

ฐานราก (Foundation)

โครงสร้างแบ่งเป็น ส่วนบน(Superstructure) และส่วนที่สัมผัสกับดิน (Foundation)

ตั้งแต่ระดับที่วางฐานรากและระดับความลึกลงไป

ชนิดของฐานรากแบบตื้น (Shallow foundation)

ขึ้นอยู่กับรูปร่าง และลักษณะการใช้งานของโครงสร้าง

ชนิดของฐานรากแบบตื้น (Shallow foundation)

ชนิดของฐานรากแบบตื้น (Shallow foundation)

ฐานรากรับแรงกระทำเยื้องศูนย์ (Eccentric loading) หรือ ฐานรากรับโมเมนต์ ส่วนใหญ่จะออกแบบให้น้ำหนักที่กระทำกับฐานรากกระทำตรงศูนย์กลางฐานราก (Centroid) ดังนั้น หน่วยแรงดันขึ้น ของดินที่กระทำใต้ฐานรากจะมีค่าสม่ำเสมอ (Uniform)

กรณีของการเกิดแรงกระทำเยื้องศูนย์

กรณีของฐานรากรับแรงกระทำเยื้องศูนย์

ฐานรากรับแรงกระทำเยื้องศูนย์ (Eccentric loading) หรือ ฐานรากรับโมเมนต์

ฐานรากรับแรงกระทำเยื้องศูนย์ หรือฐานรากรับโมเมนต์

หลักการย้ายแรงกระทำในแนวดิ่ง และทิศทางของโมเมนต์ที่เกิดจากการย้ายแรง จะเป็นไปตามหลักของวิชากลศาสตร์วิศวกรรม โดยที่ผลของแรงกระทำในรูป จะทำให้เกิดหน่วยแรงดันขึ้นกระทำกับฐานรากทั้งสอง เหมือนกันทุกประการ

หน่วยแรงที่เกิดขึ้นใต้ฐานรากเมื่อแรงกระทำเยื้องศูนย์

โดยที่ A = พื้นที่หน้าตัดของฐานราก C = ระยะจากศูนย์กลางฐานถึงขอบฐาน = L/2 I = โมเมนต์ของความเฉื่อยของพื้นที่ฐานรากรอบแกนที่ผ่านศูนย์กลางฐานราก

ฐานรากรับแรงกระทำเยื้องศูนย์ (Eccentric loading) หรือ ฐานรากรับโมเมนต์

กรณีที่มีแรงกระทำเยื้องศูนย์ในสองแกน หรือมีโมเมนต์กระทำในสองแกน

แรงที่กระทำเยื้องศูนย์กับฐานรากใน 2 แกน

ฐานรากร่วม (C0mbine footing)

ฐานรากร่วม ตำแหน่งแรงลัพธ์ R จะกระทำ ณ จุดศูนย์ถ่วงของพื้นที่ฐานราก (จุด C)

หลักการออกแบบต้องให้แรงลัพธ์เนื่องจากน้ำหนักจากเสากระทำ ณ. จุดศูนย์ถ่วงของ พท.ของฐานราก กรณีน้ำหนักมากกว่า 2 จุด จะใช้หลักการเดียวกัน

ฐานรากร่วม (Combine footing)

ผังวัตถุอิสระ และรูปของแรงเฉือนและโมเมนต์ SFD และ BMD

การทรุดตัวที่ยอมให้ Allowable settlement

 Total Settlement การทรุดตัวทั้งหมดพิจารณาจากลักษณะโครงสร้าง ของอาคาร เช่น ฐานรากของถังน้ำ ถังน้ำมัน ปล่องควัน ไซโล
Differential Settlement การทรุดตัวที่แตกต่างกันในอาคารเดียวกันอาจทำให้ เกิดการแตกร้าวของอาคารได้ เช่น กลางอาคารกับริมอาคาร

สาเหตุของการทรุดตัวไม่เท่ากัน

ลักษณะของชั้นดินที่มีความแตกต่างกันมาก

การใช้งานอาคารไม่สม่ำเสมอ

และมีการถ่ายแรงสู่โครงสร้างข้างเคียง

a) โครงสร้างที่มีความยืดหยุ่นจะมีการทรุดตัวที่แตกต่างกันมาก b) โครงสร้างที่มีความแข็งเกร็งจะมีการทรุดตัวที่แตกต่างกันน้อย

การทรุดตัวแตกต่างกันที่ยอมให้โดยวัดเป็นค่าความลาด (Slope)

Permissible differential building slopes by the USSR code on both unfrozen and frozen ground

All values to be multiplied by L = length between two adjacent points under consideration. H = height of wall above foundation.*

Structure	On sand or hard clay	On plastic clay
Crane runway	0.003	0.003
Steel and concrete frames	0.002	0.002
End rows of brick-clad frame	0.0007	0.001
Where strain does not occur	0.005	0.005
Multistory brick wall L/H to 3	0.0003	0.0004
Multistory brick wall L/H over 5	0.0005	0.0007
One-story mill buildings	0.001	0.001
Smokestacks, water towers, ring foundations	0.004	0.004

Average max. settlement, mm

100 150

 $25 \quad L/H \ge 2.5$ $100 \quad L/H \le 1.5$

300