3 3
6 4 |laflo] 3(b° &l
b b Therefore:
Solving the above equations gives: b’P
o b’ +a°
o abP v abp
d,) 3(b*+a*)El fj?. N hia
{@ [7]  awp vl |__bP
2(b* +a°)El b’ +a’ [aT<]>]>]
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The element force-displacement equations for element 2 are:

a{stP
f f12 6b -12 6b ]| 3(p*+a’)El
|y | _El| 6b 4b* —6b 267 || &P |
fo| b°|-12 8 12 -6b|| 2(b’+a%)El|
- { 2 2
m,|  L8b 27 -6b 4b 0
0
Therefore:
_ar
3 b +a
by
|, L
fa}.‘ a’P
S 3 3
. | p+a
ba'P
b rad [ [<T> o]
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= Many bridges and buildings are composed of
frames and grids. ( )

Development of
Plane Frame Equations

Mahidol University
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Rigid Plane Frame

= Arigid plane frame is defined as a series of
beam elements rigidly connected to each other.

= The angles made between elements at joints
remained unchanged after the deformation.

= Moments are transmitted from one element to
another at joints.

= The element centroid and the applied load lie in
a common plane.

Summary:

e[ ocal stiffness matrix of a beam element
oriented in a plane including axial deformation
effects.

The equations & methods for sol. of plane
frame.

* Example Problems: frames with inclined and
skewed supports

e Direct Stiffness — plane frame
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(- N

Stiffness matrix of a hbeam element
oriented in a plane

Two-Dimensional Arbitrarily Oriented Beam Element

We can derive the stiffness matrix for an arbitrarily oriented beam element,
shown in the figure below, in a manner similar to that used for the bar element.
The local axes X and y are located along the beam element and transverse to
the beam element, respectively, and the global axes x and y are located to be
convenient for the total structure.

y 1\ b

-t
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The transformation from local displacements to global displacements is given in
matrix form as:

[q’x}{ @ S}[dx} C =cos@

4,/ 1-s cllq, S =sin@
Using the second equation for the beam element, we can relate local nodal
degrees of freedom to global degree of freedom:

d

X

FIW s co o0 0 ol]ld,
-‘5’;*7001000-@ d =-Sd, +Cd
lazy 0 00 -S C 0}|d,, ) A
5 00 0 0 1]|d,

¢,

Faculty of Enginee
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For a beam we will define the following as the transformation matrix:

-S C0 0 0O

0 01 0 00O
T=

0 00 -SCO

0 00 O O 1

Notice that the rotations are not affected by the orientation of the beam.
Substituting the above transformation into the general form of the stiffness matrix
k =T'KT gives:

[ 128 -12SC -6LS ; -128 12SC -6LS]|
-12SC 126 BLC | 12S8C -12C* BLC
E/| -6LS 6LC 4> | eLS -6LC 2I°
L[F| 128 12SC  6LS | 128 -12SC 6LS
12SC  -12C¢* -BLC | -12SC 12C° -6LC
| 6LS 6LC 2L | BLS -BLC 4L




The effect of axial force
in the beam transformation
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Recall the simple axial deformation, define in the spring element:
he| AE{ 1 —1} d, |
f;x [ L B 1 1 _dAZxJ

Combining the axial effects with the shear force and bending moment effects, in
local coordinates,

gives:
fx] Te, o 0o {-c, o© 0o 7|%
f, 0 12c, 6LC,: 0 -12C, B6LC, 1x
M| | 0 BLC, 4G’} 0 -BLC, 2C,I*|] 4,
£ | |-C 0 0 ! C, 0 0 d,,
~ 0 -12C, -6LC,: 0 12C, -BLC,||;
2y | 2y
m,| L0 BLC 2C,121 0 -BLC, A4C,L® ;.
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where
AE El
C,=— C,=—
L L
Therefore:
[ C, 0 0 -C, 0 0
0 12C, 6LC, 0 -12C, 6LC,
i 0 6LC, 4C,U 0 -6LC, 2cI°
|-c, 0 0 C, 0 0
0 -12C, -6LC, O 12C, -6LC,
| O B6LC, 2C,LU° 0 -6LC, 4CL’ ]
The above stiffness matrix include the effects of axial force in the X direction,
shear force in the ¥, and bending moment about the Z axis.
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g, [c s o o o 0]d,
d,| [-sco o o o|d,
41 1o a1 0 0 o0fg
d,[7lo 00 c s ofld,|
d,| |0 00 -sco dzyJ
6] Lo oo o o 1lg

where the transformation matrix, including axial effects is:

C S0 0 00
~SCcCo0 0 00
7|0 010 00
0 00 C SO
0 00 -SCO
L0 00 0 0 1]

Mahidol University
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Substituting the above transformation into the general form of the stiffness matrix
k =T'kT gives:

r 12 121 N 121 ,\I 121 )
2 T Q2 _ = — _ 2 iehainl 2 _ _ = —
AC* + LZS i_( Lz)CSE LSJ AC* + LZS :L A 2 CS i LS
---------- 5 T o T
| 121 161 121 i 121 .\ 61
' AS? + Fcz;fc ! —(A—F)cs :—(ASZ+?-C2): i
SIS s e B e e
k-E PP S P
L | R [ !‘ _______ LSNPSR
: 121 : 121 6l
I 2 2 1 i P
| AC+ S (*" Lz)cs LS
T ) SN T
- 2, e T
| AS® + ch : Lc
| Symmetry : 4a |
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*The analysis of a rigid plane frame can be
undertaken by applying stiffness matrix.

*The element stiffnesses of a frame are
functions of E,A,L,l, and the angle of
orientation of the element with respect to
the global-coordinate axes.

\_

/
EISED
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Rigid Plane Frame
Example
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Exam|gle 1 The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force
of 10,000 Ib applied at node 2 and to a positive moment of 5,000 Ib-in. applied at
— 6 3 — o) - 4
Consider the frame shown in the figure below. node 3. Let E=30 x 10" psiand A = 10 in.” for all elements, and let / = 200 in.
o for elements 1 and 3, and / = 100 in.* for element 2.
10,000 1b /--\5000 Ib-in. Element 1: The angle hetween x and X is 90
= ® 31/ c=0 S=1
where

® O] BN 12/ _12(200)

tel —0.167 in? 2 _100i0n°
74 > (120) L 120
le—— 5 ft —=]
6
E _30x10 250000 b/ in?
L~ 120
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Element 2: The angle between x and % is 0°
Therefore, for element 1:
B » s d B s C=1 $=0
1x 1y 1 2x 2y 2
0.167 0 -10 -0167 0 -10 g: 12(10(2}) — 0.0835 in® 6/ _6(100) _5.0in°
0 10 0 0 10 O L (120) L 120
-10 0 800 10 0 400
k" = 250,000 Ib/ Therefore, for element 2:
0167 0 10 0167 o 10 |7m e
2x 2y 2 3x 3y '3
0 -10 O 0 10 0 Ten . S . 0
L -10 0 400 10 0 800— 0 0083 5 0 00835 5
K@ = 250,000 0 () 400 O —L3] 200 Iby
-10 0 0 10 0 0 ’
0 0083 -5 0 0083 -5
| 0 5 200 O -5 400 |
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Element 3: The angle between x and % is 270° o )
The boundary conditions for this problem are:
c=0 S5=--41
12/ 12(200) oo 61 _6(200) ..., w=dy =h=du =dy =4,
2 (120 L~ 120
After applying the boundary conditions the global beam equations reduce to:
%: 301’;;0° = 250,000 /b/in* 7 i i
Therefore, for element 3: [ LB . e =l . ) o
d d P d d ¢ 0 0 10.0835 5 0 -0.0835 5 ||d,,
oo A A e 0 10 5 1200 O ~5 200 || ¢
0167 0 10 -0.167 0 10 —2 5x10° 2 |
0 10 0 0 10 0 0 -10 0 0 10.167 0 10 ||d,,
_ 0 0 -0.083%5 -5 0 10.0835 -5 ||d
k™ — 250000 10 0 800 10 0 400 ‘.y 3y
-0.167 0 -10 0167 0 10|70 5,000 | 0 5 200 10 -5 1200 | ¢,
0 -10 O 0 10 0
10 0 400 -10 0 800|
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Solving the above equations gives:

d,] [ 0211in) [ C 0 o -¢ 0 0 ]
d,, 0.00148 in | 0 12C, 6LC, 0 -12C, 6LC,
|4, | _|-0.00153 rad | . | 0 BLC, 4CL* 0 -BLC, 2C,L°
ld,[ | 0209in] k= ¢ o0 0 c, 0 0

i;:' 53;5;:221 0 -12c, -6LC, 0 12C, -6LC,
Y |0 6LC, 201* 0 -BLC, 4C,* |

Element 1: The element force-displacement equations can be obtained using

FSUCl TG UL AL Therefore, the local force-displacement equations are:

[0 10 0 0 0] d,=0 0 L L L
100 0 00| d=0 0 0 0167 10 0 -0167 10 0
y
_ ry o 0 10 800 0 10 400 0
Tq-|2 01000 h=0 L 0 FO — kTd =2.5x10° oL
0 00 0 10| d,-0211in 0.00148 in 10 0 0 10 0 10| 0001480
0 00 10 0|d,-0.00148in ~0211in 0 -0167 10 0 0167 -10| -0211in
0 00 0 0 1[f=-000153rad| |-0.00153 rad >l 0 10 400 0 —10 800 |(-0.00153 rad
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Element 2: The element force-displacement equations are:

1 0 0 0 0 Q] d,=0211in -0.211in
Simplifying the above equations gives: 3700 b 0100 0 0f d,=0001481in 0.00148 in
£1 [-37004b 23,000 h.m,;,]\ oo 74_|0 0 100 04=-000153rad| _|-0.00153 rad
f,| | 49000 o] EEERE P
A . b, =0 in -0. in
m i _ 376 k-in o A 0 0 0 00 1]|¢,=-000149rad| |-0.00149 rad
£, 3,700 /b
f,, —-4,.9890 /b 76000 1b-in. o Therefore, the local force-displacement equations are:
i, 293 k. in ﬁ/ 10 0 0 -10 0 0 0.211in
' ' ' . 37001b 0 0083 5 0 -00833 5 0.00148 in
) _ iFg 252107 © 5 400 0 -5 200||-0.00153 raq
-10 0 0 10 0 0 0.209in
0 -00833 -5 0 0.0833 -5 —0.00148 in
| 0 5 200 O -5 400 ||-0.00149 rad

Mahidol University
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Simplifying the above equations gives: Element 3: The element force-displacement equations are:

L 5010/ 3 0 100 0 0] d,=0209in 0.00148 in
h, ALY B TO T 1 0 00 0 O0fd,=-000148in 0.209 in
m,| _|=223k-in sotom SN0 o 74|00 10 0 0|j4=-000149rad| |-0.00149 rad
{3){ -5010 /b 2 ’/223,000 Ib-in. ? o000 -10 d, =0 ) 0

f,, ST / 000100 d, =0 0

m, 221k -in 3700 1b 3700 1b 0000 0 1 4, =0 0




Therefore, the local force-displacement equations are:

[ 10 0 0 -10 0 0 [ 0.00148in
0 0167 10 0 -0.1867 10 0.209in
76 _ £ = 2.5 10° 0 10 800 0O -10 400 ||-0.00149 rad
-10 0 0 10 0 10 0
0 0167 -10 0O 0.167 10 0
| 0 10 400 O -10 800 | 0
3700 1k
Simplifying the above equations gives: /_,}\226.000 e
i }?r 3700 !b] S01006 l /,. 4
[f, 5010 /b / ¥
|| | 226k-in| .
|£, [ |-37000b|
| 3 .
| ar 5010 {b' solom 7 b
7] L 375k-in] ~4-475,000 tb-in

3700 b
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Exam Ie 2 Consider the frame shown in the figure below.

1000 Ib/ft
grilby
: ® ’
@ 40 ft —————=
|
|
45° |

1
ANNN

\—— 30 ft ——=

The frame is fixed at nodes 1 and 3 and subjected to a positive distributed load of
1,000 Ib/ft applied along element 2. Let £ = 30 x 10° psi and A = 100 in.? for all
elements, and let / = 1,000 in.* for all elements.
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First we need to replace the distributed load with a set of equivalent nodal

forces and moments acting at nodes 2 and 3. For a beam with both end fixed,

subjected to a uniform distributed load, w, the nodal forces and moments are:

_wL _ (1,0000b/ft)40ft
r2 2

=-20k

_ wl*_ (1,000/b/ft)(40f)’

 =—— = =-133,333/b-ft =1,600k-in
12 12

If we consider only the parts of the stiffness matrix associated with the three
degrees of freedom at node 2, we get:

Element 1: The angle between x and X is 45°

C -0.707 S-0707
where
G}
E_3010 _ggonpsipp  120__121000) _ 4 4352
L 509 L (12x30J§)
6/ 6(1,000)

2 ) 11785510’
L 12x3042

Therefore, for element 1: Simplifying the above equation:
d2x dZy ¢2 d2x dZy ¢2
50.02 4998 833 2,948 2945 491
m _ k (M _ . k
k' =5893149.98 50.02 -8.33 /m k' =12945 2948 491 %n
8.33 -8.33 4000 491 491 235,700
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Element 2: The angle between x and x is 0° The global beam equations reduce to:
c=1 S=0
0 l 9198 2945 491 [dz l
where .
E,3OX106 e 12/ 12(1,000) e -20k =12945 2951 290 d,, ¢
L 480 ' (12x40y ~1600 k -inJ 491 290 485700 Lﬁz J
6/ 6(1,000) 125
L 12x40 Solving the above equations gives:
Therefore, for element 2: Simplifying the above equation:
dy Ay A d;, d,, ¢, d,, 0.0033 in 1
100 0 0 6,250 0 0 d, =4 -0.0097in ;
(2) _ k
k¥ =6250/ 0 0.052 125 %n k? =] 0 3.25 78125 %7 ¢, [ —0.0033 radJ
0 125 4,000 0 781.25 250,000
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Element 1: The element force-displacement equations can be obtained using

== o Therefore, the local force-displacement equations are:
f =kTd . Therefore, Td is:

(0707 0707 0 O 0 0] 0 0 [ea L 10 583 0 U 0
: : 0 2730 6948 0 -2730 6948 0
-0.707 0.707 0 0 0 0 0 0 . 10 6948 117900 0  -694.8 117,000 0
= 0 0 1 0 0 0 0 0 T =KTd=| 93 o 0 5983 O 0 0.00452 i
T = _ -5 , -0. in
0 0 0 0707 0707 0| 0.0033in —0.00452 in 0 2730 -6948 0 2730 -694.8 || -0.0092in
0 0 0 -0707 0.707 0| —0.0097in ~0.0092 in | 0 6948 117,000 0  -694.8 235800 | -0.0033 rad
0 0o 0 o0 0 1/|-0.0033rad| |-0.0033 rad

Recall the elemental stiffness matrix is a function of values C,, C,, and L

51 [
¢ - AE_(100080x10° oo, o _El_30x10°(1000) .,
L = 12x3042

Lo (12>< 30w‘§)3 BEIRE
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Simplifying the above equations gives:

. _ 26.64 kip
i 26.64 k

f, ~2.268 k

| | -389.1k-in| 2.268 kip
fy, STl 389.1 k-in.

; 2.268 k ‘

2y .
f,| 778 2k-in I%

26.64 kip 2.268 kip

Mahidol University
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Element 2: The element force-displacement equations are:

0.0033 in
—-0.0097 in
—-0.0033 rad
0
0
0

O o0 -~ O o o
O - O O O O
- O O O O OI

o O o o -~ O
o O O -~ 0 O

[ 0.0033in
—-0.0097 in
—-0.0033 rad

0

0

0

Faculty of Engineeri

Recall the elemental stiffness matrix is a function of values C4, C,, and L

_AE (100)30 x10°

=6,250 ¥,
L 12x 40

C,

El 30x10°(1000)

C2: =

r (12 x 40)

=0.2713 ¥,
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Therefore, the local force-displacement equations are:

(6,250 0O 0 6250 O 0 ~0.0033in

0 325 781.1 0 ~3.25 7811 | -0.0097 in

ol 0 7811 250,000 0  -781.1 125,000 | -0.0033 rad
B 6,250 0 0 6,250 0 0 0
0 325 -781.1 0 325 7811 0
0 7811 125000 0  -781.1 250,00 || 0

Mahidol University
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Simplifying the above equations gives:

20.63 k
-2.58k
-832.57 k-in
—-20.63 k
2.58 k
-412.50 k -in

kd =

Wisdom of the Land

2063kip /PN v v

Y

2013 k-in.

7674 k-ind 12 (2

40 ft

17.42 kip

20.63 kip

22.58 kip
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To obtain the actual element local forces, we must subtract the equivalent nodal
forces.

s 2063 k o 2063 k
£, —2.58 k ~20 k 17.42 k
m,| |-83257k.in| |-1600k.in| | 767.4k.in
fl] 2083k | 0 ] 2063k
. 2.58 k 20k 22.58 k
,;’"3 ~412.50 k -in 1600 k-in| |-2,013k-in

Example 3

40 fu

h ’ B
L 20 ft 20 ft ! 30 ft

The frame is fixed at nodes 1, 2, and 3 and subjected to a concentrated load of
15 k applied at mid-length of element 1. Let £=30 x 10° psi, A= 8 in’, and let I =
800 in* for all elements.
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Consider the frame shown in the figure . In this example will illustrate the
equivalent joint force replacement method for a frame subjected to a load acting
on an element instead of at one of the joints of the structure. Since no distributed
loads are present, the point of application of the concentrated load could be
treated as an extra joint in the analysis.

Solution Procedure
1. Express the applied load in the element 1 local coordinate system (here
X is directed from node 1 to node 4).
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Next, determine the equivalent joint forces at each end of element 1,
using the table in Appendix D (see figure below).

3.36 k

900 k-in.

6.71 k

336k

Table D-1 Equivalent joint forces f; for different types of loads

Sy my Loading case fay my
P
' =P -PL N e | oin R =P PL
2 8 y 2 8
Lo 2
—Pb*(L + 2a) —Pab? g l N . —Pa?(L + 2b) Pa’h
2. — - a B i o
L I2 ﬂ— i B 3 L2
Y "
3. -P —u(l —a)PL y ek 1 o R ~-P a(l —a)PL

= w2
2 12

—wL —wL?
2 12

W
L ~N
U Lt §j33:1:::==.§ = wit
3 L

0 20 20 30
.
—wL —swL? < L swL?
& K3 % 2 %
o L
~13wL “liwz? Y1113 N L swL?
5 ) 152 3 1 —R 3 %2

Then transform the equivalent joint forces from the local coordinate
system forces into the global coordinate system forces, using the
equationf = T'f . These global joint forces are shown below.

900 k-in.
7.5k

900 k-in.

Mahidol University
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4.  Then we analyze the structure, using the equivalent joint forces (plus
actual joint forces, if any) in the usual manner.

5. The final internal forces developed at the ends of each element may be
obtained by subtracting Step 2 joint forces from Step 4 joint forces.




Element 1: The angle between x and X is 63.43°

C=0.447 S5=0.895
where

121 _12800) __ 1 9334 in? 81 __6(800) _g g5 jpe
L (44.7><12) L 447x12

E  30x10°

—=————=559k/in’
L 447 x12

Therefore, for element 1:

d4x day 2
90.0 178 448
k" =178 359 =244 %

448 244 179,000

Mahidol University
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Element 2: The angle between x and X is 116.57°

C =-0.447 $-0.895
where
121 __12(800) __ 0334 jn? bF_ _B(B00) _g g5 jps
7~ (aa7x12) L 447x12
6
E _30x10° _ 55 9 k/in?
L 447x12

Therefore, for element 2:

dax day 2

90.0 -178 448
k? =|-178 359 244 ks

448 244 179,000

Mahidol University
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Element 3: The angle between x and X is 0° (The author of your textbook
directed the element from node 4 to 3. In general, as we have discussed in class,
we usually number the element numerically or from 3 to 4. In this case the angle

between x and X is 180°)

6
C =1 S-=0 E 300" _ 5442
L 50x12
1—22',:712(800)2 =0.0267 in* g: (L) =8.0in*
L (50><12) L 50x12
Therefore, for element 3:
dax day 4
400 0 0
kP = 0 1.334 400 (&,
0 400 160,000

Mahidol University
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The global beam equations reduce to:

75k 1 582 0 896 [dﬁl
0 -| o 719 400 |1d,,
_—900k-:'nJ 896 400 518,000 1@ J

Solving the above equations gives:

d,,| (-0.0103in l
d,, t =1 0.000956 in
4, J 1—0.00172radJ

Land
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Element 1: The element force-displacement equations can be obtained

using f = kTd . Therefore, Td is: Recall the elemental stiffness matrix is:
e 5o 0 00 c, 0 0 -C, 0 0
S co0 0 00 0 12C, 61’_022 0 -12C, 6!'_022
o010 0o s o ;_| 0 BLC, 4CL 0 -6LC, 2CL
0 00 C SO -C 0 0 C, 0 0
0 00 -S C O 0 -12C, 6LC, O 12C, -6LC,
0 00 0 0 1] 0 6LC, 2C° 0 —6LC, 4G, |
0447 0.895 0 0 0 0 0 ( 0
-0.895 0447 0 0 0 0 0 0 C1 :E:M:4472Vm C2 =%=w=0.155 k.
e 0 0 1 0 0 0 0 i 0 L 12x44.72 L (12x 44.72)
0 0 0 0.447 0895 0 -0.0103 in -0.00374 in
0 0 0 -0.895 0447 0 || 0.000956 in 0.00963 in
0 0 0 0 0  1]/-000172rad| (-0.00172rad

Mahidol University

Faculty of Engineering

Mahidol University

Faculty of Engineering

Wisdom of the Land Wisdom of the Land

Therefore, the local force-displacement equations are: To obtain the actual element local forces, we must subtract the equivalent nodal
[ 447 0 0 447 0 0 0 forces..
0 1.868 500.5 0 -1.868 500.5 0 fy 167 k 336k 503k
P _grg.| O 5005 179000 0 5005 89490 0o 3 0.8 K 671K ok
—44r 0 0 44 0 0 || -000374in m,| |-158k.in| | 900k-in| |-1058k-in
0 -1.868 -500.5 0 1.868 -500.5 0.00963 in N 16Tk - 336k = 168 k 1.68 kip
0 5005 89490 0 -500.5 179,000 | -0.00172 rad For ’ ) '
- i 0.88 k 6.71k 583k 5.83 kip
ay _ _ ) 589 k-in.
Simplifying the above equations gives: m, =311k -in -900 k-in. 589 k -in
167k
-0.88 k 1S kip
- ~n | =158 ki
foy = kel = .
-1.67 k
7.59 kip
31?f8,k 1058 K-in.
— «In
[a[<>p] 503 kip
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Element 2: The element force-displacement equations can be obtained using

f =kTd . Therefore, Td is:

il
Il
|
oooomo
oo o0 o O W
O 00 -~ O O
O oo o

[-0.447
-0.895

0.895
-0.447

o o o
o O O

o 0w oo o

o O O -~ OO0

0
0
0
o C=-0447 S=0.895
0
1,
0 0 0] 0 0
0 0 0 0 0
0 0 0 0 B 0
~0447 0895 0| -0.0103in [ | 0.00546in
~0.895 -0.447 0|| 0.000956 in 0.00879 in
0 0 1]|-0.00172rad] |-0.00172rad

Therefore, the local force-displacement equations are:

AE  (8)30x10° _ El30x10°(800)

COSTL T oxaary M2 G=Ee (12x4472)0 0155%
[ 447 0 0 — 447 0 0 0
0 1.868  500.5 0 -1.868 5005 0
i _grg_| O 8005 179000 O  -500.5 89490 0
@ - 447 0 0 447 0 0 0.00546 in
0 -1.868 -5005 0 1.868 —500.5| 0.00879in
0 5005 89490 0 -500.5 179,000 | -0.00172 rad

Mahidol University

Faculty of Engineering

Simplifying the above equations gives:

244 k
-0.877 k
-158 k-in
2.44 k
0.877 k
=312k -in

~h
B2
I
=
Q.
Il

Wisdom

of the Land

0.877 kip

158 k-in

2.44 kip

Since there are no applied loads on element 2, there are no equivalent nodal
forces to account for. Therefore, the above equations are the final local nodal

forces
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Element 3: The element force-displacement equations can be obtained
using f = kTd . Therefore, Td is:

100 0 0 0] —-00103in | [ —0.0103in
0 10 0 0 0 0.000956 in 0.000956 in
7,_|0 0 1.0 0 0/-000172rad| _|-0.00172ad
000100 0 0
000010 0 0
ooo0o0o01] o || o

Therefore, the local force-displacement equations are:

_AE  (8)30x10°
L 12x50

[
_400y, o, - E_30x10°(800)

O (2xs0p o

C,
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[ 400 0 0 -400 0 0 [ -0.0103in
0 1.335 400 0 -1.335 400 0.000956 in
D 0 400 160,000 0 -400 80,000 ||-0.00172 rad
) — 400 0 0 400 0 0 0
0 -1.335 —400 0 1.335  —400 0
| 0 400 80000 O ~400 160,000 | 0

Simplifying the above equations gives:

412k
70.68'7 k i hP/ﬁ‘m kin. N\ 4.12 kip
Ak 275k -in \14 G st STp’
) 412k 137 k-in.
0.687 k 0.687 kip 0.687 kip
137 k-in

Since there are no applied loads on element 3, there are no equivalent nodal
forces to account for. Therefore, the above equations are the final local nodal
forces. The free-body diagrams are shown below.

2.44 kip 275 k-in.

1.68 kip 412 kip /N /N 412 kip
NE @ ot 3V )
589 k-in. 137 k-in.
0.877 kip 0.687 kip 0.687 kip

0.877 kip

1058 k-in. 158 k-in.

2.44 kip
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Example 4

The frame shown on the right is fixed at nodes 2 and
3 and subjected to a concentrated load of 500 kN
applied at node 1. For the bar, A =1 x 10° m? for the
beam, A=2x10°m?% /=5x10°m?* and L =3 m.
Let E =210 GPa for both elements.

Faculty of Enginee

Wisdom of th

Beam Element 1: The angle between x and X is 0°

where
s .
g:w:e.fﬂxm’ﬁmQ Q:M:ﬂj—dma
L (3) L =
[
%:%:TOMOG kN m?®

Therefore, for element 1:

die  dyy 9

2 0 0
o _ 3 kN
kM =70%x10° 0 0.067 0.10 /m

0 010 020 >
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Bar Element 2: The angle between x and X is 45°

C=0.707 $=0.707
where
diy  dyy
o 10°m*(210 x10°kN / m? {05 OS}MV
4.24m 0.5 05| /m
diy dy,
0.354 0.354
k(z)mxm{oam 0.354}k%

Assembling the elemental stiffness matrices we obtain the global stiffness matrix

2354 0354 0
_ 3 kN
K=70x10%0.354 0.421 0.10 /m
0 0.10 0.20
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The global equations are:

0o 2354 0354 0 dul
~500 kNt =70x10°kKN/ 10354 0421 0.10|{d,
0 0 010 0.20] ¢

Solving the above equations gives:

d, [ 0.00388 m
d, +=4-0.0225m
4 10.01 13 rad
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Bar Element: The bar element force-displacement equations can be obtained
using f = kTd.

dh(
f| AE[1 -1JCc S 0 0O dJ
ﬁX_L11OOCSd3X[
- d 670 kN
3y

Therefore, the forces in the bar element are:

f = 215 “=(cd,, +Sd,, )= 670 kN
£ = —%(Cdu +8d, )= 670 kN
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Beam Element: The beam element force-displacement equations can be
obtained using f = kd . Since the local axis coincides with the global coordinate

system, and the displacements at node 2 are zero. Therefore, the local force-
displacement equations are:

@ 0 0 -¢ o0 0
0 12¢, 6LC, 0 -12C, B6LC, c . AE
;_| 0 6LC, 4CL' 0 -6LC, 2G.L° L
c, 0 0 (o} 0 0 £
0 -12¢, -6LC, 0 12C, -6LC, C.=7
0 6BLC, 20CL° 0 -BLC, 4CL’
[2 0 0 2 0 0 7 0.00388m )
| O 0.067 0.10 0 -0067 010 || -0.0225m
P —kd=70x10/ '0 010 020 0 -0.10 0.10 ||0.0113 kN -m |
0 0 2 0 0 0
j 0 -0.067 -0.10 0 0.067 —0.102‘ 0
0 010 010 0 -0.10 020 || 0
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Substituting numerical values into the above equations gives:

;. 473 kN y
2 783 kN -m
f, - 2((3).2 kN AOOKN-m (D) o
m, . —
= 473 kN z')
f, — 473 kN M 3m ™
£, 26.5 kN ]
| |-783KN-m 26:5 kN 26.5 kN
670 kN
. 78.3kN-m
e 0.0kN - m @
— 9—473 kN
147 3m 32

Inclined or Skewed Supports
Frame Example Problems
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Example 5

If a support is inclined, or skewed, at some angle a for the global x axis, as
shown below, the boundary conditions on the displacements are not in the global
x-y directions but in the x™-y’ directions.

L YV " X
;\i

We must transform the local boundary condition of d’s, = O (in local coordinates)
into the global x-y system. Therefore, the relationship between of the
components of the displacement in the local and the global coordinate systems
at node 3 is:

d., cosa sina 0](d,,
d',,r=|-sina cosa 0d,,
P 0 0 1]l GﬁaJ

We can rewrite the above expression as:

cosa sina 0
{a,}=It.1d,} t.]=|-sina cosa O
0 0 1
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We can apply this sort of transformation to the entire displacement vector as:

{di=[mld}  or  {aj=[TT{d"
where the matrix [T}] is:
(/1 [o] O]
[F1=(101 [1 [0]
01 [0 [&]

Both the identity matrix [[] and the matrix [t;] are 3 x 3 matrices.
The force vector can be transformed by using the same transformation.

i} =[T1if}
In global coordinates, the force-displacement equations are:

{f}=Klid]

Applying the skewed support transformation to both sides of the force-
displacement equation gives:

[T1if} =T 1IK]d}

By using the relationship between the local and the global displacements, the
force-displacement equations become:

TH=TIKITT i = P =IMIKITY o}
F, d,,
FW dW
M1 ¢1
Fo d,
Therefore the global equations become: Fy t=[TIKITT < d,,
MZ ¢2
F'y d's,
Fy d,
Mg J ¢'1
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Development of
Grid Equations
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Grid Structures

m A grid is a structure on which the loads are
applied perpendicular to the plane of the
structure as opposed to a plane frame where
loads are applied in the plane.

= Both torsional and bending moment continuity
are maintained at each node in a grid element.

m Examples are floors and bridge deck systems.




A typical grid structure is shown in the figure
below.

Summary:

*Derivation of the torsional components of the
element matrix .

e Local stiffness matrix of a beam element
oriented in space.

e Direct Stiffness — grid

* Example Problems
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A representation of the grid element is shown below:

Y
= Iﬁ“, &1.\' R ’ﬁlw (ﬁll
"ﬁ]:v (ﬁlzé‘ r\ - 2 [\ 2 'ﬁl;s éZ:
(VI \ A )
- L -
F4 fly» ‘}iy fzw 6?2,\‘

The degrees of freedom for a grid element are: a vertical displacement d‘,y
(normal to the grid), a torsional rotation g&, about the X axis, and a bending
rotation ¢, about the 2 axis. The nodal forces are: a transverse force f,v a
torsional moment rf, about the X axis, and a bending moment i, about the 2
axis.
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Let’'s derive the torsional rotation components of the element stiffness matrix.
Consider the sign convention for nodal torque and angle of twist shown the figure
below.

"ﬁl.n- élx ’ﬁln ‘ﬂb "ﬁxv ti’x rﬁx- éx
[ i /. £
1G4 | O— 1 | Oz
A L o T W
A linear displacement function ¢ is assumed. Or in matrix form:
=a,+aX .
4 1 ’ &:[N1 Nz]:‘{@?lr l

Applying the boundary conditions and solving for the unknown coefficients gives:

§= oy — Py % +gg Ny=1-7 N, =7 N, and N; are the interpolation functions
- L 1x
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To obtain the relationship between the shear strain y and the angle of twist ¢
consider the torsional deformation of the bar as shown below.

VA

Y
)

If we assume that all radial lines, such as OA, remain straight during twisting or
tarsional deformation, then the arc length AB is:
AB =y, dx = Rd¢
Therefore:;
fVIIIiJX = ﬂ
dx

At any radial position, r, we have, from similar triangles OAB and OCD:

y:rzg :E(AZX_QB\H)

The relationship between shear stress and shear strain is:

=Gy where G is the shear modulus of the material.

From elementary mechanics of materials, we get:
P
Y

where J is the polar moment of inertia for a circular cross section or the
torsional constant for non-circular cross sections. Rewriting the above equation
we get:

rhx :%(qzﬂ _¢A1x)

The nodal torque sign convention gives:

=-Mm m,, =m,

In matrix form
Therefore;

A ) ) n ) ) frﬁlx 7@ 1 —1 hﬁhwx
TRV RPN TR o I
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Combining the torsional effects with shear and bending effects, we obtain the
local stiffness matrix equations for a grid element.

fw 1ifI 0 554 _ 1i35r 0 s;‘a d‘ly
m,, o ¢ 0 0 -¢ 0|4,
rﬁu _ % % - % 0 % &1:
fz , _ 1i35r _ eE: 1i§_=: _ ag: azy
rﬁzx 0 - % 0 0 C}-_J O &21
n;]h E»Sf 0 2:_5.' _ BLE'J 0 4:_:‘; | 5522
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1 0 00 0 O :
0 C S0 0 O _

;_|0-sco o0 o0 ‘

1o 0 01 0 0 4‘\&?\13 =
0 0 OO0 C S E I3/
0 0 0 0 -5 C| z R

where 0 is now positive taken counterclockwise from x to X in the x-z plane:
therefore;

X, =X Z, —Z
C=cosf=1—" S=sing="1_"
= L sin L

The global stiffness matrix for a grid element arbitrary oriented in the x-z plane is
given by:

Grid Example

Mahidol University
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Consider the frame shown in the figure below.

y.ll
20 ft _i g
72{ _____ o #
10 ft 1
A 0
B 100 kip

The frame is fixed at nodes 2, 3, and 4, and is subjected to a load of 100 kips
applied at node 1. Assume /=400in.%, J=110in*, G=12x 10 ksi, and E = 30
x 10 2 ksi for all elements.

To facilitate a timely solution, the boundary conditions at nodes 2, 3, and 4 are
applied to the local stiffness matrices at the beginning of the solution.

d,, =¢,=¢,=0

dav =y = s, =0

d4y =¢,=¢,=0

Beam Element 1:

C-cosg- X % _ 0720 4g94 S-sing-2 "% _20710 4 447
(7 T 2236 (7 " 2236
where
3 )
1261 _12E0100400)_7 po  BEL_S0ACNA0) _y o0
[ (22.36 x12)° in

2 (22.36x12)
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4EI  4(30x10°)(400)

3
179,000 k.in &L {12>107)(110)

= = =4,920 k-in
L (22.36 % 12) L (22.36x12)

The global stiffness matrix for element 1, considering only the parts associated
with node 1, and the following relationship:

ks = TGT"QGTG

1 0 0 1 0 0
T.=|0 -0.894 0447 T.)=|0 -0894 -0447

0 -0.447 -0.894 0 0447 -0.894

Therefore, the global stiffness matrix is
diy Y1 iz dy Pix Pz

7.45 0 1,000 7.45 447 - 894

k"=l 0 4920 0 %1 K" =|-447 39700 69600 |K/

/in

1,000 0 179,000 894 69,600 144,000
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Beam Element 2:

C—COS{'}—XS_X‘ 0-20

in

= i -2 ﬁ .
R Y 0.694 S =sing = o =538 0.447
where
a 3
12:‘5! _ 12(30=10 )(4?0) _?.45_;% Efgf _ 6(30x10 )(40})) - 1000 k
L (22.36x12) in L (22.36 x12)
3 3
4El  4(30=107)(400) 179.000 K -in GJ (12x10°)(110) 4920k -in
L (22.36x12) L (22.36 %12)
The global stiffness matrix for element 2, considering only the parts associated
with node 1, and the following relationship:
ke = T KT,
dyy #1x #;
1 0 0 745 0 1000 |1 0 0 ] 7.45 447 894
k¥ ={0 -0.894 0.447 0 4920 0 0 -0.894 0447 -| 447 39,700 69,600 K/
0 -0.447 -0.894 1000 0 1790000 0.447 —0.894j - 894 -69600 144,000
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Beam Element 3:

C:cosﬂ:x4_x‘:20720:0 S:sin@:ﬁ:@:%
L 10 s 10
where
3 3
12E1_12(30<10°)(400) _ g 6E/ _ 6(3010°)(400) _ ;1
L (10x12) L (10x12)
3 3
4E1_ 4(30x10°)(400) _ 466000 k- in GJ _ (12x100(110) _ 14600 - in
L (10x12) L (10x12)

The global stiffness matrix for element 3, considering only the parts associated
with node 1, and the following relationship:

kc-; = TGT'QGTG
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1 0 0833 0 5000 |1 0O
k=0 0 1 0 11,000 0 00 1
0 -1 0} 5000 0 4000000 1
Therefore, the global stiffness matrix is

dL'/ ‘?'}[x @11
8§3.3 5,000 0
k, =[5000 400000 0

0 0 11,000

Superimposing the three elemental stiffness matrices gives:

d1y {'511 “"1z
98.2 5,000 -1,790
K 5,000 479,000 0

-1,790 0 299,000
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The global equations are:

F, =-100 k 982 5000 1790 |[d

1y
M, =0 =1 5000 479,000 0 &y
l M, =0 ~1,790 0 299,000 || ¢,

Solving the above equations gives:
d, [ -283in
¢, r =+ 0.0295 rad
Lﬁ.lz 10.0169 rad

Elemept 1: The grid element force-displacement equations can be obtained
using f =k T.d.

1 0 0 0 0 0 |[ -2.83in -2.83in
0 -0894 0447 0 0 0 || 0.0295 rad (0.0339 rad
Td_ 0 -0447 -0.894 0 0 0 |[|-0.0169 rad _J 0.00192 rad
“ 0 0 0 1 0 0 | 0 0
0 0 0 0 -0894 0447 0 0
0 0 0 0 -0447 -0.894| 0 L 0
Therefore, the local force-displacement equations are:
7.45 0 1000 -7.45 0 1000 -2.83in
0 4,920 0 0 -4.920 0 —0.0339 rad
- 1,000 0 179,000 -1,000 0 89,500 ) 0.00192 rad
v -7.45 0 -1000 745 0 —-1000 0
0 -4920 0 0 4920 0 0

1000 0 89,600 -1,000 0 179,000 || 0
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Element 2: The grid element force-displacement equations can be obtained
using f =k, T.d.

M0 0 0 0 0 [ -283in | [ -283in

0 —0894 -0447 0 O 0 | 00295rad | |-0.0188rad
—4_|0 0447 0894 0 0 0 |[/-00169rad| | 00283 rad
“7lo o0 0o 1 0 0 0 0

0 o0 0 0 -089% -0447 0 0

0o o0 0 0 0447 -0.894 o || o

Therefore, the local force-displacement equations are:

" 7.45 0 1000 -745 0O 1000 [ -2.83in )

0 4920 0 0 -4920 0 |-0.0188rad

¢ _pr,_| 1000 0 179000 -1000 O 89,500 || 0.0283 rad
@R 745 0 ~1000 745 0 ~1000 0 '

0 -4920 0 0 4920 0 0
| 1000 0 89,500 -1000 0 179,000 | 0
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Element 3: The grid element force-displacement equations can be obtained
using f =k T.d.

10 0 00 O —-2.83in —2.83in |
0 0 -1 0 0O O || 0.0295rad 0.0169 rad
do 01 0 00 0}|]-00169rad| |0.0295 rad
° 00 0 10 O 0 0
00 0 00 -1 0 0
00 0 01 O 0 I 0 ]
Therefore, the local force-displacement equations are:
83.3 0 5,000 -83.3 0 5,000 -2.83in
0 11,000 0 0 —11,000 0 0.0169 rad
- 5,000 0 400,000 -5,000 0 200,000 ||0.0295 rad
-83.3 0 —5,000 83.3 0 —5,000 0
0 —11,000 0 0 11,000 0 0
5,000 0 200,000 -5,000 0 400,000 0
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Solving for the forces and moments gives:

f, 192k
1, 167 k -in
M| |-2,480k-in

7, 19.2 k
., 167 k -in

,,| | -2.260k-in

f, ( 7.23 k

m, -925k-in
m,| |-2.240k-in 295 k-in. 3

i) -7.23«k

3y 2
1, 925k-in Z
m,,| | —295k-in e

2240 k-in.
92.5 k-in.
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Solving for the forces and moments gives:

88.1k

b

f -88.1k

" 8240 k-in.
m,, 186 k - in
m, | |-2340k-in
fi, 88.1k 186 k-in.
i, 186 k -in
m,,| 18240k in] 2340 k-in.

Ny

88.1k
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To check the equilibrium of node 1 the local forces and moments for each
element need to be transformed to global coordinates. Recall, that:

f=Tf = f=Tf T =T"

Since we are only checking the forces and moments at node 1, we need only the
upper-left-hand portion of the transformation matrix Te.

Therefore; for Element 1:

f,1 [1 o 0 [ 92k ) [ 192k
m,+=|0 -0.894 —0447|! —167k-in\=11260k-in
m,| |0 0447 —0.894||-2480k-in] 2150k in

Faculty of Enginee
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Therefore; for Element 2:

fw 1 0 0 J 723k 723k
m,t=/0 -0.894 0447 -925k-int=< 1080k-in
m,, 0 -0447 -0.894 IL—2, 240 k-in -1,960 k - in
Therefore; for Element 3:
'fh,' 1 0 0] -88.1k -88.1k
m,+r=10 0 1|4-2340k-in;=1-2,340k-in
m, 0 -1 0| -186k-in] —186 k-in
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The forces and moments that are applied to node 1 by each element are equal in
magnitude and opposite direction. Therefore the sum of the forces and moments

acting on node 1 are:

(- )

2y =-100-7.23+19.2+88.1=0.07 k Stiffness matrix of a beam element

>M,, =-1260-1080+2340=0.0k-in oriented in space

S M, =—2150+1060+186 =—4.0 k -in \ )

The forces and moments accurately satisfy equilibrium considering the
amount of truncation error inherent in results of the calculations
presented in this example.
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Bending in the X -z plane: The bending in the X —Z plane is defined by .
Beam Element Arbitrarily Oriented in Space The stiffness matrix for bending the in the x-z plane is:
In this section,we will develop a beam element that is arbitrarily oriented in X ,
three-dimensions. This element can be used to analyze three-dimensional 12"; 6L - 12"; 6L
. . 3 3
frames. Let consider bending about axes, as shown below. - Ei, | oL 4L’ 6L 2L
P Yoot |-120 -8 12L 8L’
-t . 612 20 -6l  4L°
"ﬁly' ‘bl_y f , mZy’ ¢2yl\ ﬁ.’,z! le
@ d3 ) fis le A where I, is the moment of inertia about the y axis (the weak axis).
tz+ 1z 2
Al L . [ 2 * Bending in the X — y plane: The bending in the X —y plane is defined by m, .
" r.f) / f - d The stiffness matrix for bending the in the X -y plane is:
2 f»;lyl dnly 2z W2, 2y Y2y
12L 612 —12L 617?
The y axis is the principle axis for which the moment of inertia is minimum, /. i _ElL 6L 4L -6 2L
The right-hand rule is used to establish the Z axis and the maximum moment of o120 -6 2L -8
inertia, 1. 6L° 21 -6l 4L°
where [, is the moment of inertia about the Z axis (the strong axis).
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Direct superpasition of the bending stiffness matrices with the effects of axial
forces and torsional rotation give:

Iy dw d‘wz ‘;u "51y 4312 ‘5‘2:: azy 822 fﬁlzx fﬁlzy 5’322 _
[ 0 0 0 o | -1E o 0 0 0 0
T [
12E1, . 6EI, ! 12EI, 6EI,
= 3 0 LI i — [\ [ [ =
!
El 12E1 6E]
0 0 IZ;I’ 0 -G—L,' o i 0 o = = o
i
GJ i GJ
d -= 0 0
[ (4] 0 T o o | o e g L
i
4Ei 6EL 2E,
o o —"f:’ o 2 0 oo 0 e
|
6EI 4EI, | 6EL, 2EI,
‘ 0 = 0 0 o T ! 0 L i’___ (] 0 ____L__
AE o 0 0 0 i AE -, 0 0 0 0
L 3
12E1, 6EI, | 12E1, _6EL
o 0 0 0 -0 =45 ] o ] o
i
12E, 6EI, ! 12El, 6EI,
o o -0 0 5 0 i 0 o - = 0
i GJ
0 0 o —G—LJ 0 0 ‘} 0 0 o T ¢ 0
I
| 6EI 4El
o 0 —6?’ 0 2?’ o | 0 4] L,’ T o
1
6EI, 2E1, | _ GEL, o o GEL
LI L i A = z
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The global stiffness matrix may be obtained using:

k=T"kT
where
where the direction cosines, C.-;= are defined as shown below
s -
A 1 Cx; Cy: Cze
_ T2x3 . |
T= ,L , Ay = | Cxﬁ C}F CIF
. [ERNCHRNGH
where
X
o 8 a - e aa.l'
The direction cosines of the X axis are:
- ~ _ z £
X =cos 8,0 +cos 6,]+cos 8_k
where
X, — X = _
COSHWZ = L= COSQ.:M:FH COSHAZQZH
L yx = L
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The y axis is selected to be perpendicular to the ¥ and the z axes is such a way
that the cross product of global z with X results in the ¥ axis as shown in the
figure below.

y i J k
zx%=y=-2o o 1|=-T7.Lj
¥ 2 D D D
fF m n

where

D=+ +m

X
The Z axis is determined by the condition that Zz = % x y
S i J k
ZXX=Y EOC NN | In- mn- -
Z=Xxy=—|1 m n_—E;—FJTDk
cd -m | 0
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I

m n
Cxi Cy;? Cz)'r ; | ﬂ ',_ 0
’13;(3 = Cxﬁ cyp Czp faxz T D D
Cx? Cy2 CZZ _ Ii m
D D

There are two exceptions that arise when using the above expressions for
mapping the local coordinates to the global system: (1) when the positive X
coincides with z; and (2) when the positive X is in the opposite direction as z. For
the first case, it is assumed that ¥ isy.  |n case two, it is assumed that yisy.

0 0 1 0 0 -1
i=[0 00 i=[0 0 0
100 10 0

¥
J
¥ 5 i >
| ]

/ —————
B
: ii
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e If the effects of axial force, both shear forces, twisting moment, and both bending l
12ET. moments are considered, the stiffness matrix for a frame element is: |
e et |
9 B+ ®,) |
12E1, |
o o P+ @) |
0 0 0 {1—; Symmetric !
—6EL (4 + ®YE |
0 0 TS 0 —— Y
1+ @) 1+ ) [
6EI, (4 + ®)EL,
0 - 0 i 1ot
X1+ ®,) 5 e i1+,
= o ul 0 g e
7 ]
—12E7, —6EI, 12EI,
0 e 0 ] 0 O be'e et oS
1+, Bl + @) B+ o,
—12EI, 6FI 12EL
0 0 r 0 " o S
B + @) 1+ @) o o 5 B+ @)
0 0 0 4 0 0 0 0 0 &
! ]
—6EI, (2 — @)EI GEI, 4 + ®)EI
0 0 —r. 9 _ =¥ 0 0 0 _ =
i+ o) [0+ @) Mroy ° Tmroy
0 6EL, 0 0 @—®)E, —6EI, o - o (4 + @,)EL
L A1+ o) 11+ ®,) Bl +®,) 1+ @,)

In this case the symbol ¢ are:

_12E, _12E,
CGAL? *GAL

?,

where A; is the effective beam cross-section in shear. Recall the shear modulus
of elasticity or the modulus of rigidity, G, is related to the modulus of elasticity
and the Poisson’s ratio, v as:

_E
2(1+v)
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m So far, we considered only line elements.

= Line elements are connected at common
nodes, forming trusses, frames, and grids.

= Line elements have geometric properties (A, |
associate with cross sections).

= Only one local coordinate along the length of the
element is required to describe a position along the
line element.

= Nodal compatibility is forced during the formulation
of the nodal equilibrium equations for a line
element.

1D / /,_./

2D Finite Elements

Mahidol University
Faculty of Engine y

= 2D planar elements are thin-plate elements.

= 2 coordinates define a position on the 2D element
surface.

yt 3 Y,

- ¢
x
P
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uniform loading uniform loading

guluENERE

Element

it =« |

T

Cantilever plate
in plane strain

inite elemer
model

Fixed boundary
Fixed boundary

Node
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m 2D elements are connected at common nodes
and/or along common edges to form continuous
structures.

= Nodal compatibility is enforced during the
formulation of the nodal equilibrium equations.

= |f proper displacement functions are chosen,
compatibility along common edges is obtained.
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The 2D elements are extremely important for:

= Plane stress analysis: problems such as plates
with holes or other changes in geometry that are
loaded in plane resulting in local stress
concentrations.

= Plane strain analysis: problems such as long
underground box culvert subjected to a uniform
loading acting constantly over its length.

Plane Stress

Plane stress is defined to be a state of stress in which the normal stress and
the shear stresses directed perpendicular to the plane are assumed to be zero.
That is, the normal stress o, and the shear stresses 1,, and t,; are assumed to
be zero. Generally, members that are thin (those with a small z dimension com-
pared to the in-plane x and y dimensions) and whose loads act only in the x-y
plane can be considered to be under plane stress.

m Plane Stress Problems m

71 | - T T /k
| ! k
PN =
] ]
é: @ = 1 R—— e
211_ ————— 14 .‘_JH ——————— F
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Plane Strain

Plane strain is defined to be a state of strain in which the strain normal to the
x-y plane e, and the shear strains y,, and vy, are assumed to be zero. The as-
sumptions of plane strain are realistic for long bodies (say, in the z direction) with
constant cross-sectional area subjected to loads that act only in the x and/or y di-
rections and do not vary in the z direction.

m Plane Strain problems m

-

—
7,

L o

,/
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Summary:

* The review of the principle of minimum
potential energy.

* The development of the stiffness matrix of
a basic 2D or plane finite element called
Constant-Strain Triangular (CST) elements.

 Direct Stiffness — 2D FEMs

* Example Problems.
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Potential Enerqy and Equilibrium

In mechanics of solids, our problem is to determine the displacement u of the
body, satisfying the equilibrium equations.

Mahidol University
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The principle of minimum
potential energy
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Total Potential Energy

The total potential energy is defined as the sum of the internal strain energy U
and the potential energy of the external forces Q:

7z, =U+Q
Strain energy is the capacity of the internal forces (or stresses) to do work
through deformations (strains) in the structure; Q1 is the capacity of forces such
as body forces, surface traction forces, and applied nodal forces to do work
through the deformation of the structure.

Recall the force-displacement relationship for a linear spring:
F =kx

The differential internal work (or strain energy) dU in the spring is the internal
force multiplied by the change in displacement which the force maoves through:

dU = Fdx = (kx)dx

’+ k
| NN -

The total strain energy is:

\ -
U=]fdu=lth]dx=5kx

The strain energy is the area under the force-displacement curve. The potential
energy of the external forces is the work done by the external forces: (1 =-Fx

Therefore, the total potential energy is:

T, = %kf Fx

Mahidol University
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The concept of a stationary value of a function G is shown below:

G

Maximum
Neutral

Minimum

The function G is expressed in terms of x. To find a value of x yielding a station-
ary value of G(x), we use differential calculus to differentiate G with respect to x
and set the expression equal to zero.

dG
2o
dx

Mahidol University
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We can replace G with the total potential energy n, and the coordinate x with a
discrete value di. To minimize n, we first take the variation of =, (we will not
cover the details of variational calculus):

on, on on

S, =—>268d, +—28d, +... +—2&d
e, T ad, ad

The principle states that equilibrium exist when the d define a structure state

such that &z, = 0 for arbitrary admissible variations &d; from the equilibrium state.
An admissible variation is one in which the displacement field still satisfies the
boundary conditions and interelement continuity.

To satisfy dm, = 0, all coefficients associated with 6d; must be zero independently,

therefore:

T g i=12n or o0
ad. a{d}

I
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Let's assume F=1000 Ib, k=500 Ib/in. The total potential energy is definedas 7, =U+Q U =_—kx*

The variation of m, with respect to X is:

Using our express for 7, we get:

T, = %kx2 -Fx = %SOO(Ian) x*—(1000/b) x

Oﬂ'p

=0=500x-1000 x =2.0in.

ox

F = 1000 b

4

& = 500 Ib/in.

If we had plotted the total potential energy function for various values of deformation, we would get:

4
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m, , lb-in.

- 8000

- 6000

4000

2000

—» X, in.
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Now let’s derive the spring element equations and stiffness matrix using the principal of minimum
potential energy. Consider the linear spring subjected to nodal forces shown below:

The total potential energy mpis:

T, = % k(a;’w - &Ixr - ﬁx&

o f;ré'zr

Expanding the above express gives:

T, = % k(ahz - 2&1::&2; - dhl.r! )_ fuélx - f;.ra
Minimizing the total potential energy m,:
or, .
=0 i=1to 2
ad,

fll L flz

Fo _0=1k(-2d, +2d,)-1,

ad, 2

or, 1 - - "
=0=_kl2d,, -2d,)-1,

od 2

In matrix form the above equations are:
ANEELICA
L O 4 :
LA

\
[
2x)
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The developmen

t of the stiffness matrix of a
basic 2D or plane finite element
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Two-Dimensional State of Stress and Strain

To fully understand the development and

applicability of the stiffness matrix for the —= y
plane stress/plane strain triangular element, _J[ dyFAo' L
the concept of 2D state of stress and strain - N

and the stress/strain relationships for plane e —

stress and plane strain are necessary.

Since 1y, equals 1, three independent stress exist:

{O'}T :[ o, O, rxy]

Mahidol University

Faculty of Engineering

Also, 6, is the principal angle which defines the normal whose direction is per-
pendicular to the plane on which the maximum or minimum principle stress acts.

2
tan 29;3 = ﬂ
c,~0o,
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The general definitions of normal and shear strains are:

m Plane Stress m

ou ov

ou  ov
g, = &, = Y = +— For plane stress, the stresses o, 1,,, and 1,, are assumed to be zero
X ox oy Ox

The strain may be written in matrix form as:

O'xl 1 v 0 £,
o, = 3 v 0 &,
;

{e} =[‘5'x Ey /ny:'

-=
;J "o o o51-v)|y,

where
1 0
[D]= ~lv 1 0 < | stress-strain matrix
o o 0.5(1—v) (constitutive matrix)
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m Plane Strain m

For plane strain, the strains ¢, v, and vy,; are assumed to be zero.

o'xl . 1—v v 0 e 1 Steps in the formulation of element
oyt 5 ¥ 1 0 |ig stiffness equations
;WJ M+vlt-2v) 5 5 o5_y ryXyJ 9
where
1- : 0
(D] = E VV 1;, o | «— | stress-strain matrix
T (1+v)1-2v) 0 0 05-v (constitutive matrix)




Mahidol University

Faculty of Engineering

Wisdom of the Land

Mahidol University
Faculty of Engineerin

Wisdom of the Land

Consider the problem of a thin plate subjected to a tensile

load as shown below

v

Step 1: Discretize and Select element types
Discretize the thin plate into a set of triangular elements. Each element
is defined by nodes i, j, and m. Each node has 2 DOFs (displacements in x-,y-
directions)
y ‘

We use triangular elements because
1. Boundaries of irregularly shape bodies can be closely approximated.
2. The expressions related to the triangular element are simple. --

Mahidol University
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let u; and v; represent the node Jj displacement components
in the x and y directions, respectively.

The nodal displacements for an element with nodes J, j, and m are:

Vi s m(XnYim) d,
dl=
y‘ m {dl=1d, where 19} {
V; T/J 'dm .U‘
1o Therefore: v,
. u. Y u,
i0y) {d}=
X v,
um
v

Faculty of Enginee
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Step 2 : Select Displacement Functions
A linear displacement function is selected for each triangular element, defined as

Linear representation of u(x, y) e {u(x,y)} _ [31 +a,x+ a3y1
S v laraxray (s
aE
X - [a,+a,x+a,y| [1 x y 0 0 0]la,
e, +ax+ay[ |0 0 0 1 x y} a,|
a5
\aﬁ_

A linear displacement function ensures that the displacements along each edge of
the element and the nodes shared by adjacent elements are equal.
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. . . . . The inverse of the matrix is:
To obtain the values for the a's substitute the coordinated of the nodal points into L
ions: a o a,]
the above equatlons. o ‘ | The values of @ may be written matrix form as:
DI =544 B A
U, =a,+a,x; +ay, V,=a,+a.x +ay, oot Tml a‘ ] (o & a,]fu
- - where b=—0o | 8 Wu
u,=a +a)x; +a,y, v,=a,+ax +ayy, Vox : 24l % B ﬂmJ_ :
P Y a.. L7 ¥ Ve |lUn
u,=a +ax +ay, vV,=a,+ax,_+ay, 2A=|1 x; vy, ‘
1 e and
Solving for the a’'s and writing the results in matrix forms gives: o _
is the determinant of [x]. a,| .  a a,llv
ar==z|6 B Bnp
PI 28=xly, -y, )+ x vy, -v)+x\y.-y,) LO2A Lo
u, l M x  y](a ¥y = ¥a )+ X,V =y )+ 5y, -, . oy v
u l= a = a} = [x|"{u} : -
ir= i }"‘,- 2 - [\ where A is the area of the triangle and
WLl 11X, vl lla &= XY=V Xe  B=ViVa = Xa—X
G =XY, =Y Xa  Bi=Y.—Y, V=X -X,
G =XY, =YX  Bu=Vi—V,  Tn=X—X

Mahidol University : = Mahidol University
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We will now derive the displacement function in terms of the coordinates x and y. L . . .
A similar expression can be obtained for the y displacement

.a-\]
=l x y]Jaz} 1 _ . _
I V{Xry) A i!‘C(J + rﬁ.‘XJrr.”r'y JVJ' +1C(,I' - ,5’),-X+ .-"’jy_]vj +(C(m 7185:1)( + -"’my}vm}
a, ] 2A

Substituting the values for a into the above equation gives:
_ The displacements can be written in @ more convenience form as:

o o a, [ u, ‘
[1 X y] )81 )8;' )Bm YU

u

m}

{u} = ux,y)=Nu +Nu. +Nu_ v(xy)=Nv,+Nv, + N v,
J
2A where

Y. ¥ ¥
J P im

Expanding the above equations . 1 ( ) . 1 ( ) . 1 ( )
~ "=2a o+ PX+yYy ,a—ﬂa,aJr;B;X*r;V =54 Oy + B X+ 7Y
1 ol o, o,
{up = ﬂ“ X y]| BY;+ B + By, The elemental displacements can be summarized as:
L yill; + ,'»’J,UJ; + Vmltm ) ]
Multiplying the matrices in the above equations gives wl= u(x,y}l}_ _J N, =N, + N, l
Yolvixy)  (Nvi+Nv N, |

1y

u(x,y)=={(a,+ Bx+yy)u, +(a, + Bx+yy)u +(a, + B,X+7,y) U,
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In another form the above equations are:

'ur
V‘-
N ON 0N, 0]y N ON O N
_ i m 1Y oY= _ F N
M=o N o N 0 NJ‘V, Wi=INKSY  where  [NI=| ) Noo
Un':l
vm

B
3
>
3

Z o
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Step 3 : Define the Strain-Displacement and Stress-Strain Relationships
Elemental Strains: The strains over a 2D element are:

cu

gxﬁ [5).¢

av
7
Yw) o |ou  ov
3y ox

Substituting our approximation for the displacement gives:

cu I3}
—=U,=—(Nu, +Nu, +N,u,)
' oX

)

U, =N u+N u +N_ U,

Mahidol University
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where the comma indicates differentiation with respect to that variable. The de-
rivatives of the interpolation functions are:

Nax:ii(ai_klgjx-'_;yjy.): )gj N'x:& me :&

" 2A ox T 2A P24 TO2A
Therefore:

wu_1

ox = oA (ﬂ;ul‘ + ﬁj.uj + ﬁmum)

In a similar manner, the remaining strain terms are approximated as:

v _
g = ﬂ( }’Ivi + /lej + ;yfnvm)

eu ev 1

g + g = ﬂ(ﬁuJ + ;VJVE + ﬁjuj + ?’)Vj + ﬁmum + ;vam)

We can write the strains in matrix form as:

au u
e, G g 0ip 0ip, 0]
{e}={¢ := a—v :i 0 y 0 y 0 ¥ Yi
¥ oy 2A . . 7
Vxy 5_U+5_V Vi ﬂ;; Y ﬂj:}’m B u,
oy &x v,
or
df
{e}=8 B, B,ld,
.dm.
where
g0 B, 0 B, 0]
B]-,.0 » Bl- L0 » B--|0 »
T2A 12A m2A o
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These equations can be written in matrix form as:

{e} = [Bl{d}

Stress-Strain Relationship: The in-plane stress-strain relationship is:

3 A
O-X g}’ J
cry[ =[D] ¢, [
Tny f./xy)

where [D] for plane stress is: and [D] for plane strain is:

1 v 0 1-v v 0
pi-—E |, 1 0 O-—EF |y 1% o0
[ ]_1_1/2 ' (1+v)1-2v)

0 0 0.5(1-v) 0 0 05-v

In-plane stress can be related to displacements by:

{a} =[D1[B]{d}
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Step 4: Derive the Element Stiffness Matrix and Equations using the Total
Potential Energy Approach

The total potential energy is defined as the sum of the internal strain energy U and
the potential energy of the external forces Q :

7, =U+Q,+Q, +Q,
where the strain energy is:

U= %i[{g}-* {c}aV - U= %J’{s}"[D]{e}dV

The potential energy of the body force term is:

Q, = —J'{‘P}T{X}dv
v

where {'¥'} is the general displacement function, and {X} is the body weight per

unit volume.
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The potential energy of the concentrated forces is:

Q, =-{d}'{P}
where {F} are the concentrated forces, and {d} are the nodal displacements.

The potential energy of the distributed loads is:
Q = —J'{T}T{T}ds
S

where {¥} is the general displacement function, and {T} are the surface tractions.
Then the total potential energy expression becomes:
1
7, = Ej{d}’ [BI'[DI[BI{d}aV - [{d} IN]' {X}aV —{d}" {P} - [{d}" [N]'{T}dS
v v

S
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The nodal displacements {d} are independent of the general x-y coordinates,
therefore

7, = %{d}T [IBI'D1IBaV {d} —{d}" [IN]'{X}dV —{d}’ {P}-{d}" [IN]'{T}dS

We can define the last three terms as:
{f} = j[N]T{X}dV + {P}+ j[N]T{T}dS
v S

Therefore:

7, =210} [(BTIDIBIAV (o} (o} {7}
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Minimization of =, with respect to each nodal displacement requires that:

;’;’} - [IBI'IDIBIAV {d} - {f} =0

The above relationship requires:

1

[IBI'IDNBIAV {d} = {f}

The stiffness matrix can be defined as:

[k1= [ 1B [D11BldV

v
For an element of constant thickness, ¢, the above integral becomes:

[K]= rJ;[B]T[D][B] dx dy

The integrand in the above equation is not a function of x or y (global coordi-
nates); therefore, the integration reduces to:

K- BT [D][B]jdxdy o [k]=tA[BT[D][B]

where A is the area of the triangular element. Expanding the stiffness relationship
gives:

k1 k] [k,]]
K1=| (k] [k K] |
Kol Kyl (Kol

where each [k;] is a 2 x 2 matrix define as:

[k,]=[BI'[DIIB]tA [k,1=[B1'[DIB A [kn]=[BI[DIIB,] tA
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Recall:
: B 0 : B 0 > B, 0]
[B.l]:ﬂ 0 Yi [BJ]:ﬂ 0 ¥ [Bm]_ﬂ 0 :m
7B v B Ym Pn)
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Step 5: Assemble the Element Equations to obtain the Global Equations and
Introduce the Boundary Conditions
The global stiffness matrix can be found by the direct stiffness method.

[ngww

The global equivalent nodal load vector is obtained by lumping body forces and
distributed loads at the appropriate nodes as well as including any concentrated
loads.

(F}= 2.4}

The resulting global equations are: {F}=[K|{d}

where {d} is the total structural displacement vector.
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In the above formulation of the element stiffness matrix, the matrix has been
derived for a general orientation in global coordinates. Therefore, no transforma-
tion form local to global coordinates is necessary. However, for completeness,
we will now describe the method to use if the local axes for the constant-strain
triangular element are not parallel to the global axes for the whole structure.
fmy

Ay

E=3

To relate the local to global displacements, force, and stiffness matrices we
will use:

C Si0 0:0 O
S CcCi0 0:0 O
. oocsoo
0 0/-S Ci0 O
0 0{0 0/C S
|0 0:0 0:-S C|

where C = cos 8and S = sin 6, and &is shown in the figure above.
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Step 6: Solve for Nodal Displacements
Step 7: Solve for Element Forces and Stresses

Having solved for the nodal displacements, we can obtain strains and
stresses in x and y directions in the elements by using:

{e} = [B){d} {o} = [DI[B{d}

4y
o, 1)
m=3
Jj=2
= X
2,0
i=1© =D

Assume plane stress conditions. All coordinates are shown on the figure. Let £ =
30 x 10° psi, v = 0.25, and ¢ = 1 in. Assume the element nodal displacements
have been determined to be vy = 0.0, v4 =0.0025 in., U, =0.0012in., v- = 0.0, us
= 0.0, and v3; = 0.0025 in. Determine the element stiffness matrix and the element
stresses.




First, we calculate the element fFs and ys as:

B=Y-y,=0-1=-1 7, =X,—X,=0-2=-2

ﬁf:ymiyszoi(i“]):z }/fzxfixm:OiO:O

B,=Yy, -y, =-1-0=-1 Ym=X,—X,=2-0=2

Therefore, the [B] matrix is:
1[5}0[5’]0[5’”70 -1 0 2 0 -1

[B]:ﬂo i 0 ¥y 0 y, :—(1 0 2 00 O
i By Bi Vm Ba 2 -1 02 2

0
2
-1
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For plane stress conditions, the [D] matrix is:

30 x10° 0.25 0
[D]-—=—Z_—_10.25 1 0
1-(0.25)
0 0 0.375

Substitute the above expressions for [D] and [B] intoc the general equations for
the stiffness matrix:

[k]=tA[BT [D][B]

10 -2
P 2 _02 _11 1025 0] [-1020-10]
w0752 o 2|[®B 1 0 |30 2000 2|
0 0 0375 2 102 2 -1
1.0 2 -
0 2 -1
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Performing the matrix triple product gives:

(25 125 -2 -15 -05 025 |
125 4375 -1 -075 -025 -3.625
eatg| 2 1 40 2 1 |,
15 -075 0 15 15 -075|/1
~05 -025 -2 15 25 125
1025 -3625 1 -075 -1.25 4.375 |
(s[>
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The in-plane stress can be related to displacements by:

{o} = [DI[BK{d}

0.0
[ﬂ o] 1 02 0] [1 02010 ggg?g’_”
rVJDg‘S?ﬁ{o.zs 1 0 ]ﬁ{o 200 0 2]1@0 "
r, 0 0 0375 2 102 2 -1
0.0
0.0025 in
The stresses are:

Jcrx] 19,200 psi
o,r=| 4800 psi
lrw | 15,000 psi
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Recall, the relationships for principal stresses and principal angle in two-
dimensions are:

o, +0, .:." o, -0, .
a, : :[ ~| +7, =0,
2 U2 )
1 | 2r,,
6, —tan -
2 o,-0,
Therefore:
2 )
) 19,200 + 4,800 | Ig[19;200—4,800] H( 15‘000}9 28,639 psi
2 \ X 2
Ifd 2
o, = 19:2002+ 4800 3 \[ 1 9,2002— 4,8001 (- 15,000) = -4.639 psi
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Treatment of Body and Surface Forces

The general force vector is defined as:
i} = [INI{X}dV +{Pj+[[N] {T}dS
v s

Body Force

Let's consider the first term of the above equation.
{f,} = [INT {X}aV
v

where

o[

where X, and Y}, are the weight densities in the x and y directions, respectively.
The force may reflect the effects of gravity, angular velocities, or dynamic inertial
forces.

The integration of the {f,} is simplified if the origin of the coordinate system is
chosen at the centroid of the element, as shown in the figure below. With the ori-
gin placed at the centroid, we can use the definition of a centroid.

y

1 idi:o

X

\ [yda=0
i i A

——

For a given thickness, t, the body force term becomes:

{f,} = [INY (Xyav = (] INT (X}eA
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Recall the interpolation functions for a place stress/strain triangle:

1 1 1
N =—(a+px+ry) N=—la+px+ry) N,=——(a,+pBx+7,y)

Y 1724 "~ 2A
Therefore the terms in the integrand are: -
The general body force vector is:
[BxdA=[rydA=0
A A fbm Xb
and fb[y Y,
a,:aj:am:% f _ fbjx _tA Xb
3 W =1 1730y,
.. . R bjy b
The body force at node i is given as:
fbmx Xb
{f }:E{X" fbmy Y
"3y,
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Surface Force

The third term in the general force vector is defined as:
{f.}=[INI{T}ds

Let's consider the example of a uniform stress p acting between nodes 1 and 3
on the edge of element 1 as shown in figure below.

1

L p (b/in)
ST
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The surface traction becomes: and [\ is:
{T}m}fp} N, 0
lp,] o 0 N,
N, 0
T _ 2 -
INF =|" N, evaluated at x=a

N, 0

0 N,

Therefore, the traction force vector is: After some simplification, the traction force vector is:

N, O Np

0 N, 0

(LN, 0 |[p) NP
{f1= . vdy dz evaluated at x=a ffl=t |
W=Illo ,[lo] A Y

N, 0 N,p

0 N, 0
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The interpolation function for i =1 is:

N, :ﬁ(giJrﬁfor}/J)

For convenience, let's choose the coordinate system shown in the figure below.

b ¥

Recall:
1
- aJZX}Ymiy..Xm
L - P withi=1,7=2,and m=3, we get
@ = X5)5 — VoXy
2 » X
a 3
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If we substitute the coordinates of the triangle show above in the above equation

we get:
o, =0
Similarly, we can find:
/_’5’1 =0 ¥y, =4a

Therefore, the interpolation function, Ny is:

N =
2A
The remaining interpolation function, N, and N, are:
NQZL(G_X) NSZLx—ay
2A 2A
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Substituting the interpolation function in the traction force vector expression

gives:
fs1x\ 71—[
JFs1y 0
f 0]
{fs} _ 52x _ P_Lf
fay 2|0
fsSx 1 |
fsEy ,OJ

Explicit Expression for the Constant-Strain Triangle Stiffness Matrix
for plain strain case

Recall that: [k] = tAB]' [DI[B]
E 1-1 1 0 ]
h D] for pl train is: Dl=———| v 1-v 0
where [D] for plane strain is [1:_1,](1_2‘,1{ : o o5l

Substituting the appropriate definition into the above triple product gives:

[ 0 »
- I;; {’J {)’ 1-1 v 0
K= aamas 20)| o » sl v ¥V O
J 0 0 05—

.fJ’HI 0 Von

|0 ™ ﬁrl.‘

Therefore the global stiffness matrix is:
tE
L vy Wil — 2v)

I 1-2v 1=2 =
wo-0et(\F2) menn(U5) ano-vn('F2)

1-2 -2
r?(l—vnﬂ.’(Tv) ﬁ,v."*-ﬂn;( 2—')

1-2
B =)+ *’(T)

The stiffness matrix is a

function of the global
coordinates x and y, the

Symmclry
material properties, the
e in(2)  wma-non ('3 m (l . thickness and area of the
ydl = vl+m(‘ ’) b e ion(152) st ('5) element
mvemn(5Y)  agi-nen(S5) meen(132)

7fuwv}+m(' 2) B v+ﬁ,)...(l ’") ?,y..il—vwrﬁﬁ..(l_zv)

1-2
ﬂ,.u-v)w..(#z—l) e +ﬁ.),(l 2")
1=2
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Consider the thin plate subjected to the surface traction shown in the figure

below.
- 1 in.
N

/|

R
20 in.
10 in. 4+—= T = 1000 psi

R

T

r e

Assume plane stress conditions. Let £ = 30 x 10° psi, v=0.30,and t =1 in. De-
termine the nodal displacements and the element stresses.

Discretization
Let's discretize the plate into two elements as shown below:

> 5000 1b

0,
: @

» 5000 Ib

This level of discretization will probably not yield practical results for displace-
ment and stresses: however; it is useful example for a longhand solution.

fox [1] (17 [5,000/b]
fsﬂy 0 0 0
i) - fio| _pLt|O| 1000 psi(1in)10in(0| | O
) sty 210 2 0 0
feax 1 1| 5,000 /b
Foay 10 o) [ 0 |

The governing global matrix equations are:

{F} =[K}d}

F, R, d, 0
Fy Ry, d,, .
F, R, d,, 0
F, R d, 0
F:,i - 5,0026 p( =K d; =K d,,
FSy 0 d3y day
F.,| [5000/b d,, d,,
.F4y 0 _d4y_ _d4y

where [K] is an 8 x 8 matrix before deleting the rows and columns accounting for
the boundary supports.
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Assemblage of the Stiffness Matrix

The global stiffness matrix is assembled by superposition of the individual ele-
ment stiffness matrices. The element stiffness matrix is:

[k]=tA[B]'[D][B]

For element 1: the coordinates are x;=0, y; =0, x;= 20, y;= 10, x», =0, and y,, =
10. The area of the triangle is:

m=12 ji=3
bh
A=Z

@ 2

~(20)(10)
2

A =100in?

i=1

The matrix [B] is:
g 0 B 0 B, 0

m

Bl=—|0 » 0 ¥ 0 ¥
[B] 24| 0

i 4 im

We need to calculate the element p’s and y's as:

Bi=Y,-y,=10-10=0 Vi =X,—-X;=0-20=-20
B =Y,—¥,=10-0=10 y;=X-X,=0-0=0
ﬁm:y,*yJZU*’ID:*'ID ;/m:XJ—XJ:ZC)fU:ZU

Therefore, the [B] matrix is:

,fo o 10 0 -0 0
_ v _ 1
[Bl=5p5 © 20 0 0 0 20 ¥
20 0 0 10 20 -10

For plane stress conditions, the [D] matrix is:

souge] 103 0
(D] = DXQ'I 03 1 0 |psi
' 0 0 035
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Therefore:
[0 0 -20]
0 20 O
20010°) | 10 0 . 1 03 0
[B]T[D]:ﬁ o o 102 1 0O
0.9 0 0 0.35
-10 0 20
| 0 20 -10]
Simplifying the above expression gives:
[0 0 -7
-6 -20 0
30(10° 10 3 0
(B (D] = 000
200(0.91)| O 0 3.5
-10 -3 7
RO CIEIE)

The element stiffness matrix is:
[k] = tA[B]' [D][B]

therefore:
[ o 0 -7
-6 -20 0
5y 10 3 0
tAB]' [D][B]—1(100)(0'15)(10 )
091 | 0 0 35|

| =10 3 7

0 0 10 0 -10 0
. 2(;0 0 20 0 0 0 20
20 0 0 10 20 -10]

Simplifying the above expression gives:

u, v, L.fj V3 u2 ""2
[ 140 0 0 70 -140 707
0 -400 60 0 60 400
75000 O 60 100 0 -100 60
091 | -70 0 0 35 70 -35
| -140 60 -100 70 240 -130 iﬁi
| 70 —400 60 -35 -130 435 |

[K]=
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For element 2: the coordinates are x,= 0, y;=0, x,= 20, ;= 0, x,, = 20, and y,, =
10. The area of the triangle is:

i=1 i=4

We need to calculate the element f's and y's as:
B=y,-¥,=0-10=-10 ¥i=X,-Xx,=20-20=0
B =Yu-¥,=10-0=10 ?, =X -X,=0-20=-20

Bo=Y,-y,=0-0=0 Fm=%=X,=20-0=20

Therefore, the [B] matrix is:

0 0 10 0 0 0

. | .

B] - o 0o 0 -20 0 20V

B1= 300 |/in
|0 -10 -20 10 20 O |

For plane stress conditions, the [D] matrix is:
J1 03 07
[D]_% 03 1 0 |psi
o o0 o35
Therefore:
0 0 0
0 0 -10
30(10°) [ 10 0 20[1 LU
[y [D]_zou((o 9)1) 0o 20 0% 1" 0O
0 0 20 [0 0 035]
0 20 0 |
Simplifying the above expression gives:
[-10 -3 0]
0 0 -35|
30(10%) | 10 3 -7 |
8y (0] = 1)
200(0.91)| O 20 35
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The element stiffness matrix is:

[K] = tA[BY [D][8]

therefore:

10 3 o]
0 0 -35| <10 0 10 0 o0 0]
15109 10 3 7| »_L|0 0 0 20 0 20
e ol 200[0 -10 -20 10 20 O |
& 0 7
6§ 20 0 |

tA[B]'[D][B] = 1(100)

Simplifying the above expression gives:

u, v, u, Va Uy Vv,
100 0 100 60 0 60
0 35 70 -35 70 0
75000/ -100 70 240 -130 -140 60 |
7091 | 80 35 130 435 70 400
0 -70 -140 70 140 0 |
60 0 60 400 O 400

[k]
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Element 1: u, v u, v, u v, u, v

375000 14 -80 -26 87 12 -7
0.91 0 -12 -20 12 20

tk]

o o o O o o o o
o o o o o o o o

Element 2: oo O R I
20 0 0 "] o -12 -20 12
0 7 0 0o -14 0 14 -7
] 0 ] 0 0 o 0 ]
(] 3750000 0 0 ©0 O O 0 0 0
0.9 0 14 0 o 28 0 28 14

12 0 0 0 0 8 12 -80

20 14 0 0 28 12 48 26

L 12 7 0 0 14 80 26 87 | iﬁi
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Using the superposition, the total global stiffness matrix is:

u, v, u, v, u, v, u Vv
(48 0 28 14 0 26 20 12
0O 8 12 80 26 0 14 -7
28 12 48 26 20 14 0 0
375000/ 14 80 26 87 12 7 0 0
091 | 0 26 20 12 48 0 28 14
26 0 14 -7 0 87 12 -80
20 14 0 0 28 12 48 -26

12 7 0 0 14 80 -26 87 |

4

(k] =
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The governing global matrix equations are:

{F}=[K}d}
R, 48 0 -28 14 0 -28 -20 127[d,
R, 0 87 12 -80 -26 0 14 -7||d,
R, -28 12 48 -26 -20 14 0 0 [|d;
| Ry |_375000014 & -26 & 12 -7 0 0 _;d;_,
5,000 /b 091 | o -26 -20 12 48 0 -28 14 ||d,,
0 -26 0 14 -7 0 87 12 -80|d,
500 /b 20 14 0 0 -28 12 48 -26||d
0 12 -7 0 0 14 -80 -26 &7]|d, |

Applying the boundary conditions:

d,=d,=d,, =d, =0
The governing eguations are:

5,000 /b| 48 0 -28 14 7(d,,)
[ 0 ‘ _375000] 0 8 12 -80||d,|
‘5,000;1: 091 |-28 12 48 -26/||d,,|

0 ‘ 14 -80 -26 87 ||d,,|
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Solving the equations gives:

d,, ] (609.6
| I 42|
»l_(10%), Lin
d, | (107 ) 663 7]
d, | [104.1)

|a.
The exact solution for the displacement at the free end of the one-dimensional

bar subjected to a tensile force is:

PL  (10,000)20

s=PL _11000020 o7 10
AE ~10(3010°) "

The in-plane stress can be related to displacements by:

{s} = [DI[B}{d}

[d.]

1 v 0 0 g5 0 0] I,

£ ' A o % |d, |

{c} = v 1 0 0 0 p 0 r. 130
2A(1-v%) L d,
00 05(1-v)||5i B 7 B 7m Bully
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Element 1:
.dh{]
) 9 dly'
c [T 0 A0 p0 p 0] |
lo)=aim|¥ 0 0 », 0 5, 0 | dﬁx L
=y o 05(1-v)|lry B 1 B 5 B du.
ds, | 0.0
=) 0.0
o-xl . » 03 0 0 0 10 0 -10 0]
G -:M 03 1 0 0 -20 0O 0 0 20| 609.6
Y 0.96(200 : 4.2
Tny (200) 0 0 035/|-20 0O 0 10 20 -10] 0
0.0

The stresses are:

a, J 1,005 psi
o,r=| 301psi
T [ 2.4 psi

Xy
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Element 2:

1 0 B
E
—— = |y 1 0 0 ¥
o} 2A(1—1-2)[; 0 05 l ’

P‘ 30(10%)(10°)
f [ 0.96(200)

The stresses are:

[cr,‘ 1 995 psi]
10, r=|-1.2psi|
!_rx,._l' | -2.4 psi |

1
0.3

1-v) | 74

03 0
1 0
0 035

|

[d]
0 5 o]|%
B [ |
: 0 rnly
d,
rgi 3 ﬁ\!'d"‘
ld!yl
0.0]
0.0
0 110 0 0 0 1663.7
0 0 20 0 20 5104'1
0 -20 10 20 0 )
€609.8
42|

The principal stresses and principal angle are:

_ ( Y
s _ 995 -1.2 . 995 +1.2 ‘ +(=2.4)* — 995 psi
: 2 \ 2 /

2

5 | +(-24) =-11psi
\ v

99512 \/(995”.2
2 2 -

o = Vtan| A24) |4
P72 995 +1.2
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