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Chapter 1
Theories of Stress and Strain

1.1 Definition of Stress at a Point

Mechanics of materials is a branch of mechanics that studies

1.) The relationships between the external loads applied to a deformable body and

intensity of internal forces acting within the body.

2.) The deformation and the stability of the body under the action of the external

loads.

In this study, the body is made of the material that is continuous (consist of a

continuum or uniform distribution of matter having no voids) and cohesive (all portions of the

material are connected together without breaks, cracks, and separations).

The external loads that we are interested can be idealized as concentrated force,

surface force, and linear distributed load as shown in Fig. 1.1.

Fig. 1.1

Consider the body subjected to a loading condition as shown in Fig. 1.2a. Under the

action of these loads, the body is deformed and has internal forces to hold the body together.

At a given section, the internal forces are distributed as shown in Fig. 1.2b and we can find

the resultant of the internal forces at a given point O  as shown in Fig. 1.2c.

The distribution of the internal forces at a given point on the sectioned area of the

body can be determined by using the concept of stress.

Stress describes the intensity of the internal force on a specific plane or area passing

through a point as shown in Fig. 1.3. It can be classified into two types based on its acting

directions: normal stress and shear stress. Since the stresses generally vary from point to

point, the definitions of stresses must relate to an infinitesimal element.

Normal stress or σ  is the intensity of force that acts normal to the area A∆ . If the

normal force or stress pulls on the area element A∆ , it is referred to as tensile stress, whereas

if it pushes on the area A∆ , it is referred to as compressive stress. It can be defined as
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Fig. 1.2

Fig. 1.3

A
Fn

A ∆
∆

=
→∆ 0

limσ

Shear stress or τ  is the intensity of force that acts tangent to the area A∆ .

A
Ft

A ∆
∆

=
→∆ 0

limτ
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1.2 Stress Notation

Fig. 1.4

By passing the imaginary section through the body parallel to the x-y plane as shown

in Fig. 1.4, the stress on the element area yxA ∆∆=∆  can be resolved into stress components

in the rectangular orthogonal Cartesian coordinate axes x,  y, and z as zσ , zxτ , and zyτ  where

A
Fz

Az ∆
∆

=
→∆ 0

limσ

A
Fx

Azx ∆
∆

=
→∆ 0

limτ

A
Fy

Azy ∆

∆
=

→∆ 0
limτ

Notation

 The first subscript notation refers to the orientation of area A∆ , which is

perpendicular to the subscript notation.

 The second subscript notation refers to the direction line of the stress.

By passing the imaginary section through the body parallel to the x-z plane as shown

in Fig. 1.5, we obtain the stress components as yσ , yxτ , yzτ .

By passing the imaginary section through the body parallel to the y-z plane as shown

in Fig. 1.6, we obtain the stress components as xσ , xyτ , xzτ .

If we continue cut the body in this manner by using the corresponding parallel plane,

we will obtain a cubic volume element of material that represents the state of stress acting

around the chosen point on the body as shown in Fig. 1.7.
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Fig. 1.5

Fig. 1.6

In array form, we have

















=

zzyzx

yzyyx

xzxyx

ij

σττ
τστ
ττσ

σ

Stress on the plane
perpendicular to x -axis

Stresses in the x -direction
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Fig. 1.7

1.3 Symmetry of the Stress Array and Stress on an Arbitrarily Oriented Plane

If the stress around the chosen point on the body is constant, some of the stress

components can be reduced by using the force and moment equilibrium for the element.

Normal Stress Components

For a constant state of stress as shown in Fig. 1.8, each of the three normal stress

components must be equal in magnitude, but opposite in direction.

Fx =∑ 0 ; 0)()( =∆∆′−∆∆ zyzy xx σσ

xx σσ ′=

Similarly, we have

Fy =∑ 0  yy σσ ′=

Fz =∑ 0 ; zz σσ ′=

Fig. 1.8

Shear Stress Components

For a constant state of stress as shown in Fig. 1.9, pairs of shear stresses on adjacent

faces of the element must have equal magnitude and be directed either toward or away from

the corners of the element.



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-6

Fig. 1.9

Fx =∑ 0 ; 0)()( =∆∆′−∆∆ zxzx yxyx ττ

yxyx ττ ′=

M z =∑ 0 ; 0)()( =∆∆∆−∆∆∆ yzxxzy yxxy ττ

yxxy ττ =

Similarly, we have

zyzyyzyz ττττ ′==′=

zxzxxzxz ττττ ′==′=

Therefore, in matrix form,
















=

z

yzy

xzxyx

ij

σ
τσ
ττσ

σ
.Sym

Stress Acting on Arbitrary Plane

The stress vector on the plane that is perpendicular to the x -axis as shown in Fig. 1.10

can be written as

kji xzxyxx
ˆˆˆ ττσσ ++=v

In a similar fashion, the stress vector on the planes that are perpendicular to the y -

and z -axes can be written as

kji yzyyxy
ˆˆˆ τστσ ++=v

kji zzyzxz
ˆˆˆ σττσ ++=v

Consider an arbitrary oblique plane P  as shown in Fig. 1.11. Let the plane is defined

by a unit normal vector

knjmilN ˆˆˆ ++=
r

where αcos=l , βcos=m , and γcos=n . From Fig. 1.12, we have 222 dnl =+  and

122 =+ md . Thus,

1222 =++ nml
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Fig. 1.10

Fig. 1.11

Fig. 1.12
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In addition, if the infinitesimal area ABC  is defines as ABCdA ,

ABCBC ldAdA =0

ABCAC mdAdA =0

ABCAB ndAdA =0

Remark:

The area BCdA0 , ACdA0 , and ABdA0  are the projection of area ABCdA  on the respective

coordinate plane. Let consider the figure of the wedge shown below and compare the volumes

determined from two methods.

1. Let the area associated with the side AC  be ACA  and corresponding wedge height

be AB . The volume of the wedge is

)(
2
1

ACAAB

2. Let the area associated with the side CB  be CBA  and corresponding wedge height

be ABlAB =θcos . The volume of the wedge is

)(
2
1

CBAABl

By equating the two volumes, we have

CBAC lAA =

CB

AC

A
A

l =

Thus, we can write the stress vector Pσv  on the oblique plane P  by summing the force

vectors acting on the stress element as shown in Fig. 1.11.

)()()()( 000 ABzACyBCxABCP dAdAdAdA σσσσ vvvv ++=
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nml zyxP σσσσ vvvv ++=

nkji

mkji

lkji

zzyzx

yzyyx

xzxyxP

)ˆˆˆ(         

)ˆˆˆ(         

)ˆˆˆ(

σττ

τστ

ττσσ

++

+++

+++=v

knml

jnml

inml

zyzxz

zyyxy

zxyxxP

ˆ)(         

ˆ)(         

ˆ)(

σττ

τστ

ττσσ

++

+++

+++=v

Also, the projections of the stress vector Pσv  on the x , y , and z -axes may be written

as

kji PzPyPxP
ˆˆˆ σσσσ ++=v

Comparing the stress vector Pσv , we have

nml zxyxxPx ττσσ ++=

nml zyyxyPy τστσ ++=

nml zyzxzPz σττσ ++= 

Normal Stress and Shearing Stress on an Oblique Plane

The normal stress on the plane P  or PNσ  is the projection of the stress vector Pσv  in

the direction of the unit normal vector N
v

. Thus, the magnitude of the normal stress PNσ  can

be determined from

nml

knjmilkji

N

PzPyPx

PzPyPx

PPN

σσσ

σσσ

σσ

++=

++⋅++=

⋅=

       

)ˆˆˆ()ˆˆˆ(       

vv

Since yxxy ττ = , zyyz ττ = , and zxxz ττ = , we have

xyxzyzzyx

zyzxzyzyxyxzxyxPN

lmnlmnnml

nnmlmnmllnml

τττσσσ

στττστττσσ

222       

)()()(
222 +++++=

++++++++=

In matrix notation, we can see that if we write the unit normal vector knjmilN ˆˆˆ ++=
r

in the form of

 
















=

k

j

i

nmlN
ˆ

ˆ

ˆ
v

or,
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=N
v

 N
















k

j

i

ˆ

ˆ

ˆ

Then, we have

=PNσ  nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















n
m
l

or,

 [ ] T
PN NN σσ =

Fig. 1.13

Also, form Fig. 1.13, the magnitude of the shearing stress on plane P  or PSσ  can be

determined from the equation

222222
PNPzPyPxPNPPS σσσσσσσ −++=−=

Of all the infinite number of planes passing through point O , there is a set of three

mutually perpendicular planes that the normal stress PNσ  has a maximum value called the

principal planes. The maximum normal stress is called the maximum principal stress. On

these planes, the shearing stresses vanish. Also, the three mutually perpendicular axes that are

normal to the three planes are called principal axes.



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-11

1.4 Transformation of Stress, Principal Stresses, and Other Properties

Transformation of Stress

Fig. 1.14

Let ( x , y , z ) and ( x′ , y′ , z′ ) denote two rectangular coordinate systems with a

common origin as shown in Fig. 1.14. Also, let a general point in space A  has coordinate ( x ,

y , z ) and ( x′ , y′ , z′ ) in the respective coordinate system. The direction cosines between

the coordinate axes ( x , y , z ) and ( x′ , y′ , z′ ) can be determined by finding the coordinate

x′ , y′ , z′  of the point A  in term of the coordinate x , y , z .

kzjyixAOR ˆˆˆ ++==
vv

































′⋅′⋅′⋅

′⋅′⋅′⋅

′⋅′⋅′⋅
=

















′⋅

′⋅

′⋅

=
















′
′
′

z
y
x

kkkjki
jkjjji
ikijii

kR

jR

iR

z
y
x

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆ

ˆ

ˆ

v

v

v
































=

















′
′
′

z
y
x

nml
nml
nml

z
y
x

333

222

111

[ ]















=

















′
′
′

z
y
x

T
z
y
x

where [ ]T  is called the transformation matrix.

As shown in Fig. 1.15, the stress components in the ( x , y , z ) coordinates are

xσ , yσ , zσ , xyτ , xzτ , and yzτ
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and the stress components in the ( x′ , y′ , z′ ) coordinates are

x′σ , y′σ , z′σ , yx ′′τ , zx ′′τ , and zy ′′τ

Fig. 1.15

From the previous discussions, the normal stress component x′σ  is the components in

the x′  direction of the stress vector on a plane perpendicular to the x′ -axis. Thus, from the

equation =PNσ  nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















n
m
l

, we have

=′xσ  111 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















1

1

1

n
m
l

xyxzyzzyxx mllnnmnml τττσσσσ 111111
2
1

2
1

2
1 222 +++++=′

Similarly,

=′yσ  222 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















2

2

2

n
m
l

xyxzyzzyxy mllnnmnml τττσσσσ 222222
2
2

2
2

2
2 222 +++++=′

=′zσ  333 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















3

3

3

n
m
l

xyxzyzzyxz mllnnmnml τττσσσσ 333333
2
3

2
3

2
3 222 +++++=′

The shear stress component yx ′′τ  is the components in the y′  direction of the stress

vector on a plane perpendicular to the x′ -axis. Thus,
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=′′yxτ  111 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















2

2

2

n
m
l

or

=′′yxτ  222 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















1

1

1

n
m
l

xyxzyz

zyxyx

mlmllnlnnmnm
nnmmll

τττ

σσστ

)()()(           122112211221

212121

+++++

+++=′′

Similarly,

=′′zxτ  111 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















3

3

3

n
m
l

xyxzyz

zyxzx

mlmllnlnnmnm

nnmmll

τττ

σσστ

)()()(           133113311331

313131

+++++

+++=′′

=′′zyτ  222 nml
















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















3

3

3

n
m
l

xyxzyz

zyxzy

mlmllnlnnmnm
nnmmll

τττ

σσστ

)()()(           233223322332

323232

+++++

+++=′′

By analogous to  [ ] T
PN NN σσ = , we can write down the stress vector in the ( x′ ,

y′ , z′ ) coordinates in the matrix form as

















′′′′′

′′′′′

′′′′′

zzyzx

zyyyx

zxyxx

σττ
τστ
ττσ
















=

333

222

111

nml
nml
nml

















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ

















321

321

321

nnn
mmm
lll

















′′′′′

′′′′′

′′′′′

zzyzx

zyyyx

zxyxx

σττ
τστ
ττσ
















=

333

222

111

nml
nml
nml

















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ T

nml
nml
nml

















333

222

111

or, in short

[ ] [ ][ ][ ]TTT σσ =′
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Principal Normal Stresses

Three Dimensions

Fig. 1.16

From section 1-3, since the shearing stresses vanish on the principal plane ABC , the

principal stress vector Nσv  is the only stress vector acting on the principal plane and in the

direction of the unit normal vector N
v

 to the principal plane.

knjmilN ˆˆˆ ++=
r

If the infinitesimal area ABC  as shown in Fig. 1.16 is defines as ABCdA , then,

ABCBC ldAdA =0

ABCAC mdAdA =0

ABCAB ndAdA =0

The projection of the principal stress vector Nσv  along the coordinate ( x , y , z ) are

knjmil NNNN
ˆˆˆ σσσσ ++=v

From the force equilibrium equations, we have

∑ = ;0xF ( Nσ ABCdA ) l xσ− ldAABC xyτ− mdAABC xzτ− ndAABC 0=

∑ = ;0yF ( Nσ ABCdA ) m yσ− mdAABC yzτ− ndAABC xyτ− ldAABC 0=

∑ = ;0zF ( Nσ ABCdA ) n zσ− ndAABC xzτ− ldAABC yzτ− mdAABC 0=
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0)( =++− nml xzxyNx ττσσ

0)( =+−+ nml yzNyxy τσστ

0)( =−++ nml Nzyzxz σσττ

These 3 equations are linear homogeneous equations. Since all three direction cosines

can not be zero ( 1222 =++ nml ), the system of the linear homogeneous equations has a

nontrivial solution if and only if the determinant of the coefficients of l , m , and n  vanish.

Thus, we have

0=
−

−
−

Nzyzxz

yzNyxy

xzxyNx

σσττ
τσστ
ττσσ

Expansion of the determinant gives

032
2

1
3 =−+− III NNN σσσ

where

zyxI σσσ ++=1

)( 222
2 xzyzxyxzzyyxI τττσσσσσσ ++−++=

)(2 222
3 xyzzxyyzxxzyzxyzyx

zyzxz

yzyxy

xzxyx

I τστστστττσσσ
σττ
τστ
ττσ

++−+==

This cubic polynomial equation has three roots 1σ , 2σ , and 3σ  which are the

principal normal stresses at point 0 .
















=

3

2

1

0.0
00

0

σ
σ

σ
σ ij 1σ  ≥  2σ  ≥  3σ

The magnitudes and directions of the principal stresses 1σ , 2σ , and 3σ  for a given

member depend only on the loads being applied to the member. They are independent upon

the choice of initial coordinate system ( x , y , z ) used to specify the state of stress at point 0 .

Thus, the constants 1I , 2I , and 3I  must remain the same magnitudes for all the choices of

initial coordinate system ( x , y , z ), and hence they are invariant of stress.

Determine the direction cosines of the principal normal stresses 1σ , 2σ , and 3σ

The direction cosines of the principal normal stresses )3,2,1( =iiσ  can be determined

by:
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1. Substituting any one of the three roots )3,2,1( =iiσ  into any two of the cubic

equation, we obtain

0)( =++− ixzixyiix nml ττσσ

0)( =+−+ iyziiyixy nml τσστ

0)( =−++ iiziyzixz nml σσττ

2. Solving two of the above three equations together with the equation

1222 =++ iii nml  for the direction cosines il , im , and in .

For example, if we need to find the direction cosines of the principal stress 1σ  or 1l ,

1m , and 1n .

- Substituting the principal stress 1σ  into any two of the cubic equation such as

0)( 1111 =++− nml xzxyx ττσσ

0)( 1111 =+−+ nml yzyxy τσστ

- Dividing the above equations by 1n

0)(
1

1

1

1
1 =++− xzxyx n

m
n
l

ττσσ

0)(
1

1
1

1

1 =+−+ yzyxy n
m

n
l

τσστ

- Solving the equations for 
1

1

n
l  and 

1

1

n
m

- Substituting the direction cosines 1l  and 1m  which are the functions of the

direction cosine 1n  into the equation 12
1

2
1

2
1 =++ nml , and solving for 1n

Two Dimensions

Consider the plate structure subjected only to the external load parallel to the plate as

shown in Fig. 1.17. If the plate is very thin compared to the dimension of the plate, the

stresses zσ , xzτ , and yxτ on an infinitesimal small element far away from the loading points

are approximately equal to zero. In addition, let us assume that the remaining stress

components xσ , yσ , and xyτ  are independent of z . This kind of state of stresses on the

infinitesimal small element is called the plane stress as shown in Fig. 1.18.
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Fig. 1.17

Fig. 1.18

In the similar fashion as for the coordinate transformation in three dimensions, we can

determine the coordinate transformation matrix of the plane stress as following.

Fig. 1.19

Let ( x , y ) and ( x′ , y′ ) denote two rectangular coordinate systems with a common

origin as shown in Fig. 1.19. Also, let a general point in space P  has coordinate ( x , y ) and

( x′ , y′ ) in the respective coordinate system. The angle between the coordinate axes ( x , y )
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and ( x′ , y′ ) is θ . Therefore, the relationship between the has coordinate ( x , y ) and ( x′ ,

y′ ) can be written as

θθ sincos yxx ′−′=

θθ cossin yxy ′+′=

zz ′=

Thus, in matrix notation, we have
































−=

















′
′
′

z
y
x

z
y
x

100
0cossin
0sincos

θθ
θθ

The transformation of the stress components from the ( x , y ) coordinates to the ( x′ ,

y′ ) coordinates,

















′′′′′

′′′′′

′′′′′

zzyzx

zyyyx

zxyxx

σττ
τστ
ττσ
















−=

100
0cossin
0sincos

θθ
θθ

















zyzxz

yzyxy

xzxyx

σττ
τστ
ττσ















 −

100
0cossin
0sincos

θθ
θθ

























































−−

−

−

=































′′

′′

′′

′

′

′

xy

xz

yz

z

y

x

yx

zx

zy

z

y

x

nmmnmn
mn
nm

mnmn
mnnm

τ
τ

τ
σ

σ
σ

τ
τ

τ
σ

σ
σ

22

22

22

000
0000
0000
000100
2000

2000

where θcos=m  and θsin=n .

Since zσ = xzτ = yzτ = 0 in state of plane stresses, then, the stress components in the

( x′ , y′ ) coordinates are

































−−
−=

















′′

′

′

xy

y

x

yx

y

x

nmmnmn
mnmn

mnnm

τ

σ
σ

τ

σ
σ

22

22

22

2
2

or

θτθ
σσσσ

σ 2 sin2 cos
22 xy

yxyx
x +

−
+

+
=′

θτθ
σσσσ

σ 2 sin2 cos
22 xy

yxyx
y −

−
−

+
=′

θτθ
σσ

τ 2 cos2 sin
2 xy

yx
yx +

−
−=′′
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Fig. 1.20

Fig. 1.20 shows the variation of the stress x′σ , y′σ , and yx ′′τ  versus θ  for xy σσ 2.0=

and xxy στ 8.0= .

Mohr’s Circle in Two Dimensions

Rewriting the equation of xσ ′  and yx ′′τ  in the form of

θτθ
σσσσ

σ 2 sin2 cos
22 xy

yxyx
x +







 −
=







 +
−′

θτθ
σσ

τ 2 cos2 sin
2 xy

yx
yx +







 −
−=′′

Squaring each equation and adding the equations together, we have

2
2

2

2

22 xy
yx

yx
yx

x τ
σσ

τ
σσ

σ +






 −
=+



















 +
− ′′′

This equation is the equation of a circle in the xσ ′  and yx ′′τ  plane as shown in Fig.

1.21. The center C  of the circle has coordinate

)0,
2

( yx σσ +

and radius of the circle is

2
2

2 xy
yxR τ

σσ
+







 −
=
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Fig. 1.21
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Principal Shearing Stresses

Fig. 1.22

Consider the stress element subjected to the state of principal stresses 1σ , 2σ , and 3σ

as shown in Fig. 1.22a. Also, consider the plane containing any two principal normal stresses,

such as 2σ  and 3σ . The maximum shear stress in this plane (the 2-3 plane) occurs on the

stress element that is rotated o45  about the remaining 1σ  principal stress axis as shown in

Fig. 1.22b. Since the principal stress 1σ  is independent from the state of stresses on the 2-3

plane, thus, the shear stress 
32

max
−

τ  is one of three principal shear stresses on the stress element

and it has the absolute value of

2
32

32
max

σσ
τ

−
=

−

Similarly, the shear stresses 
31

max
−

τ  and 
21

max
−

τ  are the principal shear stresses on the 1-3 plane

and the plane 1-2 of the stress element as shown in Fig. 1.22c and 1.22d, respectively. They

have the absolute value of

2
31

31
max

σσ
τ

−
=

−

2
21

21
max

σσ
τ

−
=

−

One of the 
32

max
−

τ , 
31

max
−

τ , and 
21

max
−

τ  is the maximum shear stress that occurs for all

possible choices of coordinate system of the stress element.
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Each plane of the principal shear stress is also acted upon by a normal stress that is the

same in the two orthogonal directions.

32
max
−

τ  plane;
2

32
32,

σσ
στ

+
=−

31
max
−

τ  plane;
2

31
31,

σσ
στ

+
=−

21
max
−

τ  plane;
2

21
21,

σσ
στ

+
=−

Mohr’s Circles for the Principal Planes

Consider a state of stress that has two components of shear stress equal to zero such as

xzτ = yzτ =0 as shown in Fig. 1.23.

Fig. 1.23

Then, the normal stress zσ  in the direction normal to the plane of the nonzero

component of shear stress xyτ  is one of the principal stresses of the state of stresses shown.

3σσ =z

From the discussions of the plane stress transformation, we can see that the normal

stress zσ  does not influence the transformation equations. Thus, in terms of the principal

stresses (no shear stress), the Morh’s circle can be constructed by using any two of the

principal stresses as shown in Fig. 1.24.

Fig. 1.24
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Octahedral Planes and Octahedral Stress

The octahedral planes are the oblique planes that intersect the principal axes )3 ,2 ,1(  at

equal distance from the origin 0  as shown in Fig. 1.25. The unit normal vectors to these

planes satisfy the relation

3
1222 === nml

Fig. 1.25

Thus, the octahedral normal stress, octσ  (or the hydrostatic stress) can be determined from the

equation

xyxzyzzyxPN lmnlmnnml τττσσσσ 222 222 +++++=

Since for the principal axes 1σσ =x , 2σσ =y , 3σσ =z , and 0=== yzxzxy τττ , then

)(
3
1

321 σσσσ ++=oct

In addition, since zyx σσσσσσ ++=++ 321  (see Example 1-1), we have

3
)(

3
1 1I

zyxoct =++= σσσσ

The the octahedral shearing stress, octτ  can be determined from the equation

222222
PNPzPyPxPNPPS σσσσσσσ −++=−=

2
321

2
3

2
2

2
1 )(

9
1

3
1

3
1

3
1 σσσσσστ ++−++=oct

2
2

1
2

32
2

31
2

21
2 62)()()(9 IIoct −=−+−+−= σσσσσστ

Substitution of the stress invariant into octτ , we have
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222222
2

2
1

2

666)()()(        

629

yzxzxyzyzxyx

oct II

τττσσσσσσ

τ

+++−+−+−=

−=

The term octσ  and octτ  are the important quantities as they are used to predict the

failure of materials under complex states of stress.

Mean and Deviator Stress

In the theory of plasticity and experiments, it has been shown that yielding and plastic

deformations of many metals are independent of the applied normal stress mσ ,

3
)(

3
1)(

3
1 1

321
I

zyxoctm =++=++== σσσσσσσσ

Therefore, the plastic behavior of the materials is related mainly to the part of stresses that is

independent of mσ .

Rewriting the stress tensor, we have

dm TTT +=

where the stress array mT  is called the mean stress tensor or hydrostatic stress tensor, and the

stress array dT  is called the deviator stress tensor.

















zzyzx

yzyyx

xzxyx

σττ
τστ
ττσ

























++

++

++

=

3
00

0
3

0

00
3

zyx

zyx

zyx

σσσ

σσσ

σσσ

+ dT

=dT

























++
−

++
−

++
−

3

3

3

zyy
zzyzx

yz
zyx

yyx

xzxy
zyx

x

σσσ
σττ

τ
σσσ

στ

ττ
σσσ

σ

=dT

























−−

−−

−−

3
2

3
2

3
2

xyz
zyzx

yz
zxy

yx

xzxy
zyx

σσσ
ττ

τ
σσσ

τ

ττ
σσσ

If the stress tensor is the principal stress tensor, we can determine the principal values

of the stress deviator as following
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















3

2

1

00
00
00

σ
σ

σ























++

++

++

=

3
00

0
3

0

00
3

321

321

321

σσσ

σσσ

σσσ

+ dT

=dT























++
−

++
−

++
−

3
00

0
3

0

00
3

321
3

321
2

321
1

σσσ
σ

σσσ
σ

σσσ
σ

=dT























−−

−−

−−

3
2

00

0
3

2
0

00
3

2

213

312

321

σσσ

σσσ

σσσ

=dT
















3

2

1

00
00
00

S
S

S

We can see that 0321 =++ SSS , thus only two of the principal stresses of dT  are

independent (we can find the 3rd term from these two).
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Example 1-1

Given a state of stresses at a point with respect to a convenient coordinate system ( x ,

y , z ) be MPa 100=xσ , MPa 60−=yσ , MPa 40=zσ , MPa 80=xyτ , MPa 0== xzyz ττ .

a.) Determine the principal normal stresses and the direction cosine of the principal

normal stresses

b.) Determine the principal shear stresses.

c.) Determine the octahedral normal stresses and octahedral shearing stresses.

d.) Determine the mean and deviator stress.

The principal normal stresses

0
4000

06080
080100

=
−

−−
−

σ
σ

σ

032
2

1
3 =−+− III σσσ

where the stress invariants,

MPa 8040601001 =+−=I
22

2 (MPa) 108008040)60()40(100)60(100 −=−−++−=I
32222

3 (MPa) 496000)80(40)0()60()0(100)0(0)80(240)60(100 −=−−−−+−=I

04960001080080 23 =+−− σσσ

Solving the equation, we obtain

MPa 137.1331 =σ

MPa 402 =σ

MPa 137.933 −=σ

It should be noted that MPa 80321 =++=++ zyx σσσσσσ

The direction cosine of the principal normal stresses

Substituting 1σ  and xσ , yσ , zσ , xyτ , yzτ , and xzτ  into the equations

0)( =++− ixzixyiix nml ττσσ  and 0)( =−++ iiziyzixz nml σσττ

0080)137.133100( 11 =++− ml

0)137.13340(00 1 =−++ n

We obtain 01 =n  and 11 414.2 ml = . Since 12
1

2
1

2
1 =++ nml ,

383.0
8274.6
1

1 ==m  and 924.01 =l
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We can see that the principal axis for 1σ  lie in the yx −  plane at the angle of
o5.22=α  counter-clockwise from the −x axis.

By using the same calculation procedures, we have the direction cosines of the

principal normal stress 2σ  and 3σ  are

383.02 −=l 924.02 =m 02 =n

03 =l 03 =m 13 =n

It should be noticed that the principal axis for 2σ  also lie in the yx −  plane and is

perpendicular to the principal axis for 1σ . In addition, the principal axis for 3σ  is coincident

with the original −z axis.

The principal shear stresses

MPa 14.113
2

)137.93(137.133
2

31

31
max =

−−
=

−
=

−

σσ
τ

MPa 56.66
2

)137.93(40
2

32

32
max =

−−
=

−
=

−

σσ
τ

MPa 56.46
2

40137.133
2

21

21
max =

−
=

−
=

−

σσ
τ

It should be noted that since there is only one nonzero component of shear stress xyτ ,

the stress normal to the plane of xyτ  is one of the principal normal stresses.

MPa 402 == zσσ

Then, the Mohr’s circle as shown in Fig. Ex 1-1 below may be used to determine the principal

normal stresses, the direction cosine of the principal normal stresses, and the principal shear

stresses in the yx −  plane as for the 2-D problem.

Fig. Ex 1-1
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The octahedral normal stresses

MPa 667.26)137.9340137.133(
3
1)(

3
1

321 =−+=++= σσσσ oct

The octahedral shearing stresses

MPa 856.92      

))137.93(40())137.93(137.133()40137.133(
3
1      

)()()(
3
1

222

2
32

2
31

2
21

=

−−+−−+−=

−+−+−= σσσσσστ oct

The mean stress























−+

−+

−+

=

3
137.9340137.13300

0
3

137.9340137.1330

00
3

137.9340137.133

mT

MPa 
667.2600
0667.260
00667.26
















=mT

The deviator stress























−−−

−−−

−−−

=

3
40137.133)137.93(200

0
3

)137.93(137.133)40(20

00
3

)137.93(40)137.133(2

dT

MPa 
804.11900

0333.130
00470.106

















−
=dT
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Example 1-2

Given the state of stresses at the dark spot on the surface of a pressure vessel as shown 

in Fig. Ex 1-2a.

a.) Determine the state of principal stresses.

b.) Determine the state of maximum in-plane shear stress.

Fig. Ex 1-2a

From the element right-hand face and the sign convention,

MPa 20−=xσ MPa 90+=yσ MPa 60=xyτ

The center of the Mohr’s circle is located at )0,( avgσ

MPa 35
2

9020
2

=
+−

=
+

= yx
avg

σσ
σ

The radius of the Mohr’s circle is

MPa 4.8160
2

9020
2

2
2

2
2

=+





 −−

=+






 −
= xy

yxR τ
σσ

Then, the initial point A )60,20( +−  and the center )0,35(C are plotted on  the Mohr’s circle as 

shown in Fig. Ex 1-2b.

Determine the state of principal stresses

The principal stresses are indicated by the coordinate of points B  and D  on Mohr’s

circle.

MPa 4.1164.81351 =+=σ

MPa 4.464.81352 −=−=σ

The orientation of the element is determined by calculating the counterclockwise

angle 
1

2 pθ  from the radius line AC   to BC .
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ooo
p 5.132

55
60tan1801802 1

1
=−=−= −φθ

Fig. Ex 1-2b

Thus, the orientation of the planes that contain the state of the principal stresses is

o
o

p 3.66
2

5.132
1 ==θ

Fig. Ex 1-2c shows the state of the principal stresses.

Fig. Ex 1-2c

The state of maximum in-plane shear stress

The maximum in-plane shear stress and the average normal stress are identified by the

point E  and F  on the Mohr’s circle in Fig. Ex 1-2d. Hence, we have

MPa 4.81max =
− planein

τ

and
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MPa 35=avgσ

The counterclockwise angle 
112 sθ  from the radius line AC  to the radius line EC  is

oooo
s 5.425.4790902
1

=−=−= φθ

Thus, the orientation of the planes that contain the state of the maximum in-plane shear stress

is

o
o

s 3.21
2
5.42

1 ==θ

Fig. Ex 1-2d

Fig. Ex 1-2e shows the state of the maximum in-plane shear stress.

Fig. Ex 1-2e
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1.5 Differential Equations of Equilibrium of a Deformable Body

Consider Fig. 1.26, the differential equations of equilibrium in rectangular coordinate

axes ( x , y , z ) can be written as following,

Fig. 1.26

∑ = ;0xF ( dx
x

x
x ∂

∂
+

σ
σ xσ− ) dydz + ( dy

y
xy

xy ∂

∂
+

τ
τ xyτ− ) dxdz

+ ( dz
z
xz

xz ∂
∂

+
τ

τ xzτ− ) dxdy + 0)( =dxdydzBx

x
x

∂
∂σ

y
xy

∂

∂
+

τ
z
xz

∂
∂

+
τ

0=+ xB

where xB  is the body force per unit volume in the x  direction including the inertia forces.

Similarly,

∑ = ;0yF

x
xy

∂

∂τ
y

y

∂

∂
+

σ
z
yz

∂

∂
+

τ
0=+ yB

∑ = ;0zF

x
xz

∂
∂τ

y
yz

∂

∂
+

τ
z

z

∂
∂

+
σ 0=+ zB
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Equilibrium Equations: Plane Problem

Fig. 1.27

If the body is a plane body of uniform thickness as shown in Fig. 1.27, the differential

equations of equilibrium of the three-dimensional body can be reduced to

x
x

∂
∂σ

y
xy

∂

∂
+

τ
0=+ xB

x
xy

∂

∂τ
y

y

∂

∂
+

σ
0=+ yB

Equilibrium Equations in Polar Coordinate: Plane Problem

Consider a plane body of uniform thickness in polar coordinate ( r , θ ) as shown in

Fig. 1.28, the differential equations of motion of this plane body can be written as following,

Fig. 1.28

∑ = ;0rF

θ
σ

σθστθσ θθ ddrrdr
r

drddrrd r
rrr )()(

2
sin)()( +





∂
∂

++−−− +
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drdr
r 





∂
∂

+ θ
θ
τ

τ θ
θ )(

2
sin drdd θθ

θ
σ

σ θ
θ 





∂
∂

+− 0=+ θrdrdBr

∑ = ;0θF

θ
τ

τθτσθτ θ
θθθθ ddrrdr

r
drddrrd r

rrr )()(
2

sin)()( +





∂
∂

++−−− +

drd 





∂
∂

+ θ
θ
σ

σ θ
θ )(

2
sin drddr

r
θθ

θ
τ

τ θ
θ 





∂
∂

+− 0=+ θθ rdrdB

Expanding the above two equations, setting 
22

sin θθ dd
= , and neglecting the higher-

order terms, we have the equilibrium equations in the polar coordinate.

01
=+

−
+

∂
∂

+
∂
∂

r
rrr B

rrr
θθ σσ

θ
τσ

021
=++

∂
∂

+
∂
∂

θ
θθθ ττ

θ
σ

B
rrr
rr

1.6 Deformation of a Deformable Body

Fig. 1.29

Consider a deformation body in equilibrium as shown in Fig. 1.29 subjected to

external loads and deformed to a new equilibrium position indicated by the dashed line. The

coordinate of point A  on an undeformed is ( x , y , z ) and, after the deformation, the point A

is moved to the point B  having the new coordinate of ( *x , *y , *z ). Noting that
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uxx +=*

vyy +=*

wzz +=*

Therefore, in Lagrangian coordinate method, we can write down the relationship between the

coordinate *x , *y , *z  and x , y , z  in the form of

) , ,(** zyxxx =

) , ,(** zyxyy =

) , ,(** zyxzz =

The functions need to be continuous and differentiable with respect to the independent

variables. Discontinuity implies rupture of the body.

The total differential equation of the coordinate *x , *y , *z  can be written as

dz
z
xdy

y
xdx

x
xdx

∂
∂

+
∂
∂

+
∂
∂

=
***

*

dz
z
ydy

y
ydx

x
ydy

∂
∂

+
∂
∂

+
∂
∂

=
***

*

dz
z
zdy

y
zdx

x
zdz

∂
∂

+
∂
∂

+
∂
∂

=
***

*

1.7 Strain Theory: Principal Strains

Let us define the engineering strain Eε  of the line element ds  that is transformed to

the line element *ds  as

ds
dsds

E
−

=
*

ε

and the quantity M  or magnification factor as

[ ] 22
2*

2
11)1(

2
11

2
1

EEEds
dsM εεε +=−+=












−








=

In general, since we have infinite number of particles neighboring to point A , let us

consider a particle at the neighboring of point A  as defined by the line vector 1rdv  from point

A  to the particle as shown in Fig. 1.30 and

kdzjdyidxrd ˆˆˆ
1111 ++=v

The magnitude of the line vector 1rdv  is infinitesimal and equal to

2
1

2
1

2
11 dzdydxdr ++=



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-36

Fig. 1.30

By the deformation, the line vector 1rdv  is moved to be the line vector *
1rdv  as shown in

Fig. 1.30. The vector linked between these two vectors is

kdz
z
wdy

y
wdx

x
ww

jdz
z
vdy

y
vdx

x
vvidz

z
udy

y
udx

x
uu

dz
z
udy

y
udx

x
uu

ˆ)(                  

ˆ)(ˆ)(                     

111

111111

111

∂
∂

+
∂
∂

+
∂
∂

++

∂
∂

+
∂
∂

+
∂
∂

++
∂
∂

+
∂
∂

+
∂
∂

+

=
∂
∂

+
∂
∂

+
∂
∂

+
vvv

v

Thus, from Fig. 1.30, we can determine the line vector *
1rdv  from the relationship

)( 111
*

1 dz
z
udy

y
udx

x
uurdrdu

∂
∂

+
∂
∂

+
∂
∂

++=+
vvv

vvvv

Then,

udz
z
udy

y
udx

x
uurdrd v

vvv
vvv −

∂
∂

+
∂
∂

+
∂
∂

++= )( 111
*

1

kdz
z
wdy

y
wdx

x
wdz

jdz
z
vdy

y
vdx

x
vdyidz

z
udy

y
udx

x
udxrd

ˆ)(         

ˆ)(ˆ)(

1111

11111111
*

1

∂
∂

+
∂
∂

+
∂
∂

++

∂
∂

+
∂
∂

+
∂
∂

++
∂
∂

+
∂
∂

+
∂
∂

+=
r

Similarly, let consider another particle point having an infinitesimal small distance

from point A  as defined by the line vector 2rdv  from point A  to the particle as shown in Fig.

1.30 and

kdzjdyidxrd ˆˆˆ
2222 ++=v
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2
2

2
2

2
22 dzdydxdr ++=

By the deformation, the line vector 2rdv  is moved to be the vector *
2rdv .

kdz
z
wdy

y
wdx

x
wdz

jdz
z
vdy

y
vdx

x
vdyidz

z
udy

y
udx

x
udxrd

ˆ)(         

ˆ)(ˆ)(

2222

22222222
*

2

∂
∂

+
∂
∂

+
∂
∂

++

∂
∂

+
∂
∂

+
∂
∂

++
∂
∂

+
∂
∂

+
∂
∂

+=
r

Now, let xu
x
u ,=
∂
∂ , yu

y
u ,=
∂
∂ , zu

z
u ,=
∂
∂ , xv

x
v ,=
∂
∂ , yv

y
v ,=
∂
∂ , K , and zw

z
w ,=
∂
∂ . Then,

in the form of the magnification factor M , we consider the change in the vector

multiplication (dot product) of the line vector *
1rdv  and *

2rdv , and the line vector 1rdv  and 2rdv

with respect to the line vector 1rdv  times 2rdv .

)(]/)(                                
),,,)(,,,(                                

),,,)(,,,(                                

),,,)(,,,[(
.

..

212121212121

22221111

22221111

22221111
21

21
*

2
*

1

dzdzdydydxdxdzdzdydydxdx

dzwdywdxwdzdzwdywdxwdz

dzvdyvdxvdydzvdyvdxvdy

dzudyudxudxdzudyudxudx
rdrd

rdrdrdrd

zyxzyx

zyxzyx

zyxzyx

++++

−++++++

+++++++

+++++++=
−
vv

vvvv

Expanding all terms of the equation, for example,

 ),,,)(,,,( 22221111 =++++++ dzudyudxudxdzudyudxudx zyxzyx

++++ 21212121 ,,, dzdxudydxudxdxudxdx zyx

++++ 212121
2

21 ,,,,,, dzdxuudydxuudxdxudxdxu zxyxxx

++++ 2121
2

2121 ,,,,,, dzdyuudydyudxdyuudxdyu zyyyxy

21
2

212121 ,,,,,, dzdzudydzuudxdzuudxdzu zzyzxz +++

=++++++ ),,,)(,,,( 22221111 dzvdyvdxvdydzvdyvdxvdy zyxzyx

++++ 21212121 ,,, dzdyvdydyvdxdyvdydy zyx

++++ 212121
2

21 ,,,,,, dzdxvvdydxvvdxdxvdydxv zxyxxx

++++ 2121
2

2121 ,,,,,, dzdyvvdydyvdxdyvvdydyv zyyzxy

21,212121 ,,,,,, dzdzuvdydzvvdxdzvvdydzv zxzyzxz +++

………

Then, consider only the numerator of the equation, we have

=− 21
*

2
*

1 .. rdrdrdrd vvvv

++++++++++ 2121
22 ),,,,,,(),,,,[(  dydxvvvuuudxdxvuuu yxxyxyxxxx KK
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++++ 21),,,,,( dzdxvvuuu zxzxx K

++++++++++ 21
22

21 ),,,,(),,,,,,(    dydyvvvudxdyvvvuuu yyyyzxxyxy KK

++++ 21),,,,,( dzdyvvvuu zyzzy K

++++++++ 2121 ),,,,,(),,,,,(    dydzvvvuudxdzvvuuu zyzzyzxzxz KK

]),,,( 21
2 dzdzwww zzz K+++

Rearranging,

       =− rdrdrdrd vvvv .. 1
*

2
*

1 +++ 2121212 dzdxdydxdxdx xzxyx γγε

+++ 212121 2 dzdydydydxdy yzyyx γεγ

212121 2 dzdzdydzdxdz zzyzx εγγ ++

or in another form, we have

[ ]=− 21
*

2
*

1 ..
2
1 rdrdrdrd vvvv +++ 212121 2

1
2
1 dzdxdydxdxdx xzxyx γγε

+++ 212121 2
1

2
1 dzdydydydxdy yzyyx γεγ

212121 2
1

2
1 dzdzdydzdxdz zzyzx εγγ ++

where
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which are called the finite strain-displacement relations.

For a special case when the line vector 1rdv  and 2rdv  are identical ( dxdxdx == 21 ,

dydydy == 21 , dzdzdz == 21 ), we have the dot product of the vectors
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2
21212121. dsdzdzdydydxdxrdrd =++=vv

2222 dzdydxds ++=

222 dzdydxds ++=

By the definition of the direction cosine and let the identical vector 1rdv  and 2rdv  have

the direction cosine of l
ds
dx

= , m
ds
dy

= , and n
ds
dz

= , we have

=
−

21

21
*

2
*

1

.
..

2
1

rdrd
rdrdrdrd

vv

vvvv
+++ 222

2

2
1

2
1

ds
dxdz

ds
dxdy

ds
dx

xzxyx γγε

+++ 22

2

2 2
1

2
1

ds
dydz

ds
dy

ds
dydx

yzyyx γεγ

2

2

22 2
1

2
1

ds
dz

ds
dzdy

ds
dzdx

zzyzx εγγ ++

Thus,
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or,
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EE εε +++ nllml xzxyx γγε 2 ++ mnm yzy γε 2 2nzε

Final Direction of Vector 1r
v

As a result of the deformation, vector 1r
v  deforms into the vector *

1r
v . Let the direction

cosines of vector 1r
v  and *

1r
v  are

l
dr
dx

=
1

, m
dr
dy

=
1

, and n
dr
dz

=
1

*
*

1

*

l
dr
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= , *
*
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*

m
dr
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= , and *
*

1

*

n
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=

Alternatively, we may write

*
*

1

1
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*

l
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= , *
*
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*

m
dr
dr
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*

n
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=

By using the previously obtained relations, uxx +=* , vyy +=* , wzz +=* , and
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∂
∂ *

, we find
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By using the engineering strain equation )1/(1/ *
11 Edrdr ε+=  with the above two 

equations, we obtain the final direction cosines of vector 1r
v  when it passes into the vector *

1r
v

under the deformation in the form of

n
z
um

y
ul

x
ulE ∂

∂
+

∂
∂

+







∂
∂

+=+ 1)1( *ε

n
z
vm

y
yl

x
vmE ∂

∂
+








∂
∂

++
∂
∂

=+ 1)1( *ε

n
z
wm

y
wl

x
wnE 








∂
∂

++
∂
∂

+
∂
∂

=+ 1)1( *ε

Definition of Shear Strain

If originally the vectors 1rdv  and 2rdv  having the direction cosine 1l , 1m , 1n  and 2l , 2m ,

2n , respectively, are normal to each other, by the definition of scalar product of vectors

0
2

cos 212121 =++= nnmmllπ

If the angle between the vectors *
1rdv  and *

2rdv  having the direction cosine *
1l , *

1m , *
1n

and *
2l , *

2m , *
2n , respectively, is equal to *θ  after the deformation, by the definition of scalar

product of vectors
*
2

*
1

*
2

*
1

*
2

*
1

*cos nnmmll ++=θ

Then, the angle change can be determined from
**

2
*

1
**

2
*

121
*

2
*

1 cos0cos.. θθ drdrdrdrrdrdrdrd =−=− vvvv

By using the definition of the magnification factor where 11
*

1 1/ Edrdr ε+=  and

11
*

1 1/ Edrdr ε+= , we have the engineering shearing strain 12γ  in the form of

[ ]nnmmll
dr
dr

dr
dr

EE
*
1

*
2

*
1

*
2

*
121

*

2

*
2

1

*
1

12 )1)(1(cos ++++== εεθγ

Using the equation of the final direction of vector 1r
v  when it passes into the vector *

1r
v

and the finite strain-displacement relation, we have the engineering shearing strain between 
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the vector 1r
v  and 2r

v  as they are deformed into the vector *
1r
v  and *

2r
v  as shown in Fig. 1.30 in 

the form of

=12γ +++ 1221212 lnmlll xzxyx γγε +++ 212112 2 nmmmml yzyyx γεγ 211221 2 nnnmln zzyzx εγγ ++

If the strain 1Eε  and 2Eε  are small and the angle change are small,

*
12 2

θπγ −≈

and the engineering shearing strain becomes approximately equal to the change in angle 

between the vector 1r
v  and 2r

v .

Strain transformation

The strain tensor,

















=
















=

zzyzx

yzyyx

xzxyx

zzyzx

yzyyx

xzxyx

ij

εγγ
γεγ
γγε

εεε
εεε
εεε

ε
2/2/

2/2/
2/2/

The strain tensor obeys the tensor law of transformation when the coordinates are

changed as the stress tensor.

The transformation of the strain components from the ( x , y ) coordinates to the ( x′ ,

y′ , z′ ) coordinates,

















′′′′′

′′′′′

′′′′′

zzyzx

zyyyx

zxyxx

εεε
εεε
εεε
















=

333

222

111

nml
nml
nml

















zyzxz

yzyxy

xzxyx

εεε
εεε
εεε T

nml
nml
nml

















333

222

111

Performing the matrix operations, we have

xyxzyzzyx mllnnmnml γγγεεεε 111111
2
1

2
1

2
1x +++++=′

xyxzyzzyy mllnnmnml γγγεεεε 222222
2
2

2
2

2
2x +++++=′

xyxzyzzyz mllnnmnml γγγεεεε 333333
2
3

2
3

2
3x +++++=′

2/)(2/)(2/)(           

2/

122112211221

212121x

xyxzyz

zyyx

mlmllnlnnmnm

nnmmll

γγγ

εεεγ

+++++

+++=′′

2/)(2/)(2/)(           

2/

133113311331

313131x

xyxzyz

zyzx

mlmllnlnnmnm

nnmmll

γγγ

εεεγ

+++++

+++=′′

2/)(2/)(2/)(           

2/

233223322332

323232x

xyxzyz

zyzy

mlmllnlnnmnm

nnmmll

γγγ

εεεγ

+++++

+++=′′

Similar to the stress transformation, the transformation of the strain components from

the ( x , y ) coordinates to the ( x′ , y′ ) coordinates in two dimension can be performed as
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















′′′′′

′′′′′

′′′′′

zzyzx

zyyyx

zxyxx

εεε
εεε
εεε
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
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100
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θθ
θθ

Since zε = xzε = yxε =0 in state of plane strains, and yxyx ′′′′ = εγ 2  and xyxy εγ 2= , then,

the stress components in the ( x′ , y′ ) coordinates is






















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

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
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



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


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
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

′′

′

′

xy

y

x

yx

y

x

nmmnmn
mnmn

mnnm

γ

ε
ε

γ

ε
ε

22

22

22

22

where θcos=m  and θsin=n .

θ
γ

θ
εεεε

ε 2 sin
2

2 cos
22

xyyxyx
x +

−
+

+
=′

θ
γ

θ
εεεε

ε 2 sin
2

2 cos
22

xyyxyx
y −

−
−

+
=′

θ
γ

θ
εετ

2 cos
2

2 sin
22

xyyxyx +
−

−=′′

It should be noted that since the equations of plane strain transformation are

mathematically similar to the equations of plane stress transformation, Mohr’s circle can also

be used to solve problems involving the transformation of strain.

Principal strains

Through any point in an undeformed member, there are three mutually perpendicular

line elements that remain perpendicular under the deformation. The strains of these line

elements are called the principal strains at the point. The maximum and minimum strain can

be determined by using the nd2  method of calculus of variation.

If we need to determine the maximum and minimum of the function ),,( zyxFF =

with the condition 0),,( =zyxG , we assume a function GFF λ−=  and the maximum and

minimum values of λ  can be determined by solving the simultaneous equations

0=
∂
∂

x
F , 0=

∂
∂

y
F , 0=

∂
∂

z
F , 0),,( =zyxG

for 4 unknowns which are x , y , z , and λ . In this case, we have =F +++ nllml xzxyx γγε 2

++ mnm yzy γε 2 2nzε  and =G 222 nml ++ -1=0. Then,

=F +++ nllml xzxyx γγε 2 ++ mnm yzy γε 2 2nzε -λ ( 222 nml ++ -1)

The maximum and minimum values of λ  can be determined by solving the

simultaneous equations
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0=
∂
∂

l
F ; 0)(2 =++− nml xzxyx γγλε

0=
∂
∂
m
F ; 0)(2 =+−+ nml yzyxy γλεγ

0=
∂
∂

n
F ; 0)(2 =−++ nml zyzxz λεγγ

222 nml ++ =1

For these linear homogenous equations, we may rewrite the first three equations in the

determinant form as

0
)(2/2/

2/)(2/
2/2/)(

=
−

−
−

λεγγ
γλεγ
γγλε

zyzxz

yzyxy

xzxyx

For nontrivial solution, we have

032
2

1
3 =−+− JJJ λλλ

where

zyxJ εεε ++=1

)(
4
1 222

2 xzyzxyxzzyyxJ γγγεεεεεε ++−++=

zyzxz

yzyxy

xzxyx

J
εγγ

γεγ
γγε

2/2/
2/2/
2/2/

3 =

Solving for the values of principal strains 1λ , 2λ , and 3λ . Then, substituting iλ  back

into the simultaneous equations, we obtain the direction cosine of the principal plane il , im ,

and in , respectively.

If ( x , y , z ) are the principal axes, then,

3211 εεε ++=J

3132212 εεεεεε ++=J

3213 εεε=J

In two-dimensions, the principal strains and principal planes can be obtained easily as

22

2
1 222 








+







 −
±

+
= xyyxyx γεεεε

ε

yx

xy
p εε

γ
θ

−
=2 tan
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In addition, the maximum in-plane shear strain can be determined from

22
plane-in

max

222

)(









+







 −
=

′′
xyyx

yx γεεγ

xy

yx
s γ

εε
θ

)(
2 tan

−−
=
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Example 1-3

Given a state of strains at a point with respect to a convenient coordinate system ( x ,

y , z ) be µεε  3000−=x , µεε  2000=y , µεε  2000−=z , µεγ  5830−=xy , µεγ  670−=yz ,

and µεγ  3000−=xz .

a.) Determine the principal normal strains and the direction cosine of the principal

normal strains

b.) Determine the principal shear strains.

The principal normal strains

The strain invariants,

zyxJ εεε ++=1

)10(310)200020003000( 36
1

−− −=−+−=J

)(
4
1 222

2 xzyzxyxzzyyxJ γγγεεεεεε ++−++=

[ ]
)10(8595.14     

10)3000()670(5830
4
1)2000)(3000()2000(20002000)3000(

6

12222
2

−

−

−=





 −+−+−−−+−+−=J

zyzxz

yzyxy

xzxyx

J
εγγ

γεγ
γγε

2/2/
2/2/
2/2/

3 =

)10(77607.2 8
3

−=J

For nontrivial solutions, we have

0)10(77607.2)10(8595.14))10(3 86233 =−−+ −−− λλλ

Thus, the principal strains are

00350.011 == λε

00162.022 −== λε

00488.033 −== λε

The direction cosine of the principal normal strains

Substituting 00350.01 =λ  and xε , yε , zε , xyγ , yzγ , and xzγ  into the equations

0)(2 =++− nml xzxyx γγλε  and 0)(2 =+−+ nml yzyxy γλεγ . After rearranging the

equations, we have

0003.000583.0130.0
1

1

1

1 =−+−
n
m

n
l
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000067.0003.000583.0
1

1

1

1 =−−+
n
m

n
l

Solving the simultaneous equations, we obtain

576.2
1

1 −=
n
l  and 228.5

1

1 −=
n
m

Since 12
1

2
1

2
1 =++ nml , then,

1691.01 =n

and 884.01 −=m  and 4356.01 −=l

By using the same calculation procedures, we have the direction cosines of the

principal normal stress 2λ  and 3λ  are

328.02 −=l 355.02 =m 991.02 =n

849.03 =l 341.03 −=m 403.03 =n

The principal shear strains

By using the same principal used to find the principal shear stresses, the principal

shear strains can be determine as following.

22
311 λλγ −

=

00838.01 =γ

22
322 λλγ −

=

00512.02 =γ

22
213 λλγ −

=

00326.03 =γ
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1.8 Strain Rosettes

Fig. 1.31

The normal strain at a point of a general testing specimen are usually obtained by

using a cluster of three electrical-resistance strain gauges, arranged in a specified pattern

called strain rosette as shown in Fig. 1.31 and Fig. 1.32.

Fig. 1.32

In general, if we know the angles aθ , bθ , and cθ  of the strain rosette with respect to

an axis as shown in Fig. 1.32a and the measured strains aε , bε , and cε , we can determine the

strain xε , yε , and xyγ  from the strain-transformation.

ccxycycxc

bbxybybxb

aaxyayaxa

θθγθεθεε

θθγθεθεε

θθγθεθεε

cossinsincos

cossinsincos

cossinsincos

22

22

22

++=

++=

++=
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For the 45o  strain rosette as shown in Fig. 1.32b,

)(2 cabxy

cy

ax

εεεγ

εε
εε

+−=

=
=

For the 60o  strain rosette as shown in Fig. 1.32c,

)(
3

2

)22(
3
1

cbxy

acby

ax

εεγ

εεεε

εε

−=

−+=

=
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Example 1-4

The state of strains at point A  on the bracket as shown in Fig. Ex 1-4 is measured

using the stain rosette as shown. Due to the loadings, the readings from the gauge give

µεε  60=a , µεε  135=b , and µεε  264=c . Determine the in-plane principal strains at the

point and the directions in which they act.

Fig. Ex 1-4

Setting the x+  axis as shown and measuring the angles counterclockwise from the

x+  axis to the center-lines of each gauge. We have
o

a 0=θ , o
b 60=θ , and o

c 120=θ

Therefore, we obtain
oo

xy
o

y
o

x 0cos0sin0sin0cos)10(60 226 γεε ++=−

)10(60 6−=xε

oo
xy

o
y

o
x 60cos60sin60sin60cos)10(135 226 γεε ++=−

)10(135433.075.025.0 6−=++ xyyx γεε

oo
xy

o
y

o
x 120cos120sin120sin120cos)10(264 226 γεε ++=−

)10(264433.075.025.0 6−=−+ xyyx γεε

Solving the simultaneous equations, we obtain

)10(60 6−=xε , )10(246 6−=yε , and )10(149 6−−=xyγ

The in-plane principal strains and their directions

The in-plane principal strains and their directions can be determined by the equations

22

2
1 222 








+







 −
±

+
= xyyxyx γεεεε

ε

yx

xy
p εε

γ
θ

−
=2 tan

or by using the Mohr's circle as shown below.
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Hence, the in-plane principal strains and their directions are

)10(272 6
1

−=ε

)10(8.33 6
2

−=ε

o
p 7.38

60153
5.74tan2 1

2 =
−

= −θ

o
p 3.192 =θ

The state of the in-plane principal strains is shown in the figure above. The dashed line

shows the deformed configuration of the element.
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1.9 Small-Displacement Theory

The derivation of the strains in the previous sections is purely based on the

geometrical consideration and the obtained equations are exact. However, they are highly

nonlinear partial differential equations that are difficult to solve. In practice, the

displacements are usually small compared with the dimensions of the body, thus, the squares

and the products of the strains and their first derivatives are infinitesimal small quantities. By

using this fact, we can simplify the analysis of the deformable body significantly.

If the displacements and their derivatives are small,

1. The strains of fibers in one plane are not influenced by the out-of-plane

displacements.

2. The undeformed geometry of the body can be used when writing the equilibrium

equations

3. The stress-strain relations are reduced to linear relations.

Consider the displacement and deformation in the yx −  plane moving from point 1, 0,

and 2 to the locations 1′ , 0′ , and 2′ , respectively, as shown in Fig. 1.33.

Fig. 1.33

By the definition of normal strain,

x
uu

dx
dxudxuudx

L
LL

x
x

x ∂
∂

==
−−++

=
−

= ′′ ,
]),([

02

0220ε

Similarly,

y
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y ∂
∂
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For small displacement analysis, the engineering shear strain
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Similarly, if we consider the displacement and deformation in the zy −  and zx −

plane, we have

z
w

z ∂
∂

=ε

x
w

z
u

xz ∂
∂

+
∂
∂

=γ

y
w

z
v

yz ∂
∂

+
∂
∂

=γ

In this form of strain.displacement relations, the physical interpretation of the strain

components can be seen clearly. For example, the normal strain xε  is the rate of change of the

displacement u  with respect to x . The shearing strain xyγ  represents the changes in the

original right angles between the line elements 0-1, and 0-2 to the 0′ -1′  and 0′ - 2′  due to the

deformation.

Strain compatibility Relations

Just as stresses must satisfy the equations of equilibrium, the strains must satisfy the

strain compatibility equations in order to describe a physically possible displacement field.

The displacement field must be single-valued, continuous, and has continuous derivatives.

Thus, the material does not overlap itself and no crack appears.

By eliminating the displacement components from the strains equations, we have

yxyx
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∂
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Example 1-5

The parallelepiped as shown in Fig. Ex 1-5 is deformed into the shape indicated by the

dashed straight line (small displacements). The displacements are given by the following

relations: xyzCu 1= , xyzCv 2= , and .3 xyzCw =

a.) Determine the state of strain at point E  when the coordinate of point *E  for the

deformed body are (1.504, 1.002, 1.996).

b.) Check if the state of strain as point E  is in accordance with the strain

compatibility relations.

Fig. Ex 1-5

The state of strain as point E

The displacements of point E  are m 004.05.1504.1 =−=u , m 002.01002.1 =−=v ,

and m 004.02996.1 −=−=w . Thus, the displacement relations are in the form of

3
004.0

2)1(5.1
004.0

1 ===
xyz
uC

xyzu
3
004.0

=

In the same manner, we have

xyzv
3
002.0

=

.
3
004.0 xyzw −=

Thus, the strains at point E  are
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00267.02)1(
3
004.0

3
004.0

===
∂
∂

= yz
x
u

xε

00200.02)5.1(
3
002.0

3
002.0

===
∂
∂

= xz
y
v

yε

00200.0
3
004.0

−=−=
∂
∂

= xy
z
w

zε

00533.0
3
004.0

3
0002

=+=
∂
∂

+
∂
∂

= xzyz
x
v

y
u

xyγ

00067.0
3
004.0

3
004.0

−=+−=
∂
∂

+
∂
∂

= xyyz
x
w

z
u

xzγ

00300.0
3
004.0

3
002.0

−=−=
∂
∂

+
∂
∂

= xzxy
y
w

z
v

yzγ

Substituting the strain equations into the strain compatibility relations, we can see that

the state of strain as point E  is in accordance with the strain compatibility relations.
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Chapter 2
Stress and Strain Relations

2.1 Concept of Engineering Stress-Strain and True Stress-Strain

Engineering stress-strain behavior is usually determined from monotonic tension test.

Fig. 2.1 shows the free body diagram of the test specimen. Originally, the specimen has the

cross-sectional area of oA  and the length of ol . Under the action of the axial tensile load P ,

the test specimen has the cross-sectional area of A  and the length of l .

Fig. 2.1

Engineering stress
oA

P
=σ

Engineering strain
oo

o

ll
ll δε =

−
=

True stress
A
P

=σ~

True strain ∫ ==
l

l oo
l
ldl

l
ln1~ε

The use of the true stress and true strain changes the appearance of the monotonic

tension stress-strain curve as shown in Fig. 2.2.

From the engineering stress-strain diagram, the material behavior can be classified

into 4 different ways depending on how the material behave.

Elastic behavior (1st region)

The specimen is called to response elastically if it returns to its original shape or

length after the load acting on it is removed.

In this region, the stress is proportional to the strain from the origin to the proportional

limit (stress has a linear relationship with strain).

If the stress is slightly over to the proportional limit, the material may still respond

elastically. If the stress is increased gradually, the slope of the curve tends to get smaller and

smaller until it reaches the elastic limit.
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Yielding (2nd region)

This region is started when the yielding stress is reached. The yielding stress is the

stress which the material starts to deform permanently. After this point, the specimen will

continue to elongate without any increase in load, perfectly plastic.

Fig. 2.2

Strain Hardening (3th region)

When the yielding has ended, a further load increase can be applied to the specimen,

resulting in a curve that rise continuously but becomes flatter until it reaches the ultimate

stress. The rise in the curve is called strain hardening.

Necking (4th region)

At the ultimate stress, the cross-sectional area begins to decrease in a localized region

of the specimen, necking. This phenomenon is caused by slip planes of randomly oriented

crystals formed within the material. As the cross-sectional area is continually decreased, the

load is also gradually decreased, resulting in the stress strain diagram tends to curve

downward until the specimen breaks at the fracture stress.

If a specimen made of ductile material, such as steel and brass, is loaded pass the yield

point A  to the plastic region at point A′  and then unloaded, elastic strain is recovered to

point O′  as the material return to its equilibrium as shown in Fig. 2.3. But, the plastic strain

remains. As a result, the material is subjected to a permanent set.
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Fig. 2.3

In general, some heat and energy may be lost as the specimen is unloaded from A′  to

O′  and loaded again from O′  to A′ . As a result, the unloaded and loaded curves will have

the shape as shown. The colored area between these curves represents the energy lost and

called hysteresis loop.

True stress-Strain Curve

The true stress is always larger than the corresponding engineering stress, and the

difference may be of a factor of two or more near the end of a tensile test on a ductile

material. True strain based on a length measurement is somewhat smaller than the

corresponding engineering strain. However, once the necking starts, true strain based on an

area measurement are larger.

The total true strain in a tension test can be separated into two components.

1. Linearly elastic strain eε
~  that can be recovered upon unloading.

2. Nonlinearly plastic strain pε
~  that can not be recovered upon unloading.

petotal εεε ~~~ +=

Consider the true stress-strain curve of a metal in the region well beyond yielding,

where most strain is plastic strain. A logarithmic plot of true stress versus true strain in this

region gives a straight line as shown in Example 2-1 and the true stress-true strain relationship

is in the form of
n

ptotal K )~(~ εσ =

where =n  strain hardening coefficient

=K  strength coefficient

True fracture strength,
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f

f
f A

P
=σ~

True fracture ductility

o

f
f l

l
ln~ =ε

Volume of the material of the specimen is ffoo AlAl = . Then,

o

f

f

o

l
l

A
A

=

f

o
f A

A
ln~ =ε

Let =RA area reduction of the specimen 
o

fo

A
AA −

= . Hence,

o

f

f

o

l
l

A
A

RA
==

−1
1

RAf −
=

1
1ln~ε

Since n
peK )~(~ =σ , at failure,

n
f

nfailure
pf eKeK )~()~(~ ==σ

n
f

fK
)~(

~

ε
σ

=

where failure
p

failure
p

failure
ef εεεε ~~~~ ≈+= .

Since n
pK )~(~ εσ = , 

n

p K

1~~ 





=
σε . Then,

f

n

f

n

n
f

f
p ε

σ
σ

ε
σ
σε ~

~
~

)~(

~
~~

1

1











=





















=

If n , fε
~ , and fσ~  are known, pε

~  at a given σ~  can be determined. Also,

f

n

f
petotal E

ε
σ
σσεεε ~
~
~~~~~

1











+=+=

failure
p

f
totalf E

ε
σ

ε ~
~

~
, +=
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Plastic strain at necking

Plastic strain at necking is equal to the magnitude of strain hardening coefficient for a

given material.
necking
pn ε~=

Proof

Since the elastic strain is small compared to the plastic strain, we can neglect the

elastic strain.

A
A

A
A

A
P

A
P oo

o

σσ ===~

1−=
−

=
oo

o

l
l

l
ll

ε

Since 
A
A

l
l o

o

= , thus, 1−=
A
Aoε  and ε+= 1

A
Ao . The true stress is

)1(~ εσσ +=

Since the nonlinearly elastic strain can be determined from )1ln(ln~ εε +==
o

p l
l .

Substituting the true stress )1(~ εσσ +=  and pε
~  into the equation n

peK )~(~ =σ , we have

=σ nK )]1[ln(
1

ε
ε

+
+

At the necking point, the slope of the engineering stress-strain curve is equal to zero.

0
)1ln(

1)]1[ln(
)1( 2 =








+

+−+
+

= − necking
n

necking
nK

d
d

ε
ε

εε
σ

Since the st1  and nd2  term can not be zero, thus, the rd3  term must be zero.
necking
pneckingn εε ~)1ln( =+=

Bridgeman correction for hoop stress

A complication exists in interpreting tensile results near the end of a test where there

is a large amount of necking. Bridgeman in 1944 pointed out that large amounts of necking

result in a tensile hoop stress being generated around the circumference in the necked region.

Thus, the state of stress is no longer uniaxial as assumed, and the behavior of the material is

affected. In particular, the axial stress is increased above what it would otherwise be. The

corrected value of true stress can be calculated from

σσ ~~ BB =

where

ε~log186.083.0 −=B )3~15.0( ≤≤ ε
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Example 2-1

A tension test was conducted on a specimen of AISI 1020 hot-rolled steel having an

initial diameter of 9.11 mm. The test data is given in Table Ex 2-1 where the length changes

over a 50 mm gage length have been converted to engineering strain ε  in the first column.

Loads at corresponding times are given in the second column. Also, diameters for the large

strain portion of the test, measured in the neck when the necking once started, are given in the

third column. After fracture, the gage length had stretched to 68.5 mm.

Table Ex 2-1

a.) Plot the engineering stress-strain diagram.

b.) Determine the yielding strength, ultimate tensile strength, percent elongation,

percent reduction of area, and the modulus of toughness.

c.) Plot the true stress-strain diagram.

d.) Determine the true stress-true strain relationship in the plastic region.

The engineering stress-strain diagram can be plotted by finding the engineering stress

from the equation 
oA

P
=σ  as shown in the forth column of the table. From the data of the

engineering stress and engineering strain, we can plot the engineering stress-strain curve as

shown in Fig Ex 2-1a.

The load for the 0.2% percent offset yield, corresponding to the lower yield point, is

17.21 kN. Thus, the yielding strength is

MPa 264
4/)00911.0(

17210
2 ==

π
σ y



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-7

Fig Ex 2-1a

The highest load reached was 25.75 kN. Thus, the ultimate tensile strength is

MPa 395
4/)00911.0(

25750
2 ==

π
σ u

The percent elongation for 50 mm gage length is

%37
50

505.68100100 =
−

=
−

i

if

L
LL

The final diameter was 5.28 mm. Thus, the percent reduction of area is

%4.66
11.9

28.511.9100100 2

22

2

22

=
−

=
−

i

fi

d
dd

The modulus of toughness of AISI 1020 hot-rolled steel can be estimated by the

equation

3m
MJ 120

2
395264366.0

2
=



 +

=






 +
≈ uy

ffu
σσ

ε

Since we do not have the data of the length and diameter of the specimen up to the

engineering strain 0.010. Therefore, the true stress-strain diagram in this portion must be

plotted by finding the true stress and true strain from the equation

)1(~ εσσ +=

)1ln(~ εε +=

After that the true stress-strain diagram can be plotted by finding the true stress and true strain

from the equation

A
P

=σ~
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A
Aoln~ =ε

From the data of the true stress and true strain, we can plot the true stress-strain curve

as shown in Fig Ex 2-1a.

The true stress-true strain relationship in the plastic region is in the form of
n

peK )~(~ =σ

or

Kn p log~log~log += εσ

which gives a straight line for the log-log true stress and true strain plot as shown in Fig Ex 2-

1b. It should be noted that the true stress used in this plot is the true stress corrected by using

the Bridgeman correction factor B .

Fig Ex 2-1b

The equation is in a form of a straight line on an yx −  plot

bmxy +=

From the plot, we can see that the straight line will have a slope of n  and intercept at

1~ =pε  of K=σ~ . By using a graphical or least square method, we obtain

206.0== nm

7967.2=b

Since Kb log= , thus, MPa 62610 == bK  and the true stress-true strain relationship

in the plastic region is in the form of
206.0)~(626~

pe=σ

It should be noted that 210.0~ =≈ necking
pn ε .
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2.2 First Law of Thermodynamics. Internal Energy Density. Complementary Internal

Energy Density

The stress-strain relations can be proved theoretically by using the first law of

thermodynamics where we can show that the relations are symmetry. However, the elastic

coefficients or stiffness coefficients of these relations are obtained experimentally.

The variations of the strain components resulting from the variations of the

displacement uδ , vδ , and wδ  are

x
u

x ∂
∂

=
)(δδε 








∂

∂
+

∂
∂

==
y
u

x
v

xyxy
)()(

2
1

2
1 δδγδε

y
v

y ∂
∂

=
)(δδε 








∂

∂
+

∂
∂

==
z
v

y
w

yzyz
)()(

2
1

2
1 δδγδε

z
w

z ∂
∂

=
)(δδε 





∂
∂

+
∂

∂
==

z
u

x
w

xzxz
)()(

2
1

2
1 δδγδε

First Law of Thermodynamics

Consider the free body diagram of the body. The body has a volume of *V  and the

body forces xB , yB , and zB  per unit volume as shown in Fig. 2.4. Under the action of the

surface forces and during the displacement variations uδ , vδ , and wδ , the body is in static

equilibrium.

For a condition which no net heat flow into the volume *V , the first law of

thermodynamic states that during the displacement variations uδ , vδ , and wδ , the variation

in work of the external forces eWδ  is equal to the variation of the internal energy Uδ .

UWe δδ =

UWW BS δδδ =+

where =SWδ  the work of the surface forces and =BWδ  the work of the body forces.

Fig. 2.4



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-10

From the previous chapter, the components of the stress vector

kji PzPyPxP
ˆˆˆ σσσσ ++=v  acting on the plane P  having the normal vector knjmiln ˆˆˆ ++=v  as

shown in Fig. 2.5 can be written as

nml xzxyxPx ττσσ ++=

nml yzyxyPy τστσ ++=

nml zyzxzPz σττσ ++= 

Fig. 2.5

The force components due the stress vector components acting on the area ABCdAdS =

are

dSdF Pxx σ= dSdF Pyy σ= dSdF Pzz σ=

The work SWδ  can be written as

∫∫∫∫ ∫∫ ++=
** *

)()()(
S

Pz
S S

PyPxS dSwdSvdSuW σδσδσδδ

∫∫ ++++++++=
*

])()()[
S

zyzxzyzyxyxzxyxS dSwnmlvnmlunmlW δσττδτστδττσδ

The work BWδ  can be written as

∫∫∫ ++=
*

)(
V

zyxB dVwBvBuBW δδδδ

The variation in work of the external forces eWδ  is

=eWδ +++++++++∫∫
*

])()()[
S

zyzxzyzyxyxzxyx dSwnmlvnmlunml δσττδτστδττσ

∫∫∫ ++
*

)(
V

zyx dVwBvBuB δδδ
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Gauss’s theorem

Let the vector on the surface dS  having the total volume dV  is kSjSiS zyx
ˆˆˆ ++ . The

surface dS  has the normal vector knjmiln ˆˆˆ ++=v .  By using the gauss’s theorem, we have

∫∫∫∫∫ ++=







∂
∂

+
∂

∂
+

∂
∂

S
zyx

V

zyx dSnSmSlSdV
z

S
y

S
x

S
)(

Rewriting the equation of the work SWδ  into the form of ∫∫ ++
S

zyx dSnSmSlS )( , we

have

∫∫ ++++++++=
*

])()()[(
S

zyzxzyzyxyxzxyxS dSnwvumwvulwvuW δσδτδτδτδσδτδτδτδσδ

Let wvuS xzxyxx δτδτδσ ++= , wvuS yzyxyy δτδσδτ ++= , and wvuS zyzxzz δσδτδτ ++= ,

then, we have the work SWδ  in the form of

=







∂
∂

+
∂

∂
+

∂
∂

∫∫∫ dV
z

S
y

S
x

S

V

zyx ∫∫∫
 ++
∂
∂

*

)(
V

xzxyx wvu
x

δτδτδσ )( wvu
y yzyxy δτδσδτ ++
∂
∂

+

dVwvu
z zyzxz 

++
∂
∂

+ )( δσδτδτ

The variation in work of the external forces eWδ  can be rewritten in the form of

=eWδ ∫∫∫
 ++
∂
∂

*

)(
V

xzxyx wvu
x

δτδτδσ )( wvu
y yzyxy δτδσδτ ++
∂
∂

+

dVwBvBuBwvu
z zyxzyzxz 

+++++
∂
∂

+ δδδδσδτδτ )(

Note that the partial derivatives,

x
u

x
u

x
uu

x
x

xx
x

xx ∂
∂

+=
∂
∂

+
∂
∂

=
∂
∂ σ

δδεσ
σ

δδσδσ

x
v

x
vv

x
xy

xyxy ∂

∂
+

∂
∂

=
∂
∂ τ

δδτδτ

x
w

x
ww

x
xz

xzxz ∂
∂

+
∂
∂

=
∂
∂ τ

δδτδτ

y
u

y
uu

y
xy

xyxy ∂

∂
+

∂
∂

=
∂
∂ τ

δδτδτ

y
v

y
v

y
vv

y
y

yy
y

yy ∂

∂
+=

∂

∂
+

∂
∂

=
∂
∂ σ

δδεσ
σ

δδσδσ

M
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z
w

z
w

z
ww

z
z

zz
z

zz ∂
∂

+=
∂
∂

+
∂
∂

=
∂
∂ σ

δδεσ
σ

δδσδσ

Rearranging the terms, we have

=eWδ dV
V

xzxzyzyzxyxyzzyyxx∫∫∫ +++++
*

)222( δετδετδετδεσδεσδεσ +

∫∫∫










+

∂
∂

+
∂

∂
+

∂
∂

*V
x

xzxyx uB
zyx

δ
ττσ

vB
zyx y
yzyxy δ

τστ








+

∂

∂
+

∂

∂
+

∂

∂
+

dVwB
zyx z

zyzxz














+

∂
∂

+
∂

∂
+

∂
∂

+ δ
σττ

Since the components in the second integral is the differential equilibrium equation of

deformable body which is equal to zero, then,

=eWδ dV
V

xzxzyzyzxyxyzzyyxx∫∫∫ +++++
*

)222( δετδετδετδεσδεσδεσ

or,

=eWδ dV
V

xzxzyzyzxyxyzzyyxx∫∫∫ +++++
*

)( δγτδγτδγτδεσδεσδεσ

The internal energy U  of the volume *V of the body can be expressed in terms of the

internal-energy density oU  as

∫∫∫=
*V

odVUU

The variation of the internal energy Uδ  is

∫∫∫=
*V

odVUU δδ

Since the first law of thermodynamic states that

== UWe δδ dV
V

xzxzyzyzxyxyzzyyxx∫∫∫ +++++
*

)222( δετδετδετδεσδεσδεσ

The variation of the internal-energy density oUδ  is

=oUδ xzxzyzyzxyxyzzyyxx δετδετδετδεσδεσδεσ 222 +++++

In the index notation, we have

iioU δεσδ =

=i 1, 2, 3, 4, 5, 6

Elasticity and internal energy density

For linearly elastic material, the total internal energy in a loaded body is equal to the

total potential energy of the internal forces or elastic strain energy.
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Since the strain-energy density oU  generally depends on the strain components, the

coordinates (for inhomogeneous material), and the temperature. Thus, mathematically,

),,,,,,,,,( TzyxUU xzyzxyzyxoo εεεεεε=

If the displacements u , v , and w  have a variation uδ , vδ , and wδ , respectively, the

strain components will take the variations xδε , yδε , zδε , xyδε , yzδε , and xzδε . Therefore,

the variation of the strain-energy density oUδ  can be written as

=oUδ
x

oU
ε∂

∂
xδε +

y

oU
ε∂

∂
yδε + 

z

oU
ε∂

∂
zδε + 

xy

oU
ε∂
∂

xyδε +
yz

oU
ε∂
∂

yzδε +
xz

oU
ε∂
∂

xzδε

Comparing this equation with the one previously obtained =oUδ ++ yyxx δεσδεσ

zzδεσ xzxzyzyzxyxy δετδετδετ 222 +++ , we have

x

o
x

U
ε

σ
∂
∂

=
y

o
y

U
ε

σ
∂
∂

=
z

o
z

U
ε

σ
∂
∂

=

xy

o

xy

o
xy

UU
γε

τ
∂
∂

=
∂
∂

=
2
1

yz

o

yz

o
yz

UU
γε

τ
∂
∂

=
∂
∂

=
2
1

xz

o

xz

o
xz

UU
γε

τ
∂
∂

=
∂
∂

=
2
1

In the matrix notation,

i

o
i

U
ε

σ
∂
∂

= =i 1, 2, 3, 4, 5, 6

Elasticity and complementary internal energy density

For structural members subjected to one component of stress such as in the simple

tension test along the axis of the test specimen, the longitudinal stress xσ  can be written in

the form of 
x

o
x

U
ε

σ
∂
∂

= . Thus, the strain-energy density in the specimen is

∫= xxo dU εσ

Fig. 2.6
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This equation represents the area under the xx εσ − diagram as shown in Fig. 2.6. In

addition, the total rectangular area is equal to

ooxx CU +=εσ

where oC  is called the complementary internal energy density or complementary strain

energy density. The oC  is represented by the area above the xx εσ −  curve. Hence,

∫= xxo dC σε

x

o
x d

dC
σ

ε =

In general, the strain components are expressed as functions of the stress components.

),,,,,(1 xzyzxyzyxx f τττσσσε =

),,,,,(2 xzyzxyzyxy f τττσσσε =

),,,,,(3 xzyzxyzyxz f τττσσσε =

),,,,,(
2
1

4 xzyzxyzyxxyxy f τττσσσγε ==

),,,,,(
2
1

5 xzyzxyzyxyzyz f τττσσσγε ==

),,,,,(
2
1

6 xzyzxyzyxxzxz f τττσσσγε ==

Thus, in analogous with the previous discussion, we have

+−= oo UC  xzxzyzyzxyxyzzyyxx ετετετεσεσεσ 222 +++++

Differentiating the equation with respect to xσ  and using the chain rule, we have
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∂
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using the chain rule, we have
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previous equation, we have
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For a linear elastic behavior, oo UC =  as shown in Fig. 2.7.

Fig. 2.7

2.3 Stress-Strain Relations and Strain-Stress Relations

The generalized Hooke’s law relates stresses to strains. Each of the stress components

is a linear function of the strain components.
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In the index notation, we have
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ji,  = 1, 2, 3, 4, 5, 6

or,
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The stiffness coefficients ijC  have 36  components. However, less than 36 of the

coefficients can be shown actually independent for elastic material when the strain energy is

considered. Using the relations between the stress components and the strain energy density,
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Hence, we can show that the stiffness coefficients are symmetry, jiij CC = , by using

appropriate differentiation.
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With the foregoing reduction from 36  to 21 components, the stress-strain relations are
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These relations are referred to as characterizing anisotropic or triclinic materials since

there are no plane of symmetry for the material properties. Fig. 2.8 is a composite lamina in

which the fiber direction 21−  has an angle with the loading or principal direction yx − . This

composite material is an example of the anisotropic material.

Fig. 2.8

If there is one plane of material property symmetry, the stress-strain relations reduce

to
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where the plane of symmetry is 0=z . Such a material is termed monoclinic materials having

13 independent stiffness coefficients.

If there are two orthogonal planes of material property symmetry for a material,

symmetry will exist relative to a third mutually orthogonal plane. Then, the stress-strain

relations reduce to
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These stress-strain relations define orthotropic materials. There are 9 independent

stiffness coefficients for an orthotropic material. Fig. 2.8 is a composite if the fiber direction

21−  coincides with the loading or principal direction yx − , this composite material is an

example of the orthotropic material.

If there is one plane in the material in which the mechanical properties are equal in all

direction, the material is called transversely isotropic. If the plane yx −  is the plane of

isotropy, then, the subscript 1 and 2 of the stiffness coefficients are interchangeable. The

stress-strain relations of the material will have 5 independent stiffness coefficients and are
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If the material is isotropic in which the mechanical properties of the material are

symmetric on an infinite number of plane, there are only 2 independent stiffness coefficients

and the stress-strain relations are
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Deformation characteristic

Let us consider Fig. 2.9. The deformation of the isotropic material is directional

independent. Application of the normal stress causes extension in the direction of the applied

stress and contraction in the perpendicular direction. In addition, shear stress causes only

shearing deformation.

The deformation of the anisotropic is directional dependent. Application of the normal

stress leads not only to extension in the direction of the stress and contraction perpendicular to

it, but to shearing deformation as well. Conversely, shearing stress causes extension and

contraction in addition to the distortion of shearing deformation.

The deformation of the orthotropic material subjected to the normal stress in the

principal material direction is similar to one of the isotropic material. However, due to the

different properties in the two principal directions, the contraction can be either more or less

than the contraction of a similarly loaded isotropic material with the same modulus of

elasticity in the direction of load. In addition, shearing stress causes shearing deformation, but

the magnitude of the deformation is independent of the various modulus of elasticity and

Poisson’s ratios.

Fig. 2.9
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The followings are the strain-stress relations corresponding to the stress-strain

relations of the anisotropic material, monoclinic material, orthotropic material, transversely

isotropic material, and isotropic material. Note that the term ijS , 6 ,5 ,4 ,3 ,2 ,1, =ji  is called

the compliance coefficients.

Anisotropic material

The strain-stress relations of the anisotropic material have 21 independent compliance

coefficients
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Monoclinic material

The strain-stress relations of the monoclinic material have 13 independent compliance

coefficients. For symmetry about the axis 0=z ,
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Orthotropic material

The strain-stress relations of the orthotropic material have 9 independent compliance

coefficients.
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Transversely isotropic material

The strain-stress relations of the transversely isotropic material have 5 independent

compliance coefficients. For symmetry about the plane yx − ,



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-21

























































−

=































xy

xz

yz

z

y

x

xy

xz

yz

z

y

x

SS
S

S
SSS
SSS
SSS

τ
τ

τ
σ

σ
σ

γ
γ

γ
ε

ε
ε

2/)(00000
00000
00000
000
000
000

1211

44

44

331313

131112

131211

Isotropic material

The strain-stress relations of the isotropic material have 2 independent compliance

coefficients.

























































−
−

−
=































xy

xz

yz

z

y

x

xy

xz

yz

z

y

x

SS
SS

SS
SSS
SSS
SSS

τ
τ

τ
σ

σ
σ

γ
γ

γ
ε

ε
ε

2/)(00000
02/)(0000
002/)(000
000
000
000

1211

1211

1211

111212

121112

121211



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-22

2.4 Strain Energy of an Infinitesimal Small Element
Anisotropic materials

Consider the state of stresses of an infinitesimal small element cut from a body

subjected to external loads as shown in Fig. 2.10.

Fig. 2.10

By integrating the strain energy density equation ( =odU ++ yyxx dd εσεσ  zz dεσ
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1

0

kdk +

     ( xyxzyzzyx CCCCCC γγγεεε 464544342414 +++++ ) yzγ ∫
1

0

kdk +

   ( xyxzyzzyx CCCCCC γγγεεε 565545352515 +++++ ) xzγ ∫
1

0

kdk +

 ( xyxzyzzyx CCCCCC γγγεεε 665646362616 +++++ ) xyγ ∫
1

0

kdk
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=oU 2
1 ( xyxxzxyzxzxyxx CCCCCC γεγεγεεεεεε 1615141312

2
11 +++++ )+

    
2
1  ( xyyxzyyzyzyyxy CCCCCC γεγεγεεεεεε 26252423

2
2212 +++++ )+

    
2
1  ( xyzxzzyzzzyzxz CCCCCC γεγεγεεεεεε 363534

2
332313 +++++ )+

   
2
1  ( xyyzxzyzyzzyzyyzxyz CCCCCC γγγγγεγεγεγ 4645

2
44342414 +++++ )+

   
2
1  ( xyxzxzyzzxzyxzxxz CCCCCC

xz
γγγγεγεγεγ γ 56

2
5545352515 +++++ )+

    
2
1  ( 2

665646362616 xyxzxyyzxyzxyyxyxxy CCCCCC γγγγγεγεγεγ +++++ )

In the index notation, we have

jiijo CU εε
2
1

=

Isotropic and homogenous materials

As previously mentioned, a material is isotropic when the mechanical properties of the

material are symmetric on an infinite number of plane. In other words, its mechanical

properties are invariant under any rotation of coordinates. A material is homogenous when the

mechanical properties of the material are identical for every point in a body. In other words,

its mechanical properties are invariant under any translation of coordinates. Thus, if the

material of an elastic body is isotropic, the strain energy density depends only on the principal

strains 1ε , 2ε , and 3ε , which are invariant under arbitrary rotation.

=oU +++ 31132112
2
111 2

1
2
1

2
1 εεεεε CCC

          +++ 3223
2
2222112 2

1
2
1

2
1 εεεεε CCC

            2
3332233113 2

1
2
1

2
1 εεεεε CCC ++

Since the mechanical properties of the isotropic material are symmetric for all planes,

the naming of the principal axes is arbitrary. Thus, the isotropic material has only two distinct

coefficients.

1332211 CCCC ===

2132312 CCCC ===

=oU +2
112

1 εC +2
212

1 εC +2
312

1 εC ++ 312212 εεεε CC 322 εεC
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=oU +2
1

1 (
2

ε
C

+2
2ε +)2

3ε ++ 31212 ( εεεεC )32εε

Rewriting the term ++ 31212 ( εεεεC )32εε  and noting that

2222 222)( cbcacbabacba +++++=++

[ ])()(
2
1)( 2222 cbacbabcacab ++−++=++

Hence,

++ 31212 ( εεεεC )32εε 2
321

2 )(
2

εεε ++=
C )(

2
2
3

2
2

2
1

2 εεε ++−
C

Then, the strain energy density can be rewritten as

=oU +2
1

1 (
2

ε
C

+2
2ε +)2

3ε
2

321
2 )(

2
εεε ++

C )(
2

2
3

2
2

2
1

2 εεε ++−
C

Let 2C=λ  and 
2

21 CCG −
=  are elastic constants called Lame’s elastic coefficients.

Thus,

=oU
2

321 )(
2
1 εεελ ++ ++ 2

1(εG +2
2ε )2

3ε

In terms of the strain invariants, 3211 εεε ++=J  and 3132212 εεεεεε ++=J .

Rewriting the second term of the strain energy density equation, we have

+2
1(εG +2

2ε )2
3ε

2
321 )( εεε ++= G ++− 3121(2 εεεεG )32εε

Then,

=oU
2

12
1 Jλ 2

1GJ+ 22GJ−

In general, zyxJ εεε ++=1  and )(
4
1 222

2 xzyzxyxzzyyxJ γγγεεεεεε ++−++= , then,

=oU λ
2
1 2)( zyx εεε ++ G+ 2)( zyx εεε ++

G2− ))(
4
1( 222

xzyzxyxzzyyx γγγεεεεεε ++−++

=oU λ
2
1 2)( zyx εεε ++ ++ 2( xG ε +2

yε )2
zε + ++ zyyxG εεεε(2 )zxεε

G2− ))(
4
1( 222

xzyzxyxzzyyx γγγεεεεεε ++−++

=oU λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++
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Since 
x

o
x

U
ε

σ
∂
∂

= , 
y

o
y

U
ε

σ
∂
∂

= , 
z

o
z

U
ε

σ
∂
∂

= , 
xy

o

xy

o
xy

UU
γε

τ
∂
∂

=
∂
∂

=
2
1 , 

yz

o

yz

o
yz

UU
γε

τ
∂
∂

=
∂
∂

=
2
1 ,

xz

o

xz

o
xz

UU
γε

τ
∂
∂

=
∂
∂

=
2
1 , consequently,

x
x ε

σ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

λσ =x )( zyx εεε ++ xGε2+ eλ= xGε2+

y
y ε

σ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

λσ =y )( zyx εεε ++ yGε2+ eλ= yGε2+

z
z ε

σ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

λσ =z )( zyx εεε ++ zGε2+ eλ= zGε2+

yz
yz γ

τ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

=yzτ yzGγ

xz
xz γ

τ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

=xzτ xzGγ

xy
xy γ

τ
∂
∂

= [ λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++ ]

=xyτ xyGγ

where 1Je ≅  is the classical small-displacement cubical strain. The stress invariants can be

related with the strain invariants by

zyxI σσσ ++=1 eλ= xGε2+ eλ+ yGε2+ eλ+ zGε2+

)(231 zyxGeI εεελ +++=

11 )23( JGI += λ

2
22

12 4)43( JGJGI ++= λλ

3
3

21
23

1
2

3 84)2( JGJJGJGI +++= λλλ

Inverting the stress equations, we obtain

yzyz εγ 2=
G
yzτ

=
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xzxz εγ 2=
G
xzτ

=

xyxy εγ 2=
G
xyτ

=

λσ =x )( zyx εεε ++ xGε2+ zyxG λελεελ +++= )2(

λσ =y )( zyx εεε ++ yGε2+ zyx G λεελλε +++= )2(

λσ =z )( zyx εεε ++ zGε2+ zyx G ελλελε )2( +++=

In matrix notation, we have

































+
+

+
=

















z

y

x

z

y

x

G
G

G

ε

ε
ε

λλλ
λλλ
λλλ

σ

σ
σ

)2(
)2(

)2(

































+
+

+
=















 −

z

y

x

z

y

x

G
G

G

σ

σ
σ

λλλ
λλλ
λλλ

ε

ε
ε 1

)2(
)2(

)2(

This matrix inversion can be performed by hand or by computer program such as

Mathematica, and we obtain.

[ ])(1
zyxx E

σσνσε +−=

[ ])(1
zxyy E

σσνσε +−=

[ ])(1
yxzz E

σσνσε +−=

where 
G
GGE

+
+

=
λ
λ )23( , 

)(2 G+
=

λ
λν , and 

)1(2 ν+
=

EG . In matrix notation,



































































−−

−−

−−

=































xy

xz

yz

z

y

x

xy

xz

yz

z

y

x

G

G

G

EEE

EEE

EEE

τ
τ

τ
σ

σ
σ

νν

νν

νν

γ
γ

γ
ε

ε
ε

100000

010000

001000

0001

0001

0001
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The strain energy density of isotropic material can be found by substituting the strains

into the equation =oU λ
2
1 2)( zyx εεε ++ (G+ +2

xε +2
yε

2
zε ))(

2
1 222

xzyzxy γγγ +++  and

rearranging the terms.

)(
2
1 222

zyxo E
U σσσ ++= )(2

zxzyyxE
σσσσσσν

++− )(
2
1 222

xzyzxyG
τττ +++

or,

[ ]xzxzyzyzxyxyzzyyxxoU γτγτγτεσεσεσ +++++=
2
1

2.5 Stress-Strain Relations for Isotropic Material: Physical Derivation

Consider a cubic volume element subjected to a state of triaxial normal stress xσ , yσ ,

zσ and associated normal strains xε , yε , and zε  are developed in the material. Since the

material is isotropic, the cubic volume element will deform to a rectangular block, no shear

strains is produced in the material. By using the principle of superposition, the deformation of

the cubic volume element subjected to each normal stress can be draw as shown in Fig. 2.11.

Fig. 2.11

First, consider the normal strain of the element in the x  direction, caused by separate

application of each normal stress xσ , yσ , and zσ .  Under xσ , the cubic volume element

elongates in the x  direction and the associated strain in this direction is

E
x

x
σ

ε =′

When yσ  is applied, the cubic volume element contracts in the x  direction due to the

Poisson’s effects and the associated strain in this direction is

E
y

x

σ
νε −=′′

Similarly, when zσ  is applied, the cubic volume element contracts in the x  direction

due to the Poisson’s effects and the associated strain in this direction is
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E
z

x
σ

νε −=′′′

Superimposing these three normal strains, we have the total normal stress xσ of the

state of stress equals to

[ ])(1
zyxx E

σσνσε +−=

Likewise, the normal strain in the y  and z  direction can be determined as

[ ])(1
zxyy E

σσνσε +−=

[ ])(1
yxzz E

σσνσε +−=

In the test, application of the shear stress xyτ  to the cubic volume element of the

isotropic material only produces the shear strain xyγ  in the element as shown in Fig. 2.12a.

Likewise, the shear stresses yzτ  and zxτ  only produce the shear strain yzγ  and xzγ  on the

cubic volume element. Hence,

xyxy G
τγ 1

=

yzyz G
τγ 1

=

zxzx G
τγ 1

=

Fig. 2.12
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Example 2-2

The thin-walled cylindrical pressure vessel 10 m long as shown in Fig. Ex2-2 has

closed ends, a wall thickness of 5 mm, and an inner diameter of 3 m. If the vessel is filled

with air to a pressure of MPa 2 , how much do the length, diameter, and wall thickness

change, and in each case is the change an increase or a decrease? The vessel is made of steel

having GPa 200=E , and 30.0=ν .

Fig. Ex2-2

Let the x -axis is along the longitudinal axis of the vessel and the z -axis is normal to

the surface. Thus, the y -axis is in the tangential direction.

Since the ratio of the radius to the thickness, tr / , is small, thus,

MPa 300
)005.0(2

)5.1(2
2

===
t
pr

xσ

MPa 600
)005.0(

)5.1(2
===

t
pr

yσ

The value of zσ  varies from p−  on the inside wall to zero on the outside wall, thus,

0≈zσ  and we have

[ ] 00060.0)0600(3.0300
)10(200

1
3 =+−=xε

[ ] 00255.0)0300(3.0600
)10(200

1
3 =+−=yε

[ ] 00135.0)600300(3.00
)10(200

1
3 −=+−=zε

Since 
L
L

x
∆

=ε , 
d
d

d
d

y
∆

=
∆

=
π
πε )( , and 

t
t

z
∆

=ε ,

mm 610)10(00060.0 3 +==∆L

mm 65.710)3(00255.0 3 +==∆d

mm )10(75.6)5(00135.0 3−−=−=∆t

Thus, there are small increases in length and diameter, and a tiny decrease in the wall

thickness.
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Example 2-3

A sample of material subjected to a compressive stress zσ  is confined so that it can

not deformed in the y -direction, but deformation is permitted in the x -direction, as shown in

Fig. Ex 2-3. Assuming that the material is isotropic and exhibits linear-elastic behavior.

Determine the following in term of zσ  and the elastic constants of the material:

a.) The stress that develops in the y -direction.

b.) The strain in the z -direction.

c.) The strain in the x -direction.

d.) The stiffness zzE εσ /=′  in the z -direction. Is this apparent modulus equal to the

elastic modulus E  from the uniaxial test on the material? Why or why not?

Fig. Ex 2-3

Since the sample can not deformed in the y -direction, 0=yε , and since the

deformation is permitted in the x -direction, 0=xσ .

The stress that develops in the y -direction is

[ ])(1
zxyy E

σσνσε +−=

[ ])0(10 zyE
σνσ +−=

zy νσσ =

The strain in the z -direction is

[ ])(1
yxzz E

σσνσε +−=

[ ])0(1
zzz E

νσνσε +−=

zz E
σνε

21−
=



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-31

The strain in the x -direction is

[ ])(1
zyxx E

σσνσε +−=

[ ])(01
zzx E

σνσνε +−=

zx E
σννε )1( +

−=

The stiffness zzE εσ /=′  is

21 ν−
=′

EE

Thus, the apparent stiffness differs from the elastic modulus E  from the uniaxial test. This is

due to the fact that the apparent stiffness is determined by behavior according to the three-

dimensional form of Hooke's law.
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Chapter 3
Elements of Theory of Elasticity

3.1 Introduction

In the analysis of a body or structure, the geometry of the structure and the loads are

given. A solution may be obtained by analytical, numerical, and experimental methods. In the

analytical methods, the derivation of the load-stress relations depends on the following

conditions:

1. The equilibrium equations.

2. The compatibility equations.

3. The stress-strain relations.

4. The material responses.

Two different analytical methods used to satisfy the first and second condition are the

method of mechanics of materials and the theory of elasticity method.

The mechanics of materials involve the following steps.

1. The simplified assumptions related to the geometry of the deformation of the

structure are established by using the compatibility equations.

2. Analyze the geometry of the deformation to determine the strain distributions over

a cross section of the structure.

3. Relate the applied loads to the internal stress by using the equilibrium equations.

4. Use the stress-strain relations and the material responses to determine the relations

between the assumed strain distribution and stress distribution over a cross section

of the structure.

5. Relate the applied loads to the displacement of the structure.

The obtained results may be exact, or good approximations, or rough estimate,

depending largely on the accuracy of the assumptions made in the first step.

In the theory of elasticity, the states of stresses and displacements for every point in

the structure are determined by simultaneously satisfy the requirements of equilibrium at

every point, compatibility of all displacements and boundary conditions on stress and

displacement. This method involves no initial assumptions or approximation about the

geometry of the deformation. Thus, the method is more difficult than the mechanics of

materials. However, it is usually used to solve the problems in which the geometry of the

deformation can not be reliably anticipated such as determining the stress concentration

occurred at a hole in a plate.

Often, a practical problem is solves by using both methods simultaneously.
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Limitations

In this chapter, we are considering that the material is homogeneous, isotropic, and

linearly elastic, and that the displacements are small.
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Example 3-1: One dimensional problem

Determine the states of stresses and the axial displacement for every point in the bar

shown in Fig. Ex 3-1a.

Fig. Ex 3-1

To determine the states of stresses for every point in the bar shown in Fig. Ex 3-1a, we

are assuming that the bar is in a state of uniaxial stress. This idealization is not exact since

the state of stress at the fixed end of the bar is in three dimensions due to the Poisson’s

effects. However, according to Saint-Venant’s principle, the effects are localized.

1. By using the equilibrium of forces in the longitudinal axis of the differential

element shown in Fig. Ex 3-1c, we have

0)()( =+++− dxxqdAA xxx σσσ

0)(
=+

A
xq

dx
d xσ

This equation is a differential equation of equilibrium, which must be satisfied for

every point in the bar from 0=x  to Lx = . Let qxq =  and the bar is prismatic, the states of

stresses can be determined by integrating the previously obtained equation.

1

2

0 2
1   1 Cqx
A

dxqx
A

x

x +== ∫σ

The integration constant 1C  can be found by using the boundary condition of stress: at

0=x , 0=xσ . Hence, 
A

qLC
2

2

1 −=  and

)(
222

22
22

Lx
A

q
A

qL
A

qx
x −=−=σ

2. To determine the axial displacement, we need first consider how the differential

element deformed under the load qxq =  and, then, obtain the strain-displacement relation.
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dx
du

dx
uduu

x =
−+

=
)(ε

The uniaxial stress-strain relation, .xx Eεσ =

dx
duEx =σ

Substituting xσ  into the differential equation of equilibrium, we have

02

2

=+
A
qx

dx
udE

Performing the first integration with respect to x  and using the displacement

boundary condition: at Lx = , 0=
dx
du , we obtain

2

2

0 2
   1 C

A
qxdxqx

Adx
duE

x

+−=−= ∫

A
qLC
2

2

2 =

)(
2

22 xL
A

q
dx
duE −==

Performing the second integration with respect to x  and using the displacement

boundary condition: at 0=x , 0=u , we obtain

3

3
2

0

22

32
)(

2
CxxL

A
qdxxL

A
qEu

x

+







−=−= ∫

03 =C

Therefore, the displacement equation is









−=

32

2
2 xL

AE
qxu



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 3-5

3.2 Two-Dimensional Problems of Theory of Elasticity

Consider a plate structure subjected to the external load parallel to the plate as shown

in Fig. 3-1. If the plate is very thin compared to the dimension of the plate, we can proved that

the stresses zσ , xzτ , and yxτ on an infinitesimal small element far away from the loading

points are approximately equal to zero. This kind of state of stresses on the infinitesimal small

element is called the plane stress. The strain-stress relations of the plane stress are

Fig. 3.1
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and the stress-strain relations of the plane stress are
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σ
σ

2/)1(00
01
01

1 2

The strain-displacement relations of the plane stress are

x
u

x ∂
∂

=ε
y
v

y ∂
∂

=ε
x
v

y
u

xy ∂
∂

+
∂
∂

=γ

The strain compatibility relation of the plane stress is

yxyx
xyxy

∂∂

∂
=

∂
∂

+
∂

∂ γεε 2

2

2

2

2

The differential equations of equilibrium of the plane stress are

x
x

∂
∂σ

y
xy

∂

∂
+

τ
0=+ xB

x
xy

∂

∂τ
y

y

∂

∂
+

σ
0=+ yB
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Example 3-2

Given that the body force is negligible. Investigate if the following displacement field

can be a solution of a static plane stress problem

32
22

1 )( ayayxau +−−=  and 412 axyav +=

where the ia  are constants.

The strain-displacement relations are

xa
x
u

x 12=
∂
∂

=ε xa
y
v

y 12=
∂
∂

=ε

2121 2)2( ayaaya
x
v

y
u

xy −=+−−=
∂
∂

+
∂
∂

=γ

The strain compatibility relation is satisfied since

02

2

=
∂

∂

x
yε 02

2

=
∂
∂

y
xε 0

2

=
∂∂

∂

yx
xyγ

The stress-strain relations of the plane stress are





























+
−

−

−

=

















−















−
−

=
















)1(2

1
2
1
2

          

2
2

2/)1(00
01
01

1

2

1

1

2

1

1

2

ν

ν

ν

ν
ν

ν

ν
τ

σ
σ

Ea

xEa

xEa

a
xa
xa

E

xy

y

x

The differential equations of equilibrium of the plane stress are

x
x

∂
∂σ

y
xy

∂

∂
+

τ
0≠

x
xy

∂

∂τ
y

y

∂

∂
+

σ
0=

Thus, the displacement field is not a possible solution.
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Boundary condition

Boundary condition is the prescribed condition of displacements and forces at the

boundaries of a structure. Consider a body as shown in Fig. 3.2.

Fig. 3.2

1. Geometric or displacement boundary condition pertains to the compatibility

conditions and required that the displacement (including rotation) at the structural

boundary must be satisfied.

Along the boundary AB  which is the fixed support, the displacements u  and v  are

zero.

2. Natural or force boundary condition pertains to the equilibrium conditions and

required that the forces (including moment) at the structural boundary must be

satisfied.

From chapter 1, the stress vector Pσv  on an arbitrary plane in three-dimension is

kji PzPyPxP
ˆˆˆ σσσσ ++=v

where

nml xzxyxPx ττσσ ++=

nml yzyxyPy τστσ ++=

nml zyzxzPz σττσ ++= 

From Fig. 3.2, the direction cosine along the boundary BC  and AC  is φcos=l ,

φsin=m , and 0=n . Thus,

φτφσσ sincos xyxPx +=

φσφτσ sincos yxyPy +=

Defining surface traction as 
dA
dFx

x =Φ , 
dA
dFy

y =Φ , and 
dA
dFy

z =Φ  where xF , yF ,

and zF  are the components of a force vector F
v

 acting on the surface having a boundary area

dA . Hence,
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φφ coscos)( p
dA

pdA
x −=−=Φ

φφ sinsin)( p
dA

pdA
dA
dFy

y −=−==Φ

The force boundary conditions along the boundary BC  are

xPx Φ=σ ; φτφσφ sincoscos xyxp +=−

yPy Φ=σ ; φσφτφ sincossin yxyp +=−

At 0=φ , px −=σ

0=xyτ

At 
2
πφ = , py −=σ

0=xyτ

The force boundary conditions along the boundary BC  are

At πφ = , 0=xσ

0=xyτ

0=yσ

The elasticity solutions of this example must satisfy the above displacement and force

boundary conditions.
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Example 3-3

The cantilevered beam as shown in Fig. Ex 3-3 has unit thickness. Neglecting the

body forces, determine

a.) The flexural stress xσ  due to the applied load by using the mechanics of material

method of analysis.

b.) The stresses yσ  and xyγ  by using the obtained the flexural stress xσ .

c.) If the obtained state of stresses is possible for the theory of elasticity method of

analysis?

Fig. Ex 3-3

By the mechanics of material method of analysis, we have

yx
c
q

c

yqx

I
My

x
2

33

2

4
3

3
2
2

=



















==σ

To find xyτ , we use the differential equation of equilibrium of the plane stress where

the body forces is neglected. Thus,

x
x

∂
∂σ

y
xy

∂

∂
+

τ
0=

xy
c
q

32
3

y
xy

∂

∂
+

τ
0=

∫ +−= 132
3 Cxydy
c
q

xyτ

1
2

34
3 Cxy
c
q

xy +−=τ

Stress boundary condition, at cy += , 0=xyτ .

2
31 4

3 xc
c
qC =

)(
4
3 22

3 ycx
c
q

xy −=τ
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To find yσ , we use the differential equation of equilibrium of the plane stress where

the body forces is neglected. Thus,

x
xy

∂

∂τ
y

y

∂

∂
+

σ
0=

0)(
4
3 22

3 =
∂

∂
+−

y
yc

c
q yσ

2
22

3 )(
4
3 Cdyyc
c
q

y +−−= ∫σ

2

3
2

3 )
3

(
4
3 Cyyc
c
q

y +−−=σ

Stress boundary condition, at cy += , qy −=σ .

2

3
3

3 )
3

(
4
3 Ccc
c
qq +−−=−

22
qC −=









−−= 1

2
3

22 3

3

c
y

c
yq

yσ

To determine if the obtained state of stresses is possible, we use the strain

compatibility equation,

yxyx
xyxy

∂∂

∂
=

∂
∂

+
∂

∂ γεε 2

2

2

2

2

But, we need to find the strains from the stresses first. For the plane stress problem,





























−









−−

















+
−

−
=

















)(
4
3

1
2
3

22

4
3

)1(200
01
01

1

22
3

3

3

2
3

ycx
c
q

c
y

c
yq

yx
c
q

E
xy

y

x

ν
ν

ν

γ

ε
ε

Then, substituting the obtained strains into the strain compatibility equation, we get

yxyx
xyxy

∂∂

∂
≠

∂
∂

+
∂

∂ γεε 2

2

2

2

2

Therefore, the state of stresses is impossible for the theory of elasticity method of analysis.
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3.3 Stress Field Solution for Plane Stress Problem

To solve problems in either plane stress and plane strain, one may begin by finding

stresses that satisfy the equation of equilibrium.

x
x

∂
∂σ

y
xy

∂

∂
+

τ
0=+ xB

x
xy

∂

∂τ
y

y

∂

∂
+

σ
0=+ yB

The above two equations have three unknowns stresses. Hence, an infinite number of

stress solutions can be obtained. Let the body forces per unit volume are defined as

derivatives of a potential function ),( yxVV =  where

x
VBx ∂
∂

−=
y
VBy ∂
∂

−=

In addition, let ),( yxFF =  be an arbitrary function and let

V
y
F

x +
∂
∂

= 2

2

σ V
x
F

y +
∂
∂

= 2

2

σ
yx

F
xy ∂∂

∂
−=

2

τ

These functions are satisfied the equations of equilibrium.









∂
∂

+
∂∂

∂
x
V

yx
F

2

3

2

3

yx
F
∂∂

∂
− 0=

∂
∂

−
x
V

yx
F
∂∂

∂
− 2

3









∂
∂

+
∂∂

∂
+

y
V

yx
F

2

3

0=
∂
∂

−
y
V

Therefore, as far as the equations of equilibrium are concerned, the assumed stress functions

constitute a general solution. The problem is reduced to finding a function ),( yxFF =  that

satisfies the compatibility conditions and the boundary conditions.

The strain-stress relations of the plane stress problems are































∂∂
∂

−

+
∂
∂

+
∂
∂

















+
−

−
=

















yx
F

V
x
F

V
y
F

E
xy

y

x

2

2

2

2

2

)1(200
01
01

1

ν
ν

ν

γ

ε
ε

The strain compatibility relation of the plane stress is 
yxyx
xyxy

∂∂

∂
=

∂
∂

+
∂

∂ γεε 2

2

2

2

2

.

=
∂
∂

2

2

y
xε









∂
∂

−+
∂∂

∂
−

∂
∂

2

2

22

4

4

4

)1(1
y
V

yx
F

y
F

E
νν
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=
∂

∂
2

2

x
yε









∂
∂

−+
∂
∂

+
∂∂

∂
− 2

2

4

4

22

4

)1(1
x
V

x
F

yx
F

E
νν

=
∂∂

∂

yx
xyγ2

22

4)1(2
yx

F
E ∂∂

∂+
−

ν

The only compatibility equation not identically satisfied is









∂
∂

+
∂∂

∂
+

∂
∂

4

4

22

4

4

4

2
y
F

yx
F

x
F 0)1( 2

2

2

2

=







∂
∂

+
∂
∂

−+
y
V

x
Vν

024 =∇+∇ VF

Now, the problem is reduced to the solution of boundary-value problem associated

with biharmonic differential operator F4∇  and harmonic differential operator V2∇  which

can be solved by using theory of functions of a complex variable.

If the body forces are absent,

04 =∇ F

The function ),( yxFF =  is called the Airy stress function which is discovered by Sir

George Biddell Airy in 1863.
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Example 3-4

A rectangular block having the mass density ρ  stands on a rigid horizontal support

and is loaded by its own weight as shown in Fig. Ex 3-4a. As a proposed solution of this

problem, investigate the equation









+−=

26

23 LxygF ρ  and gyV ρ=

Determine the displacement ),( yxuu =  and ),( yxvv =  of the block due to its own weight.

Fig. Ex 3-4a

From the Airy stress function, we obtain

02

2

=+−=+
∂
∂

= gygyV
y
F

x ρρσ

)(2

2

LyggygLV
x
F

y −=+−=+
∂
∂

= ρρρσ

0
2

=
∂∂

∂
−=

yx
F

xyτ

The results satisfy the free-surface boundary conditions of the top and the vertical

edges of the block where, for the top edge,

0=xσ

0)( =−= LLgy ρσ

0=xyτ

, for the vertical edge,

0=xσ

)( Lygy −= ρσ

0=xyτ

, and for the bottom edge,
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0=xσ

gLLgy ρρσ −=−= )0(

0=xyτ

Determine the displacement ),( yxuu =  and ),( yxvv = .

From the stress-strain relations,
















−

















+
−

−
=

















0
)(

0

)1(200
01
01

1 Lyg
E

xy

y

x

ρ
ν

ν
ν

γ

ε
ε

)( Ly
E

g
x
u

x −−=
∂
∂

=
νρε

)( Ly
E
g

y
v

y −=
∂
∂

=
ρε

0=
∂
∂

+
∂
∂

=
x
v

y
u

xyγ

Thus, by integration, the displacement functions are in the form of

yfxLy
E

gu +−−= )(νρ

xfLyy
E
gv +−= )

2
(

2ρ

Substituting ),( yxuu =  and ),( yxvv =  into 0=
∂
∂

+
∂
∂

=
x
v

y
u

xyγ

0=



+








+−

dx
df

dy
df

x
E

g xyνρ

Grouping the terms,

0=







+



 +−

dy
df

dx
dfx

E
g yxνρ

Each expression in the parentheses must be a constant. If not, we could vary x  alone

(or y  alone) and violate the equality. Thus,

1a
dx
dfx

E
g x =+−
νρ

1a
dy
df y −=

and 2

2

11 2
 ax

E
gxadxx

E
gaf x ++=






 += ∫

νρνρ
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311 ayadyaf y +−=−= ∫
Rewriting the displacement functions, we get

31)( ayaxLy
E

gu +−−−=
νρ

21
2

2

2

2

1

2

222
)

2
( axaxLyy

E
gax

E
gxaLyy

E
gv ++








+−=+++−=
νρνρρ

By using the boundary conditions of the block and the symmetry, at 0=x  and 0=y ,

0=u  and 0=v , we obtain

02 =a  and 03 =a

At 0=x  and 0=y , 0=
∂
∂
x
v ,

01 =+=
∂
∂ ax

E
g

x
v νρ

x
E
ga νρ

−=1

Hence, we get the displacement functions in the form of

xLy
E

gu )1( −−−=
νρ









−+−= xxLyy

E
gv ννρ 2

2

22

Fig. Ex 3-4b

The deformed shape of the block is shown in Fig. Ex 3-4b. It should be noted that

1.) The block shortens vertically and become wider toward the base due to Poisson's

effect.

2.) All right angles are preserved since 0=xyγ .

3.) The deflection at the base is incompatible with the rigid horizontal support

4.) According to the Saint-Venant's principle, the solution should be exact for cy 2> .
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3.4 Solution by Polynomials

For the plane problems with long rectangular strip and the body forces are absent, the

solutions of the biharmonic differential operator 04 =∇ F  in the form of polynomial are of

interest. By considering polynomials with various degrees and suitably adjusting their

coefficients, a number of practical problems can be solved.

A quadratic polynomial is the lowest order polynomials that yield nonzero stresses

from an Airy stress function. Consider the function

22
2

22

22
ycxybxaF ++=

where 2a , 2b , and 2c  are constants. This Airy stress function is satisfied the equation

04 =∇ F  and the stress components in this case are

22

2

c
y
F

x =
∂
∂

=σ

22

2

a
x
F

y =
∂
∂

=σ

2

2

b
yx

F
xy −=

∂∂
∂

−=τ

These stress boundary conditions are constant throughout the body. Thus, the stress

function 22
2

22

22
ycxybxaF ++=  represents a combination of uniform tensions or

compressions in two perpendicular directions and a uniform shear as shown in Fig. 3.3.

Fig 3.3

Let consider a stress function in the form of a cubic function.

33232333

)2(322)2(3
y

d
xy

c
yx

b
x

a
F +++=

where 3a , 3b , 3c , and 3d  are constants. This Airy stress function is satisfied the equation

04 =∇ F  and the stress components in this case are
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ydxc
y
F

x 332

2

+=
∂
∂

=σ

ybxa
x
F

y 332

2

+=
∂
∂

=σ

ycxb
yx

F
xy 33

2

−−=
∂∂

∂
−=τ

If all coefficients except 3d  are zero and == 13 6ad  a constant,

yax 16=σ 0=yσ 0=xyτ

The meaning and the usefulness of the obtained stress boundary condition depend on

the region that we are choosing to consider. Let us consider Fig. 3-4.

Fig. 3.4

1. If we choose the region as shown in Fig. 3.4a, the stress boundary condition

represents a state of the normal stresses due to a pure bending applied at the ends

of the beam.

2. If we choose the region as shown in Fig. 3.4b, the stress boundary condition

represents a state of the normal stresses due to bending plus axial load applied to

the ends of the beam.

3. If we choose the region as shown in Fig. 3.4c, the solution has no practical

interest.

In taking the stress function in the form of quadratic and cubic polynomial equations,

we are completely free in choosing the magnitudes of the coefficients, since the equation

04 =∇ F  is always satisfied whatever values they may have. In the case of polynomials of

higher degrees, the equation 04 =∇ F  is satisfied only if certain relations between the

coefficients are satisfied.

If all coefficients except 3b  are zero,

0=xσ yb
x
F

y 32

2

=
∂
∂

=σ xb
yx

F
xy 3

2

−=
∂∂

∂
−=τ

The stress boundary conditions in this case are shown in Fig. 3-5.
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Fig 3.5

Let us consider the stress function in the form of a polynomial of the fourth degree,

44342243444

)3(4)2(32)2(3)3(4
yexydyxcyxbxaF ++++=

We can find that the function is satisfied the equation 04 =∇ F  only if

)2( 444 ace +−=

The stress components in this case are

2
444

2
42

2

)2( yacxydxc
y
F

x +−+=
∂
∂

=σ

2
44

2
42

2

ycxybxa
x
F

y ++=
∂
∂

=σ

24
4

24
2

2
2

2
ydxycxb

yx
F

xy −−−=
∂∂

∂
−=τ

If all coefficients except 4d  are zero and 44 6φ=d = a constant,

xyx 46φσ = 0=yσ 2
43 yxy φτ −=

Fig. 3.6

Fig. 3.6a shows the stress boundary condition associated with the solution on the

chosen region. The solution appears to lack practical interest.

Now, let us remove the shear stress on cy ±=  by superimposing the stress function

xycF 2
43φ−=  on the previous stress function.
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)3( 23
4 xycxyF −= φ

This stress function is satisfied the equation 04 =∇ F  and the stress components are

xy
y
F

x 42

2

6φσ =
∂
∂

=

02

2

=
∂
∂

=
x
F

yσ

)(3 22
4

2

yc
yx

F
xy −=

∂∂
∂

−= φτ

Fig.3.6b shows the stress boundary condition associated with the solution on the

chosen region. They appear to be the stress distribution corresponds to a cantilever beam

having fixed support at Lx =  and is subjected to both a parabolic distribution of xyτ  and pure

bending at 0=x . Note that, according to the Saint-Venant’s principle, the obtained elasticity

solution must be considered as approximate near the fixed support and loading point

( cLxc 22 −<< ) due to the Poisson’s effect and stress concentration.

3
4

3
3

4 4
3

223 cccdyP
c

c
xy φφτ =








−== ∫

−

xy
c

yPx
I

My
x 43 6

12/)2(1
)( φσ ===

3.5 End Effects

In some problems in which the structure is subjected to loads producing stress

concentrations in the area of loading point, we need to use the Saint-Venant’s principle to

simplify the problems by replacing the loads with a statically equivalent load.

Fig 3.7

Consider a cantilever beam having a unit width as shown in Fig. 3.7a. The

concentrated load P  makes the problem difficult to solve since it is difficult to satisfy the

force boundary conditions at the loading point. Hence, the load P  is replaced by a quadratic

distribution of surface traction xyy τ−=Φ  that is zero at cy ±=  and maximum at 0=y  as
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shown in Fig. 3.7b. According to the Saint-Venant’s principle, these two different loading

patterns practically produce no different effect to the beam at a distance of c2  or more.

In addition, the displacement boundary condition at the fixed end of the beam is 0=u

and 0=v  for cyc <<− . This condition makes the elasticity solution difficult to obtain. To

make the problem easier, we assume the initial vertical line at x  to warp into the shapes as

shown in Fig. 3.7c. This deformation is due to the shear stress xyτ . Due to the fixed support at

Lx = , we may

1. Set 0=
∂
∂
x
v  at 0=y  to make the beam axis horizontal at Lx = .

2. Set 0=
∂
∂

y
u  at 0=y  to make the beam vertical line vertical at Lx = .

3.6 Determination of Displacements from Stresses

If the stress functions are known, we can determine the displacement by integration of

the strain-displacement relations as shown in the following example.
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Example 3-5: Bending of a cantilevered beam loaded at the end

Determine the displacements of a cantilevered beam having a unit width and loaded at

the end as shown in Fig. 3.7a.

Consider the cantilevered beam having a unit width as shown in Fig. 3.8a. The upper

and lower edges are free from load. As discussed before, the load P  is replaced by a

quadratic distribution of surface traction xyy τ−=Φ  that is zero at cy ±=  and maximum at

0=y . This condition can be satisfied by using the stress components found by using the Airy

stress function in the form of

xyx 46φσ = 0=yσ )(3 22
4 ycxy −= φτ

The constant 4φ  can be found by using the force boundary condition: sum of the

shearing force distribution over the end of the beam must be equal to the load P .

3
4

3
3

4 4
3

223 cccdyP
c

c
xy φφτ =
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




−== ∫

−

34 4c
P

=φ

Since the moment of inertial of the cross section having a unit thickness is 
3

2 3c , the

stress components equations can be written as

xy
c
P

x 32
3

=σ
I

Pxy
=

)1(
4
3

2

2

c
y

c
P

xy −=τ )(
2

22 yc
I

P
−=

These stresses can also be obtained directly by using the method of mechanics of

material where

I
My

x =σ  and 
It

VQ
xy =τ

Now, let determine the displacement corresponding to the stresses. Using Hooke’s law

for plane stress, we have
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The strain-displacement relations of the plane stress are

EI
Pxy

x
u

x =
∂
∂

=ε
EI
Pxy

y
v

y
νε −=

∂
∂

= )(
2

22 yc
IG
P

x
v

y
u

xy −=
∂
∂

+
∂
∂

=γ
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Integrating xε  and yε , we have

yf
EI

yPxu +=
2

2

xf
EI

Pxyv +−=
2

2ν

where yf  and xf  are unknown functions of y  only and x  only, respectively. They may not

be a constant since we are dealing with partial derivative. Substituting the values of u  and v

into the shear strain-displacement relation,
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dx
df

EI
Py
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In this equation, we can see that 



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 are functions of x  only, =)(yG
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
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Py y

22

22ν  are functions of y  only, and 
IG

PcK
2

2

=  is independent of x  and y .

+)(xF =)(yG K

This equation means that )(xF  must be some constant A  and )(yG  must be some

constant B . If not, )(xF  and )(yG  would vary with x  and y , respectively. In addition, by

varying x  alone or y  alone, the equality would be violated. Hence,

IG
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dx
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Integrating 
dx
df x  and 

dy
df y , we have

CAx
EI

Pxf x ++−=
6

3

DBy
IG

Py
EI

Pyf y ++−=
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33ν

Substituting into the expressions of u  and v , we have

DBy
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Py
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332 ν
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CAx
EI

Px
EI

Pxyv ++−−=
62

32ν

Assuming that the centroid of the cross section is fixed. Then, the expressions of u

and v  are zero at Lx =  and 0=y .

0=D
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EI

PLC −=
6

3

The deflection curve of the beam at 0=y  is

)(
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From the discussion about the end effects, due to the fixed support at Lx = , we may

1. Set 0=
∂
∂
x
v  at 0=y  to make the beam axis horizontal at Lx = .

2. Set 0=
∂
∂

y
u  at 0=y  to make the beam vertical line vertical at Lx = .

For the first case 0=
∂
∂
x
v  at 0=y  and Lx = ,

=
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v 0

2

2

=+− A
EI

PL

EI
PLA
2

2

=

Then, from the equation 
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into the expressions of u  and v , we have
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The deflection curve of the beam at 0=y  can be rewritten as
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At 0=x , the deflection of the beam at 0=y  is

EI
PLv

x
y 3

3

0
0 −=

=
=

which is identical to the one obtained by using the mechanics of materials method.

To show the warping of the beam cross section produced by the shearing stress, let us

consider the horizontal displacement u  at the support Lx = .
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yPc

IG
Py

EI
Pyu Lx 266
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This rotation of the cross section is due to the shearing stress 
c
P

xy 4
3

=τ  and having the

clockwise direction.

Consider the second case where 0=
∂
∂

y
u  at 0=y  to make the beam vertical line

vertical at Lx = , we have
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At 0=y  and Lx = ,
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2
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−=

Then, from the equation 
IG
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=+ ,

EI
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IG
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22
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+=

Substituting into the expressions of v  at 0=y  with 
EI

PL
IG

LPcAL
EI

PLC
326

323

−−=−= ,

we have
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EI
PL

IG
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EI
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IG
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Pxvy 32226

32223

0 −−++−==
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Comparing this equation with the equation 
EI

PL
EI

xPL
EI

Pxvy 326

323

0 −+−==  previously

obtained, we have the deflection of the cantilevered beam increased by

)(
4
3)(

2

2

xL
cG
PxL

IG
xPc

−=−

This term is an estimate of the effect of shearing force on the deflection of the beam.

In reality, the cross-section near the fixed support is not free to rotate. Thus, the distribution

of stresses is different from the obtained results. However, if the beam is long compared to the

depth, the results are satisfactory.
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3.7 Plane Stress Problems in Polar Coordinate

The polar coordinate as shown in Fig. 3.8 is useful in the stress analysis of the

structures such as curved beams, circular rings and disks, pressurized cylinder.

Fig. 3.8

Equilibrium Equations in Polar Coordinate

Fig. 3.9

Consider an infinitesimal small element subjected to the state of stresses in the polar

coordinate as shown in Fig. 3.9. If this element is in equilibrium, we have the summations of

the forces in the radial direction and circumferential direction are equal to zero.

∑ = ;0rF

θ
σ

σθστθσ θθ ddrrdr
r

drddrrd r
rrr )()(

2
sin)()( +





∂
∂

++−−− +

drdr
r 





∂
∂

+ θ
θ
τ

τ θ
θ )(

2
sin drdd θθ

θ
σ

σ θ
θ 





∂
∂

+− 0=+ θrdrdBr



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 3-28

∑ = ;0θF
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Expanding the above two equations, setting 
22

sin θθ dd
= , and neglecting the higher-

order terms, we have the equilibrium equations in the polar coordinate.
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Airy Stress Function

To solve the plane problems in polar coordinate, we begin by finding stresses that

satisfy the equations of equilibrium. However, the two equilibrium equations have three

unknowns stresses. Hence, The number of the possible stress solutions is infinite.

By using coordinate transformation from the Cartesian coordinates ( x , y ) to the polar

coordinates ( r , θ ), we have
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By taking the inverse of the matrix, we have
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The relations between the Cartesian coordinates ( x , y ) to the polar coordinates ( r ,

θ ) are
222 yxr +=

x
yarctan=θ

The derivatives of the relation with respect to x  and y  are
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Thus, for any function ),( yxf  that can be written in the polar coordinate as

)sin,cos( θθ rrf , we have the first partial derivative of the function ),( yxf  as
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Also, the second partial derivative of the function ),( yxf  can be written as
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Rearranging the expressions,
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To transform the Airy stress function in the Cartesian coordinates ),( yxFF =  to the

Airy stress function in the polar coordinates ),( θrFF = , we replace the function ),( yxf  by

the Airy stress function in the Cartesian coordinates ),( yxFF = . Neglecting the body forces,

we have
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Substituting xσ , yσ , and xyτ  into the coordinate transformation matrix,
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Substituting the obtained functions of the stresses into the equilibrium equations,
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we can see that the stress functions are satisfied the equations of equilibrium. Thus, the

assumed stress functions constitute a general solution.

Now, the problem is reduced to finding a function ),( θrFF =  that satisfies the

compatibility conditions and the boundary conditions.

Next, we will transform the compatibility equation in the Cartesian coordinates,
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Thus,
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This expression tells us that the harmonic operator on the left-handed side, which is in

the Cartesian coordinates, is equivalent to the operator on the right-handed side, which is in

the polar coordinates.

The strain compatibility relation of the plane stress which is in the Cartesian

coordinates is

yxyx
xyxy
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 Substituting the strain-stress relations which are
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into the strain compatibility relation, we have
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Differentiating the equilibrium equations 
x
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Then, substituting it into the strain compatibility relation, we have
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By adding the stress transformation xσ  and yσ  from the transformation matrix
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, we have

xσ + yσ = rσ + θσ

Consequently, the polar coordinate form of the compatibility equation in term of stress when

the body forces are absent is

0)(2 =+∇ θσσ r
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Thus, the transformation of the harmonic differential operator 2∇  to the polar

coordinate gives
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Since )( 224 FF ∇∇=∇ , therefore, we have
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Strain Components in Polar Coordinates

Fig. 3.10

Let ),( θruu =  and ),( θrvv =  are the radial and tangential (circumferential)

components of the displacement in the polar coordinates as shown in the Fig. 3.10. If the

radial displacement of the side ad  is u , and of the side bc is dr
r
uu
∂
∂

+ ,

r
u

r ∂
∂

=ε

The strain in the tangential direction depends not only on the tangential displacement

v  but on the radial direction as well. Assuming that the points a  and d  have only the
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displacement u , the new length of the arc ad  is θdur )( + , then, the tangential strain due to

only the displacement u  is

r
u

rd
rddur

=
−+

θ
θθ)(

The difference in the tangential displacement of the sides ab  and cd  is θ
θ

dv
∂
∂ . The

tangential strain due to only the displacement v  is

θθ
θ

θ ∂
∂

=
∂
∂ v

rrd
dv 11

The total tangential strain is

θ
εθ ∂

∂
+=

v
rr

u 1

To determine the shearing strain θγ r , let the element abcd deforms to the position

dcba ′′′′ . The angle between ad  and da ′′  is

θθ
θ

θ ∂
∂

=
∂
∂ u

rrd
du 11

The angle between ab  and ba ′′  is 
r
v
∂
∂ . This angle must be subtracted by the rigid

body rotation 
r
v  about the axis passing through point O . This rigid body rotation does not

contribute to the shearing strain θγ r . Thus, the total shearing strain θγ r  is

θγ r θ∂
∂

=
u

r
1

r
v
∂
∂

+
r
v

−

Stress-strain Relations

Since the stress-strain relations are derived based on the internal energy in the

rectangular coordinate system, they also valid for other orthogonal coordinate systems such

as cylindrical or spherical coordinates. Thus, the stress-strain relations in the polar coordinate

can be written by changing the subscript x  to r  (radial) and y  to θ  (circumferential).
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3.8 Stress Distribution Symmetrical about an Axis: Pressurized Cylinder

Consider a circular plate subjected to the internal and external pressure as shown in

Fig. 3.11. The plate may be a slice of a long thick-walled cylinder structure. It has an internal

radius of a  and external radius of b . Due to the symmetry of the plate and the loading

condition, the stress components occurred in the small plate element within the radius a  and
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b  depend on the distance from the center of the plate r  only. Let the center of the plate is the

origin of the polar coordinates ( r , θ ). Thus, the compatibility equation becomes

Fig. 3.11
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By expanding the equation, we find
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This is ordinary differential equation. It can be reduced to a linear differential equation

with constant coefficients by introducing a new variable t  such as ter = . Then, the general

solution of the equation is in the form of

DCrrBrrAF +++= 22 loglog

This solution has four unknowns constants of integration which can be found by using

the boundary conditions. The correctness of the equation can be verified by substituting back

into the compatibility equation.

The corresponding stress components are

CrB
r
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r
F

r
F

rr
F

rr 2)log21(111
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If the plate has no hole at the origin of the coordinates ( 0=r ), the constant A  and B

must be zero. This is due to the fact that when 0→r , the stresses ασ →r  and ασθ →

which are physically impossible. Then, we have constant 2 === Cr θσσ  and the plate is in a

condition of uniform tension or uniform compression.
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If the plate has the hole at the origin, we need to set the constants B  to be zero (see

Theory of Elasticity, Timoshenko, p.78) in order to find the condition of stresses in the plate.

C
r
A

r 22 +=σ

C
r
A 22 +−=θσ

These expressions represent the stress distribution in a hollow cylinder subjected to

uniform pressure on the inner and outer surfaces. From the Fig. 3-11, let the uniform inner

and uniform outer pressures are ip  and op . Then, the boundary conditions are

iarr pC
a
A

−=+== 2)( 2σ

obrr pC
b
A

−=+== 2)( 2σ

Solving the simultaneous for A  and C2 , we have
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Therefore, the stress components are
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Rearranging the equations, we obtain
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These stress components are occurred in thick-walled cylinder subjected to the

uniform inner pressure ip  and uniform outer pressures op . The distribution of the stress

components across the thickness of the cylinder is shown in Fig. 3.12a and 3-12b for the case

of internal pressure only and external pressure only, respectively.

Thick-walled Cylinder without External Pressure

If the external pressure 0=op , the cylinder is subjected to internal pressure only.
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It can be seen that the circumferential stress is always larger than the radial stress at

the same value of r .

Fig. 3.12

If the cylinder as shown in Fig. 3.13 has end cap, the axial stress zσ  presents in the

cylinder. The force acting on the end cap due to the internal pressure ip  is 2apiπ . The

reaction force on the wall of the cylinder is )( 22 abz −πσ . Thus,

22

2

ab
apiz −

=σ

Fig. 3.13
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The maximum shear stress in this case is occurred at ar = . The radial stress is the

minimum principal stress, 3σσ =−= ir p  and the circumferential stress is the maximum

principal stress, 122

22

σσθ =
−
+

=
ab
bapi . Therefore, the maximum shear stress is

22

2
31

max 2 ab
bpi

−
=

−
=

σσ
τ

Then, we can determine the radial and circumferential strains by using the strain-stress

relation.
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[ ])(1
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Finally, we can determine the displacements by using the strain-displacement

relations.
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Thin-walled Cylinder without External Pressure

For thin-walled cylinder having the ratio of 20/)/( >>=− taaba  and 1/ ≈ba , we

have

0=rσ

t
api=θσ

t
api

z 2
=σ
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Example 3-6

A steel cylinder with end caps is to have the inner radius mm 10=a  and outer radius

of mm 3.31=b . Under the working pressure of MPa 140 , what is the radius expansion at

ar =  and br = ? Use GPa 204=E  and 29.0=ν .

At working pressure MPa 140=ip , we have the state of stresses at mm 10== ar  as
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Circumferential strain at mm 10== ar  is

[ ] 00102.0)14016(29.0172
204000

1
=−−=aθε

Thus,

θ∂
∂

+=
v

rr
u 100102.0

Since the rate of change of v  with respect to θ  is zero due to the symmetry, the radius

expansion at mm 10== ar  is

mm 0102.0)10(00102.0 ==au

In the similar fashion, the radius expansion at mm 3.31== br  with MPa 8.31=bθσ

is

[ ] mm 0042.0)016(29.08.31
204000

1)3.31( =+−== bb bu θε
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3.9 Effect of Circular Holes on Stress Distributions in Plates

Fig. 3.14

Consider the plate having unit thickness and a small circular hole of radius a  at the

center of the plate as shown in Fig. 3.14. It is subjected to a uniformly distributed axial tensile

stress oσ  in the −x direction.

The stress distribution in the area neighboring the hole will be different from the stress

distribution in the plate without the hole. However, from the Saint-Venant’s principle, the

change is negligible at distances which are large compared with the radius of the hole, a .

Let the radius b  is large in comparison to the radius a  of the hole so that the stresses

at the b  are the same as in the plate without the hole. By using the stress transformation

equation from the Cartesian coordinates ( x , y ) to the polar coordinates ( r , θ ),
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It can be seen that the stresses can be considered separately into two parts. The first

part is due to the constant components of 
2

oσ
. The solution of this part is obtained in previous

section as
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where 0=ip  and 
20

op σ
−= .

The remaining part consists of the normal stress θ
σ

2cos
2

o  and the shearing stress

θ
σ

2sin
2

o− . The solution of this part can be determined by using the Airy stress function of

the form

θ2cos)(rfF =

Substituting the function into the compatibility condition,
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Hence, we can find the following differential equation to determine )(rf .
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This is an ordinary differential equation. The general solution of the equation is in the

form of
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Thus, the stress function is
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By using the boundary conditions, we can determine the constants of integration. At

the outer boundary where br = , the remaining stress that produce the stress components

brr =)(σ  and brr =)( θτ  are the normal stress θ
σ

2cos
2

o  and the shearing stress θ
σ
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o− .

Thus, the remaining stresses are θ
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At the edge of the hole where ar = , the stress components must be zero since there is

free from external force.

θ2cos4620 24 





 ++−=

a
D

a
CA

0462 24 =++
a
D

a
CA

θ2sin26620 24
2 






 −−+=

b
D

b
CBbA

02662 24
2 =−−+

a
D

a
CBaA

Solving these four simultaneous equations and assuming that the plate is infinitely

large, 0/ =ba , we get
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Substituting the constants of integration into the stress component equation and plus

the stresses component due to the uniform tension stress 
2

oσ
 found in the previous section.
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The plots of the normal stress distribution along the transverse and centerline of the

infinitely large plate is shown in Fig. 3.15.

It can be seen that the normal stress occurred on the edge of the hole where ar =  and

2
πθ ±=  has the positive value of

oσσθ 3)( max =

For 0=θ  and πθ = , the normal stress on the edge of the hole where ar =  has the negative

value of oσ . Thus, θσ  attains a maximum tensile value of three times the uniformly

distributed stress oσ . This value is the largest stress occurs in the plate. Hence the stress

concentration factor at the hole, which is the ratio of the maximum normal stress at the hole

divided by the averaged normal stress at the same point in the absence of the hole, is 3

Fig. 3.15

From Fig. 3.15, it can be seen that the stress θσ  approaches the average values of oσ

at a small distance from the hole. Thus, the high stress gradient or stress concentration is quite

localized in effect according to the Saint-Venant’s principle.

The state of stresses for a circular hole in a plate under other states of plane stress can

be determined by using the principle of superposition. For example, if the previously obtained

the state of stresses is combined with another state of stresses in which everything is rotated

by o90 , we obtain the state of stresses in equal biaxial tension. Or, if the direction of oσ  is

reversed in one of these two solutions, we obtain results for the pure shear.

It should be noted that the obtained stress equations can only be used in the case when

the plate has the diameter that is small compared to the width of the plate. When the diameter
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of the hole is comparable to the width of the plate, researches have shown that the maximum

normal stress should be calculated by using the equation

nσ
κ
κσ

3.0
13

max +
−

=

where κ  is the ratio of the width of the plate to the diameter of the hole, and nσ  is the

averaged stress over the cross-sectional area at the hole.

3.10 Concentrated Force at a Point of a Straight Boundary

Consider a concentrated vertical force P  acting on horizontal straight boundary of an

infinitely large plate as shown in Fig. 3.16a. The concentrated force P  is considered as a

uniformly distributed force along the thickness-direction line. The thickness of the plate is

taken as unity. Thus, P  has the unit of force per unit thickness.

Force on a Straight Edge

Fig. 3.16

The resulting stresses due to the concentrated force P  can be determined by using the

Airy stress function of the form

θθ sin1raF =

The corresponding stresses can be determined as

r
aF

rr
F

rr
θ

θ
σ cos211

12

2

2 =
∂
∂

+
∂
∂

=

02

2

=
∂
∂

=
r
F

θσ

01
=








∂
∂

∂
∂

−=
θ

τ θ
F

rrr

The actual stress distribution of rσ  is shown in Fig 3.16b. The constant 1a  can be

determined by using the summation of the vertical forces to be zero.

0)(cos
2/

2/

=−− ∫
−

Pdrr θσθ
π

π
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π
Pa −=1

Thus, the state of stresses is

r
P

r π
θσ cos2

−=

0=θσ  and 0=θτ r .

This distribution of stress is called a simple radial distribution, every polar coordinate

element at a distance r  from the point of application of P , being in simple compression in

the radial direction. The stress rσ  becomes very large as r  becomes small and is undefined

for 0=r  (the stress is said to be singular). For all real materials, yielding will occur in the

neighborhood of the load, resulting in a plastic zone.

If it is assumed that the plastic zone is sufficiently small so that the presence of the

yielding material does not significantly change the elastic solution,

constant2
cos

=== y
y

dPr
πσθ

Thus, under the load, there is a circular plastic zone of diameter yd .

In general, there exists a family of circles of diameter θcos/rd =  as shown by the

dashed line in Fig. 3.16a that rσ  is constant. This circle line is called circle of constant stress

rσ .
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Chapter 4
Applications of Energy Method

4.1 Degree of Freedom

Degree of freedom is the independent quantities used to define a configuration of a

system that violates neither compatibility conditions nor constraints.

Finite degree of freedom system

Fig. 4.1

Consider the beam having three rigid elements connected with hinges and elastic

springs as shown in Fig. 4.1. In this case, the configuration of the beam can be described by

using two of the independent quantities ix  and jθ  where ji ≠  such as 1x  and 2x  or 1x  and

2θ . Thus, the beam has 2 degree of freedom.

Infinite degree of freedom system

Fig. 4.2

Consider the bar subjected to arbitrary axial load as shown in Fig. 4.2. It requires an

infinite number of degree of freedom to describe its axial displacement since the displacement

varies along the length of the bar.

)(
)(

xA
xP

=σ
dx
dδε =

εσ E=
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P x
A x

E
d
dx

( )
( )

=
δ

d
P x dx
A x E

δ =
( )
( )

 
 

δ = ∫
P x

A x E
dx

L ( )
( ) 0

However, the displacement can be idealized or approximated as
n

n xaxaxau +++== L2
21δ

which describe the axial displacement of the bar with n  degree of freedom and ia  is usually

called generalized coordinate.

4.2 Work and Energy

In every type of system, forces are present to which may be associated a capacity to

displace and, thus, capacity to perform work. It is indicative of the energy possessed by the

system. Thus, energy is the capacity to do work.

Force in a system may perform work, but the system possesses energy. In order to

evaluate the amount of work done in a physical process, we need to know only the change in

energy. Thus, the reference or datum with respect to which we measure is completely

arbitrary. Consider, for example, the work done by the force f  in bringing a particle from

point A  to point B  as shown in Fig 4.3.

Fig. 4.3

)(cos dufdW β=

∫=
B

A

dufW βcos

If the angle β  is 
22
πβπ

<<− , the force f  performs positive work. If the angle β  is

2
3

2
πβπ

<< , the force f  performs negative work. The βsinf  does no work. If the system

is conservative, the work done is independent of the path from point A  to point B . Then, if

the integral is independent of the path, the quantity duf )cos( β  is an exact differential of

some function V . Thus, for conservative system,
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∫∫ ∆−=−===
B

A
AB

B

A

VVVdVdufW βcos

where V∆  is the change in V  from point A  to point B .

The function V  is called potential function, or, in this discussion, the potential energy

of the system. Physically, the potential energy is the capacity of a conservative system to

perform work by virtue of its configuration with respect to an arbitrary datum. Also, the

change in potential energy is a negative of the work done. For example, if we lift a weigh mg

to a height of h  from a reference plane, the work done we perform is

mghW −=

The negative sign indicates the opposite directions of the weight (gravitational force) and the

vertical movement. According to the law of conservation of energy, the potential energy of

the mass m  is increased by an amount of mgh .

mghV =

Potential energy in structural system, V

For the conservative of force, the work to move a mass does not depend upon the

route of moving, but does depend upon the starting point and terminating point. A

conservative system has a total potential energy. We can express the energy content of the

system in terms of its configuration, without reference to whatever deformation history may

have led to that configuration.

The total potential energy includes:

1. the potential of the external forces to do work, Ω

2. the internal strain energy of elastic distortion, U

UV +Ω=

Fig. 4.4

Consider a three-dimensional deformable body as shown in Fig. 4.4a which is in a

state of undeformed configuration and the external forces have zero potential energy. As the

body slowly deforms, external forces move through true displacements and perform external
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work until the final configuration is reached as shown in Fig. 4.4b.  Again, let us assume that

the work done by the external forces in deforming the body is independent of the path from

Fig. 4.4a to Fig. 4.4b.  Hence, if eW  is the total work done by the external forces, edW  is the

exact differential of a potential function Ω  which is the potential of the external forces to do

work. The change in Ω  from the configuration in Fig. 4.4a to Fig. 4.4b is eW− . Therefore,

from the definition of work,

dSdwZdvYduXdVdwBdvBduB
S

ss

b

a
s

V
z

b

a
yx ∫∫ ∫∫∫∫ ∫ 








++−








++−=Ω

1

)()(

where integral inside the bracket are carried from the initial state to the final deformed state as

shown in Fig. 4.4a to Fig. 4.4b, respectively. The 1S  is the portion of the total body surface

area subjected to the surface forces. Since the external forces are independent of the

displacements,

dSWZvYuXdVwBvBuB
S

sss
V

zyx ∫∫∫∫∫ ++−++−=Ω
1

)()(

If the body forces are negligible and the surface forces are represented by a system of

concentrated forces and moments 1P , 2P , K , nP  with the corresponding displacement of 1∆ ,

2∆ , K , 3∆ ,

)( 2211 nnPPP ∆++∆+∆−=Ω K

The internal forces developed in a deformable body also posses a capacity to perform

work. Under the action of external forces, the body is deformed and the stresses are developed

which results in the internal forces. The internal forces perform work while the body are

deformed. If the strained body is allowed to slowly return to its unstrained state, it will return

the work done by the external forces. This capacity of internal forces to perform work as the

body returns to the unstrained state is called strain energy.

For linearly elastic and isotropic material, the strain energy density was derived as

[ ]xzxzyzyzxyxyzzyyxxoU γτγτγτεσεσεσ +++++=
2
1

The total strain energy U  of the body is

dVUU
V

o∫∫∫=

4.3 Principle of Stationary Potential Energy

Consider an element of unit volume in a one-dimensional body subjected only to the

stress and strain components xσ  and xε . By the definition of virtual work, the internal virtual

work due to a virtual strain is
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xxU δεσδ =

From calculus, the differential change in the strain energy in the body due to an

increment xdε  of the strain is

xxx
x

ddUdU εσε
ε

=
∂
∂

=

We can see that the symbol δ  is not just only the symbol for the virtual quantity. In

fact, it behaves as a variational operator which obeys the rules of operation similar to those

of the first differential operator d . In analogy, if we refer δ  as first variation, we can see that

the internal virtual work can be interpreted as the first variation in the strain energy due to

variations in the components of strains.

Similarly, if eW  is the work done by external forces in a conservative system

Ω  = eW−

eWδδ −=Ω

From the principle of virtual displacements UWe δδ = ,

Ω−= δδU

0=Ω+δδU

0)( =Ω+Uδ

0=Vδ

A deformable body is in equilibrium if the first variation in the potential energy of the

system is zero for every virtual displacement consistent with the constraints

Consider a system having two degrees of freedoms 1x  and 2x  as shown in Fig. 4.6. In

this case, the total potential energy of the system can be expressed as a function of 1x  and 2x ,

so that are the rate of change of V  with respect to 1x  and 2x . Thus, for the structure in

equilibrium, if first 1x  is given a variation 1xδ  and then 2x  a variation 2xδ ,

01
1

=
∂
∂

= x
x
VV δδ

02
2

=
∂
∂

= x
x
VV δδ

Since the magnitude of the virtual displacement 1xδ  and 2xδ  are arbitrary,

0
21

=
∂
∂

=
∂
∂

x
V

x
V

which mean for equilibrium to exist,
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02
2

1
1

=
∂
∂

+
∂
∂

= dx
x
Vdx

x
VdV

Recall from calculus, the total differential of a function vanishes at the critical points

of the function at which the function is a relative maximum or maximum or they may be

saddle points at which the function is minimax. At such point, the function is said to assume a

stationary value. Since the equation 02
2

1
1

=
∂
∂

+
∂
∂

= dx
x
Vdx

x
VdV  is valid only at the

equilibrium, thus, the principle of stationary potential energy can be stated that

If a structure is in static equilibrium, the total potential energy of the system has a

stationary value.

The equation 02
2

1
1

=
∂
∂

+
∂
∂

= dx
x
Vdx

x
VdV  can be interpreted another way. Let V  is a

continuous function displacement, which is consistent with the boundary conditions. dV  is

zero only if the displacements are corresponding to the equilibrium configurations. Thus, the

principle of stationary potential energy can be restated that

Of all the possible displacements which satisfy the boundary conditions of a structural

system, those corresponding to the equilibrium configurations make the total potential energy

assume a stationary value.
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Example 4-1

Determine the equilibrium configurations of a system of three bars subjected to the

point load P as shown in Fig. Ex 4-1a. The bars are supported by pins and are joined with

internal hinge and springs having the stiffness of 
l

EIk = .

Fig. Ex 4-1a

The system as shown in Fig. Ex 4-1a has two degrees of freedoms 1x  and 2x .

The potential energy of the external force P  is equal to the amount of work done by

the force P  referred to the reference at support.





−=Ω 13
2 xP 

(Negative value of the work done by external force = the external potential energy)

The work done due to the couple moment oM  using to move the spring from 0 to φ

as shown in Fig. Ex 4-1b or the strain energy stored in the spring is equal to

∫ ∫ ==
φ φ

φθθθ
0 0

2

2
1 kdkdM o  .

Fig. Ex 4-1b

For small displacement and rotation, the angle

θθθ tansin ≈≈ .

Then, from Fig. Ex 4-1c,

l
x

l
x

l
xx

l
x 21211

1
2

−=
−

+=θ

l
x

l
x

l
xx

l
x 12212

2
2

−=
−

−=θ
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Fig. Ex 4-1c

Therefore, the strain energy stored in the springs on the beam is
2

12
2

21 2
2
12

2
1







 −+






 −=

l
x

l
x

l
EI

l
x

l
x

l
EIU

The total potential energy is





−= 13
2 xPV  

2
12

2
21 2

2
12

2
1







 −+






 −+

l
x

l
x

l
EI

l
x

l
x

l
EI

For the stable equilibrium system, the total potential energy must be minimum.

0
1

=
∂
∂
x
V

0
2

=
∂
∂
x
V

Solving the simultaneous equation, we have 
4

5 2
1

xx = . Then,

EI
Plx

3

1 27
10

=

EI
Plx

3

2 27
8

=
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Example 4-2

The three bars plane truss has the configuration as shown in Fig. Ex 4-2. If the bars

have the same EA , determine the stress in each bar.

Fig. Ex 4-2

Let Du  and Dv  are the degree of freedom at joint D . By considering the deformation

of each bar, we can find the relationships of the change in length of each bar iδ  and the

degree of freedom Du  and Dv  in the form of

DD vu
5
4

5
3

1 −=δ

Dv−=2δ

DD vu
5
3

5
4

3 −−=δ

The axial strain in each bar is


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3
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ε

Strain energy in a uniform bar is dx
AE
PU

L

a ∫=
0

2

2
. From the Hooke's law, εAEP = .

Thus,

2

0

2

22
εε AELdxAEU

L

a == ∫

The total strain energy is

[ ]2
33

2
22

2
11

3

1

2
3

1

2

222
εεεεε LLLAELAELEAU

i
ii

i
i

iii ++=
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




== ∑∑

==

The external potential energy is equal to negative of the external work.
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DPu=Ω

Thus, the total potential energy of the system is

[ ] DPuLLLAEV +++= 2
33

2
22

2
112

εεε

DDD
D

DD Puvu
LL

vvu
L

AEV +


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


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2

From the principle of stationary potential energy

0=
∂
∂

Du
V

0=
∂
∂

Dv
V

Solving the simultaneous equations for Du  and Dv .

Substituting Du  and Dv  into the strain equations, we get the axial strain in each bar.

Finally, the stress in each bar can be determined by using the Hooke's law.
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4.4 Principle of Minimum Potential Energy

An equilibrium configuration is stable if the system return to its original configuration

after being given a small disturbance.

Consider pendulum of weight W  in Fig. 4.5. The position A  and B  are both

equilibrium configurations since there is a balance of forces. The configuration A  is one of

unstable equilibrium since during a small angular displacement, positive work is done, the

potential energy decreases and the kinetic energy increase significantly. The configuration B

is one of stable equilibrium since during a small angular displacement, negative work is done,

the potential energy increases and create only an infinitesimal change in kinetic.

Fig. 4.5

If small displacement cause no change in potential energy, the system is said to be in

neutral equilibrium, which is also the unstable equilibrium.

Consider the motion of a rigid marble having a weight of W  along a smooth contour

in Fig 4.6. The rigid marble has no strain energy.

0=U

Fig 4.6

If x -axis is the reference line, the total potential of a given marble is

)(xWhV =Ω=

Generalized coordinate is the least number of real independent variables required to

specify the configuration of a system. The rigid bars as shown in Fig. Ex 4-1 require two

generalized coordinates to define their configuration. The virtual displacements in a system,
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which are consistent with the constraints, can be expressed as a function of the variations in

the generalized coordinates

A single marble in Fig. 4.6 can be specified by the generalized coordinate x . Thus, a

virtual displacement following the rigid contour of a marble and having the generalized

coordinate x  is a small variation xδ . The variation xδ  produces a variation in V . Since each

marble is in equilibrium,

0== x
dx
dhWV δδ

which is valid when 0=
dx
dh  at points A , B , C , D , and E . Thus, these points are possible

equilibrium configurations.

From the previous discussion, it may be concluded that

1. The marbles at A  and D  are in stable equilibrium.

2. The marble at C  is in unstable equilibrium.

3. The marble at E  is in neutral equilibrium.

The potential energy of the marble at point B  is either increased or decreased

depending on the direction of the virtual displacement. Thus, the marble at B  is in unstable

equilibrium.

If )(xV  corresponds to an equilibrium configuration, )( xxV δ+  is the potential energy

of a configuration in the neighborhood of )(xV  if xδ  is sufficiently small. By using Taylor’s

series, we have

K++++=+ 3
3

3
2

2

2

)()(
3
1)()(

2
1)()()( x

dx
xVdx

dx
xVdx

dx
xdVxVxxV δδδδ

For equilibrium, 0=
dx
dV . Thus, the change in V  due to xδ  is )( xxV δ+ - )(xV ,

K++=∆ 3
3

3
2

2

2

)()(
3
1)()(

2
1 x

dx
xVdx

dx
xVdV δδ

For the system in Fig. 4.6,









++=∆ K3

3

3
2

2

2

)(
3
1)(

2
1 x

dx
hdx

dx
hdWV δδ

Thus, the first order variation in the displacements at an equilibrium configuration causes a

change in potential energy of order 2)( xδ .

If the term 2

2

dx
Vd  of V∆  is not zero, the sign of V∆  is independent of the sign of the

virtual displacement xδ  since 2)( xδ . Then, V  is either a relative maximum or relative
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minimum. For the system in Fig. 4.6, the term 2

2

dx
hd , representing the curvature of the rigid

curve, is positive at A  and D  and negative at C . Thus, V  is a relative minimum at A  and

D  and a relative maximum at C . Clearly, the marbles at A  and D  are in stable equilibrium

and the marble at C  is in unstable equilibrium. At B , 02

2

=
dx

hd  due to flat contour at the

point. However, if 03

3

≠
dx

hd , the sign of V∆  depends on the sign of the virtual displacement

xδ  due to the term 3)( xδ . At this point, V  is a minimax and the marble is in unstable

equilibrium. At E , all derivative of V  vanish and V∆  is zero for small virtual displacement.

Thus, The marble at E  is in neutral equilibrium.

From these observations, we conclude that

1. If 02 >Vδ , the system is in stable equilibrium.

2. If 02 <Vδ , the system is in unstable equilibrium.

3. If 02 =Vδ , the system is in neutral equilibrium.
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Example 4-3

Check the stability of the system of rigid bar subjected to axial load P  as shown in

Fig. Ex 4-3.

Fig. Ex 4-3

Consider a system of rigid bar subjected to axial load P  as shown in Fig. Ex 4-3. All

configurations of the system can be described by specifying one independent variable, the

angular coordinate θ . Thus, θ  is the generalized coordinate.

The external potential energy Ω  of the system is zero for reaction forces plus minus

)cos1(2 θ−Ph  due to axial force P

)cos1(2 θ−−=Ω Ph

The internal potential energy or strain energy U  of the system is zero for rigid bar

plus ( )2sin
2
1 θhk  in the spring.

( )2sin
2
1 θhkU =

The total potential energy of the system is

)cos1(2)sin(
2
1)( 2 θθθ −−= PhhkV

The total potential energy of the system due to variations δθ  is

K++++=+ 3
3

3
2

2

2

)()(
3
1)()(

2
1)()()( δθ

θ
θδθ

θ
θδθ

θ
θθδθθ

d
Vd

d
Vd

d
dVVV

θ

k h

h

P

h



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 4-15

The change in the total potential energy of the system due to a rotation variation δθ  is

K+++=−+=∆ 3
3

3
2

2

2

)(
3
1)(

2
1)()( δθ

θ
δθ

θ
δθ

θ
θδθθ

d
Vd

d
Vd

d
dVVVV

[ ] [ ] K+−+−=∆ 222 )(cos22cos
2
1sin2cossin δθθθδθθθθ PhkhPhkhV

For equilibrium configurations, 0=Vδ .

[ ] 02cossin 2 =−= Phkh
dx
dV θθ

This equation is satisfied when 0sin =θ  or 02cos2 =− Phkh θ .

If 0sin =θ , 
o0=θ  or o180=θ .

If 02cos2 =− Phkh θ , 

kh
P2cos =θ

This means that θ  can be any values in the first or fourth quadrants of the reference

coordinate. This solution is trivial.

For stable equilibrium configurations, 02 >Vδ .

If o0=θ , the term

PhkhPhkh
dx

Vd 2cos22cos 22
2

2

−=−= θθ

which mean that, for o0=θ , the system will be in stable equilibrium only if Pkh 2> .

Then, the critical load can be determined by setting Pkh 2= .

2
khPcr =

It should be noted that, for small rotation θ , this critical load can also be found by

using the mechanics of material by using the equilibrium of the moment about the pinned

support.

0)2( 2 =− θθ khhPcr

2
khPcr =

If o180=θ , the term

PhkhPhkh 2cos22cos 22 +=− θθ

which is always larger than zero. Thus, the system is always in stable equilibrium when
o180=θ .
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It should be noted that in this case, we can not assume 2

2
11cos θθ −=  in the small

displacement analysis.

22222

2
1)

2
11(12)(

2
1 θθθθ PhkhPhhkV −=



 −−−=

[ ] [ ] K+−+−=∆ 222 )(2
2
12 δθδθθθ PhkhPhkhV

For equilibrium, 0=Vδ , we have

[ ] 022 =−= Phkh
d
dV θ
θ

which provides only one solution that is o0=θ . Thus, for stability analysis, we have to

consider the potential energy of the system to the cubic terms.
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4.5 Second Variation in the Total Potential Energy

The change in the potential energy of a system can be expressed as

++=∆ VVV 2

2
1 δδ terms of higher order

where V2δ  is the second variation in V  in analogy with the first variation Vδ

2
2

2
2 )( x

dx
VdV δδ =

Since in equilibrium conditions Vδ  is zero, the sign of V∆  is often determined by the

sign of V2δ . Thus, the second variation often plays an important role in the study of the

stability of the structural systems.

The second variation term is quadratic in xδ  since it is a function of 2)( xδ . Thus, if V

is a function of two generalized coordinates x  and y  and if the point ( a , b ) correspond to an

equilibrium configuration, by using Taylor’s series expansion, we have









∂

∂
+

∂∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
=

−++=∆

2
2

22
2

2

2

)(),(),(2)(),(
2
1),(),(       

),(),(

y
y

baVyx
yx

baVx
x

baVy
y

baVx
x

baV

baVybxaVV

δδδδδδ

δδ

+  terms of higher order

For equilibrium,

0),(),(
=

∂
∂

+
∂

∂
= y

y
baVx

x
baVV δδδ

For stable equilibrium,

2
222112

2
11

2
2

22
2

2

2
2

)()(        

)(),(),(2)(),(

yaxayxaxa

y
y

baVyx
yx

baVx
x

baVV

δδδδδδ

δδδδδ

+++=

∂
∂

+
∂∂

∂
+

∂
∂

=

This equation is a quadratic form in xδ  and yδ . It should be noted that 2112 aa = .

Clearly, the sign of V∆  depends on the sign of the coefficients 11a , 12a , 21a , and 22a  which

are the functions of the applied loads. In general, there are five types of quadratic forms:

1. Positive definite.

2. Positive semidefinite.

3. Negative definite.

4. Negative semidefinite.

5. Indefinite.

If V2δ  is a positive definite quadratic form, it can be shown that V∆  is positive.

Thus, V  is a relative minimum. If V2δ  is negative definite, negative semidefinite, or
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indefinite, V∆  is negative and the equilibrium is unstable. If V2δ  is positive semidefinite or

zero, higher variation must be considered.

In the stability analysis of linearly elastic system with small displacements systems, V

can be expressed as a quadratic function. When such systems are stable, V2δ  is positive

definite and the determinant

0
2221

1211 >=
aa
aa

D

If the applied loads are increased, D  decreases. When a critical load is reached, V2δ

is not a positive definite and the system becomes unstable and buckles. Thus, the stability

criterion is

02 == DVδ
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Example 4-4: Stability analysis of simple structures

Determine the stability configurations of the system of rigid bars subjected to

concentrically axial load P  as shown in Fig. Ex 4-4a.

Fig. Ex 4-4

The system of rigid bars as shown in Fig. Ex 4-4a has two degree of freedoms. All

configurations of the system can be described by specifying two independent variables, the

angular coordinate θ  and ψ . Thus, θ  and ψ  are the generalized coordinates.

For positive values of θ  and ψ , the applied load P  is displaced a distance ∆ .

ψθ coscos2 aaa −−=∆

Thus, the potential energy of the external force P  is

∆−=Ω P

For small values of generalized coordinates θ  and ψ  and since we are interested to

find only the critical load, thus, we let 2

2
11cos θθ −= . The potential energy of the external

force P  is

)(
2

22 ψθ +−=Ω
Pa

Since the internal forces and moments are developed in the springs, the system posses

strain energy.

∫ ∫+=
x

dkxdxkU
0 0

12
α

α αα
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22
2

22
1 ααkxkU +








=

where x  is the change in length of the linear spring and α  is the angle of rotation of the

rotational spring.

From the geometry of Fig. Ex 4-4b, we find

θθ aax ≈= sin

θψα −=

Thus,

222
1 )(

2
1 θψθ α −+= kakU

The total potential energy of the system is

2
21

2
0

222
1

             

)(
2
1)2(

2
1),(

ψθψθ

ψθψθψθ ααα

ccc

PakkPaakkV

++=

−+−−+=

where

)2(
2
1 2

10 Paakkc −+= α

αkc −=1

)(
2
1

2 Pakc −= α

The total potential energy of the system due to variations δθ  and δψ  is

[ ]
[ ]2

21
2

0

2110

2
21

2
0

)()(                               

)2()2(                               
 ),(

δψδθδψδθ

δψψθδθψθ
ψθψθδψψδθθ

ccc

cccc
cccV

+++

++++
++=++

The change in total potential energy of the system is

[ ] [ ]2
21

2
02110 )()()2()2( δψδθδψδθδψψθδθψθ cccccccV ++++++=∆

For equilibrium configurations, Vδ  is zero.

ψθ
θ 1020 ccV

+==
∂
∂

ψθ
ψ 21 20 ccV

+==
∂
∂

Clearly, 0==ψθ  is an equilibrium configuration.

For stable equilibrium configurations, V2δ  is greater than zero.
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[ ]2
21

2
0

2
2

22
2

2

2
2

)()(2        

)(2)(

δψδθδψδθ

δ
ψ

δθδψ
ψθ

δθ
θ

δ

ccc

yVVVV

++=

∂
∂

+
∂∂

∂
+

∂
∂

=

When the system is stable, the determinant

0
2/

2/

21

10 >=
cc

cc
D

When P  reaches the critical load, 0=D  and the system becomes unstable. Thus,

0
4
1 2

120 =− ccc

Substituting )2(
2
1 2

10 Paakkc −+= α , αkc −=1 , and )(
2
1

2 Pakc −= α , we have

)( Pak −α )2( 2
1 Paakk −+α

2
αk− =0

Solving this polynomial equation for P , we have

[ ]42
1

22
11

1 akkakk
a

P +−+= αα

[ ]42
1

22
12

1 akkakk
a

P +++= αα

Let kakk == 2
1α , then,

a
kP 586.01 =

and

a
kP 414.32 =

Thus, 
a
kP 586.01 =  is the critical load for the system. Substituting akPcr /586.0=  into the

equations 02 10 =+ ψθ cc  or 02 21 =+ ψθ cc , we find

θψ 414.2=

The buckled shape for this case is shown in Fig. Ex 4-4c(a).

Substituting akPcr /414.3=  into the equations 02 10 =+ ψθ cc  or 02 21 =+ ψθ cc , we

find

θψ 414.0−=

The buckled shape for this case is shown in Fig. Ex 4-4c(b). These two possible buckled

shapes are called the buckling modes of the system.
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Fig. Ex 4-4c
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Lagrange multipliers

In many cases when it is not convenient to express V  in terms of the least number of

independent variables. Then, the problems become one of minimizing a function whose

variables are constrained by some side relationships. These kinds of problems can be solved

by using the Lagrange multipliers.

In general, when the variables 1x , 2x , K , nx  of a function ),,,( 21 nxxxG K  to be

minimized and must be satisfied m  additional conditions of the form

0),,,( 211 =nxxxg K

0),,,( 212 =nxxxg K

M

0),,,( 21 =nm xxxg K

A new function G  is formed, where

mm gggGG λλλ ++++= K2211

∑
=

+=
m

i
ii gGG

1

λ

The constants 1λ , 2λ , K , mλ  are the Lagrange multipliers. When G  has a stationary

value, G  must be such that

0
1

=
∂
∂

x
G

0
2

=
∂
∂
x
G

M

0=
∂
∂

nx
G

These n  conditions plus m  conditions 021 ==== mggg K  provide nm +

independent equations from which the nm +  unknowns 1x , 2x , K , nx  and 1λ , 2λ , K , mλ

can be determined.

From the previous example, if we do not introduce the equation θax =  into the

equation 
2

2
2

1
ααk

xkU += , we have the total potential energy of the system of the form

22
1

2 )(
2
1)(

2
1),,( ψθψθψθ ααα PakxkkPakxV −++−−=

with the additional condition
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0=− θax

We form the new function

)(),,( θλψθ axxVV −+=

where λ  is the Lagrange multipliers. To be a minimum, V  must satisfy the conditions

=
∂
∂
θ
V 0)( =−−− λψθ αα akPak

=
∂
∂
ψ
V 0)( =−+− ψθ αα Pakk

=
∂
∂

x
V 02 1 =+ λxk

From the last condition, we find that

θλ akxk 11 22 −=−=

Substituting λ  into the rest of the equations and rearrange the terms, we have

02 10 =+ ψθ cc

02 21 =+ ψθ cc

which are obtained before.
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Example 4-5: Stability analysis of beam-column

Find the critical load of the linearly elastic simply supported beam-column as shown

in Fig. Ex 4-5. The beam-column is subjected to axial force P  and a sinusoidal distributed

load )(xp .

Fig. Ex 4-5

For simplicity, neglecting the shear deformation and assuming that the normal stress is

given by

I
My

A
N

x +=σ

and other stresses are zero.

From Hooke’s law, xx Eεσ = . The strain energy in this system is

dVU
V

xx∫∫∫= εσ
2
1

dxdA
I

My
A
N

E
dAdx

E
U

L

AV

x ∫ ∫∫∫∫

















 +==

0

22

2
1

2
σ

Thus,

dxdA
I

yMy
AI

NM
A
N

E
U

L

A
∫ ∫ 
















++=

0
2

22

2

2

2
2
1

Since ∫ =
A

ydA 0  and ∫ =
A

IdAy 2 ,

dx
EI

M
EA

NU
L

∫ 







+=

0

22

22

If we are interested only the transverse displacement and the stability of the beam-

column, we need to consider only the energy due to changes in curvature. Thus,

∫∫ 







==

LL

dx
dx

vdEIdx
EI

MU
0

2

2

2

0

2

22
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where v  is the transverse displacement. Then, the total potential energy of the external forces

is

∫ ∆−−=Ω
L

Pvdxxp
0

)(

where ∆  is the displacement of P  due to the changes in curvature of the beam-column.

∫ −≅∆
L

dxds
0

)(

Since the beam-column’s length dx
dx
dvdx

dx
dvds


















+≈


















+=

22
1

2

2
111 , thus,

∫∫ 





=










−






+≅∆

LL

dx
dx
dvdxdx

dx
dvdx

0

2

0

2

2
1

2
1

Hence,

∫











+






−=Ω

L

dxvxp
dx
dvP

0

2

)(
2

The total potential energy of the beam-column is

∫ 










−






−








=

L

dxpv
dx
dvP

dx
vdEIV

0

22

2

2

22

Assuming that the elastic curve of the beam-column is in the for of

L
xCv πsin=

where C  is an unknown constant. This equation satisfies all the kinetic boundary conditions

of the beam-column. Since the magnitude of the displacement at any point depends on the

magnitude of C , thus, C  is a generalized coordinate. Substituting v  into the total potential

energy equation, we have

∫ 

















−














−















=

L

dx
L
xCp

L
xC

dx
dP

L
xC

dx
dEIV

0

22

2

2

sinsin
2

sin
2

πππ









−








−= CpP

L
EI

L
CLV o2

4 2

2

2

22 ππ

If the beam-column is in equilibrium,

022
4 2

2

2

2

=







−








−= opP

L
EI

L
CL

dC
dV ππ
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)( 222

4

PLEI
LpC o

−
=

ππ

L
x

PLEI
Lpv o π

ππ
sin

)( 222

4

−
=

If the beam-column is in stable equilibrium,

0
2 2

22

2

2

>







−= P

L
EI

LdC
Vd ππ

When P  has a value that 02 =Vδ , the beam-column is no longer in stable

equilibrium. Thus, the critical load of the beam-column-column is

2

2

L
EIPcr

π
=

which is the Euler buckling load of pinned-pinned column.
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4.6 Rayleigh-Ritz Method

A continuous distributed deformable body consists of infinitely many material points.

Thus, it has infinitely many degrees of freedom. The Rayleigh-Ritz method is approximation

method in which the continuous systems are reduced to systems with a finite number of

degrees of freedom. This method can be used to analyze deformations, stability, nonlinear

behavior, and vibrations.

In Rayleigh-Ritz method, the components of displacement u , v , and w  of a system

are approximated by function containing a finite number of independent parameters. Then, we

determine these parameters so that the total potential energy of the system computed based on

the approximate displacements is minimum.

Let the components of displacement u , v , and w  are of the form

),,(),,(),,( 2211 zyxazyxazyxau nnφφφ +++= K

),,(),,(),,( 2211 zyxbzyxbzyxbv nnψψψ +++= K

),,(),,(),,( 2211 zyxczyxczyxcw nnηηη +++= K

where 1a , 2a , K , na , 1b , 2b , K , nb , 1c , 2c , K , nc  are n3  unknowns linearly independent

parameters which may be called the generalized coordinates. 1φ , 2φ , K , nφ , 1ψ , 2ψ , K , nψ ,

1η , 2η , K , nη  are continuous functions of the coordinates x , y , and z  which represent the

modes of deformation.

The functions of the modes of deformation 1φ , 2φ , K , nφ , 1ψ , 2ψ , K , nψ , 1η , 2η ,

K , nη  are chosen so that the components of displacement satisfy all of the kinematic

(displacement) boundary conditions for all values of the constant parameters 1a , 2a , K , na ,

1b , 2b , K , nb , 1c , 2c , K , nc , but, they do not necessarily satisfy the static (force) boundary

conditions. These kinds of function are usually called kinematically admissible functions.

Since the components of displacement u , v , and w  are defined in terms of only n3

independent parameters, these parameters behaves as generalized coordinates, thus, the

system has only n3  degrees of freedom.

From the components of displacement, we can determine the approximate strains and,

then, the total potential energy of the system.

) ,(),,( 111 nnn c,,c,b,,b,a,y,z,axVwvuV KKK=

The variation of the components of displacement can be written in the form of the

variations in the parameters ia , ib , and ic .

∑
=

=
n

i
ii au

1
δφδ
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∑
=

=
n

i
ii bv

1
δψδ

∑
=

=
n

i
ii cw

1

δηδ

Hence, the variation of the total potential energy of the system can be written as

∑
=









∂
∂

+
∂
∂

+
∂
∂

=
n

i
i

i
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i
i

i
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Vb
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Va

a
VV

1
δδδδ

If the system is in equilibrium,

0
1

=







∂
∂

+
∂
∂

+
∂
∂∑

=

n

i
i

i
i

i
i

i

c
c
Vb

b
Va

a
V δδδ

for arbitrary values of the variations iaδ , ibδ , and icδ . Then, we have

0
1

=
∂
∂
a
V 0

2

=
∂
∂
a
V

K 0=
∂
∂

na
V

0
1

=
∂
∂
b
V 0

2

=
∂
∂
b
V

K 0=
∂
∂

nb
V

0
1

=
∂
∂
c
V 0

2

=
∂
∂
c
V

K 0=
∂
∂

nc
V

These equations are n3  linearly independent simultaneous equations which can be

solved for the unknowns parameters ia , ib , and ic .After solving for the unknowns parameters

ia , ib , and ic , we then obtain the approximate displacement functions.

In the case of stability analysis, the equations are homogeneous, we then determine the

buckling loads by setting the determinant of the coefficients to be zero.

Some important characteristics of the Rayleigh-Ritz method

1. The accuracy of the assumed displacement is in general increased with an increase

in the number of parameters. However, the exact solutions are rarely obtained.

2. Since the differential equations of equilibrium do not enter the analysis, the

equilibrium is satisfied in an average sense through minimization of the total

potential energy. Thus, in general, the stresses computed do not satisfy the

equations of equilibrium.

3. Although the Rayleigh-Ritz method may provide fairly accurate results for the

displacements, the corresponding stresses may differ significantly from their exact

values since the stresses depend on the derivatives of the displacements.

4. Since the Rayleigh-Ritz method use a finite number of degree of freedom to

approximate the displacements of the system having infinitely many degree of
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freedom, the approximate system is less flexible than the actual system. In the

stability analysis, the Rayleigh-Ritz method always produce the buckling loads

that larger than the exact values.

5. The modes of deformation are often taken as polynomial or trigonometric

functions since they are easy to manipulate.

6. The approximate displacement functions should not omit terms of lower order

since it prevents the convergence of the solutions.
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Example 4-6

Find the maximum deflection and moment of the simply supported beam as shown in

Fig. Ex 4-6 by using the Rayleigh-Ritz method and compared with the results from mechanic

of material method of analysis.

Fig. Ex 4-6

Consider the simply supported beam as shown in Fig. Ex 4-6. The elastic curve of the

beam can be assumed as a sine function of

L
xav πsin=

where a  is an unknown constants. Note that 
L
xπsin  satisfy the boundary conditions at 0=x

and Lx = .

If only the strain energy due to bending is considered, we have the total potential

energy of the beam is of the form

2/
00

2

2

2

)(
2 L

LL

Pvvdxxpdx
dx

vdEIV −−







= ∫∫

PaaLpa
L

EIV o −−=
π

π 2
4

2
3

4

Now, we choose the constant a  so as to minimize V .

02
2 3

4

=−−=
∂
∂ PLpa

L
EI

a
V

o π
π

EI
PpL

EI
PL

EI
Lpa oo

5

3

4

3

5

4 )2(224
π

π
ππ

+
=+=

L
x

EI
PpLv o π

π
π sin)2(2

5

3 +
=

Evaluating the deflection v  of the beam at 2/Lx = , we have

EI
PL

EI
Lp

EI
PL

EI
Lpav oo

L 7.485.76
24 34

4

3

5

4

2/ +=+==
ππ

By using the mechanics of materials, we obtain
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EI
PL

EI
Lpv o

L 488.76

34

2/ +=

Thus, by using only one parameter, we obtain a maximum deflection, which is only 0.39% in

error in case of uniformly distributed load and 1.46% in error in case of concentrated load.

However, the approximate deflection curve gives a bending moment at 2/Lx =  of

93.475.7
24 2

23

2

2

2

2/
PLLpPLLp

dx
vdEIM oo

L +=+=−=
ππ

The first term has 3.15% in error and the second term has 23.37% in error. Note that

the normal stresses are proportion to the bending moment, thus, are in error by the same

percentages.

To obtain more accurate results, let us use two-parameter approximation elastic curve

of the beam as

L
xb

L
xav ππ 3sinsin +=

Note that this function also satisfy the kinematic boundary conditions of the beam.

Performing the determination of the total potential energy of the beam as before, and then

from the conditions 0=
∂
∂

a
V  and 0=

∂
∂

b
V , we find that

EI
PL

EI
Lpa o

4

3

5

4 24
ππ

+=

EI
PL

EI
Lpb o

4

3

5

4

81
2

243
4

ππ
−=

In this case, the maximum deflection at 2/Lx =  is

EI
PL

EI
Lpv o

L 1.488.76

34

2/ +=

which coincide with the exact solution. The bending moment at 2/Lx =  is

44.405.8

2

2/
PLLpM o

L +=

The first term has now only 0.63% in error and the second term has 11.00% in error.

We can further reduce the error by increasing the number of parameters in the approximate

displacement function.
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Example 4-7

Determine the buckling loads of the fixed end column as shown in Fig. Ex 4-7 by

using the Rayleigh-Ritz method.

Fig. Ex 4-7

Consider the fixed end column as shown in Fig. Ex 4-7. The transverse deflection of

the column can be assumed to be of the form
2323 )()23( LxbLxLxav −++−=

where a  and b  are  the unknown parameters. This function satisfy the boundary condition of

the column at Lx = . If we consider only the strain energy of the bending moment, we have

∫ 







=

L

dx
dx

vdEIU
0

2

2

2

2

The potential energy of the external force P  is

∫ 





−=Ω

L

dx
dx
dvP

0

2

2

Thus, the total potential energy of the column is

∫∫ 





−








=

LL

dx
dx
dvPdx

dx
vdEIV

0

2

0

2

2

2

22

)
3
1(2)

2
56()

5
2(6 2222232 PLEILbPLEIabLPLEILaV −+−+−=

If the parameter a  and b  are to correspond to a stationary value of V ,

0)
2
56()

5
2(12 2223 =−+−=

∂
∂ bPLEILaPLEIL

a
V
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0)
3
1(4)

2
56( 222 =−+−=

∂
∂ bPLEILaPLEIL

b
V

A nontrivial solution to this column of homogeneous equations exists only if the

determinant of the coefficients vanishes. Then, we have

0)(2401043 4

2

2
2 =+−

L
EIP

L
EIP

Solving the polynomial equation, we obtain

21 486.2
L
EIP =

22 181.32
L
EIP =

Thus, the buckling load of the column is 2486.2
L
EIPcr =  which is only 0.75% larger than the

exact value of .
4 2

2

L
EIπ
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4.7 Introduction to Finite Element Method

In the Rayleigh-Ritz method, each of the modes of deformation 1φ , 2φ , K , nφ , 1ψ ,

2ψ , K , nψ , 1η , 2η , K , nη  span the entire structure and the generalized coordinates 1a , 2a ,

K , na , 1b , 2b , K , nb , 1c , 2c , K , nc  are usually have no physical meaning.

In the finite element method, there are many approximate functions, each

comparatively simple and each spanning a limited region of the structure. In addition the

degree of freedom are the actual displacements of specific points instead of generalized

coordinates.

Beam Element Formulation

Fig. 4.7

Consider the simply supported prismatic beam having a constant stiffness EI  as

shown in Fig. 4.7. First, consider the whole beam as an element in order to see the error that is

occurred due to a coarse element. Then, we will divide the beam into more segments and redo

the analysis.

Selecting an approximate displacement function that closes to the actual displacement

function of the beam in a form of polynomial function
3

4
2

321)( xxxxy αααα +++=

This function must satisfy the geometrical (displacement) boundary conditions of the

beam.

At 0=x , 0)0( =y , 01 =α

At Lx = , 0)()()()( 3
4

2
32 =++= LLLLy ααα ,

2
432 LL ααα −−=

Thus,

)()()( 23
4

2
3 xLxLxxxy −+−= αα

The external potential energy of the beam is

o

L

o wLLdxyw 







+=−=Ω ∫ 46

  
4

4

3

3
0

αα
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The strain energy of the beam is

dx
dx

ydEIU
L 2

0
2

2

2
1

∫ 







=

From the assumed shape function,

)()()( 23
4

2
3 xLxLxxxy −+−= αα

)3()2( 22
43 LxLx

dx
yd

−+−= αα

432

2

62 αα x
dx

yd
+=

Thus, )662( 32
4

2
43

2
3 LLLEIU αααα ++=

The total potential energy of the beam is

)662(
46

32
4

2
43

2
3

4

4

3

3 LLLEILLwV o αααααα +++







+=

For the static equilibrium, the total potential energy of the beam must be minimum.

0
3

=
∂
∂
α
V ;

12
32

2

43
Lw

EILEI o−=+ αα

0
4

=
∂
∂
α
V ;

12
42

2

43
Lw

EILEI o−=+ αα

Solving the simultaneous equations for 3α  and 4α , we have 
EI
Lwo

24

2

3 −=α  and 04 =α

Since 2
432 LL ααα −−= , thus

EI
Lwo

24

3

2 =α

Substituting 1α  to 4α  into the assumed shape function, we have

)(
24

)( 322 xLxL
EI

w
xy o +−=

Comparing the result with the solution by the mechanics of materials,

)2(
24

)( 3324 xLxLx
EI

w
xy o −−=

At the mid-span of the beam, we have the deflection by the approximated method and

the deflection by the classical method equal to

EI
LwLy o

4

96
1)

2
( =
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EI
LwLy o

4

384
5)

2
( =

The error between these two methods is about 20%. However, we can improve the

solution by using a sine function as previously shown. It should be noted that if we use a

higher degree of the polynomial function, the solution is the same due to the nature of the

beam structure.

Compatibility
Another way to increase the accuracy of the solution is to break the beam down into

more pieces as an example shown in Fig. 4.8.

                     
Fig. 4.8

If we choose to work this way, it is conceivable that each element will have a solution

function that is different from the others. If we are to assemble these elements in a

mathematical sense, there must be some compatibility requirements placed on the function of

the adjacent elements. This function is usually called the compatibility condition of the beam

elements.

The compatibility conditions of a structure require that

1. Within each region, the displacement varies smoothly with no discontinuity.

2. At the boundary between neighboring regions, the displacement matches each

other in a manner consistent with the problem under consideration.

3. At the boundary of the whole structure, the prescribed displacement boundary

conditions such as support conditions are satisfied.

The shape functions of the element i  and 1+i  of the beam in Fig. 4.9 are
3

4
2

321 xxxy iiiii αααα +++=

31
4

21
3

1
2

1
1

1 xxxy iiiii +++++ +++= αααα

Thus, the compatibility conditions of the junction between the element i  and 1+i  of the

beam are

)0()( 1+= ii y
n
ly
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0

1

dx
dy

dx
dy i

n
l

i +

=

Fig. 4.9

In general case, let consider the element i  of a beam having the degree of freedom 1q

to 4q  as shown in Fig. 4.10. The shape function of the element i  of the beam can be

expressed as
3

4
2

321 ξαξαξαα +++=y

2
432 32 ξαξαα

ξ
++=

d
dy

Fig. 4.10

At 0=ξ , 1qy =  and 2q
d
dy

=
ξ

. Thus,

)0()0()0( 43211 αααα +++=q

)0()0()0( 43212 αααα +++=q

At L=ξ , 3qy =  and 4q
d
dy

=
ξ

. Thus,

3
4

2
3213 LLLq αααα +++=

2
43214 32)0( LLq αααα +++=

In the matrix form,
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





































=





















4

3

2

1

2

32

4

3

2

1

3210
1

0010
0001

α
α
α
α

LL
LLL

q
q
q
q

This matrix expressing the relationship between the displacement q  of the element i

and the generalized coordinate α  of the shape function.  It has a physical interpretation as

following:

1. When 11 =α  and other 0=α , 11 =q , 02 =q , 13 =q , and 04 =q

2. When 12 =α  and other 0=α , 01 =q , 12 =q , Lq =3 , and 14 =q

3. When 13 =α  and other 0=α , 01 =q , 02 =q , 2
3 Lq = , and Lq 24 =

4. When 14 =α  and other 0=α , 01 =q , 02 =q , Lq 23 = , and 2
4 3Lq =

These interpretations can be presented graphically as shown in Fig. 4.11.

Fig. 4.11
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Shape Function of the Beam Element

If we inverse the relationship between the displacement q  of the element i  and the

generalized coordinate α  of the shape function, we have










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
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
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

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3

3
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22
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000
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1

q
q
q
q

LL
LLLL

L
L

L
α
α
α
α

or symbolically,

{ } [ ]{ }qT=α

The shape function of the beam element can be written in the matrix form as

 

















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4

3

2

1
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α
α
α
α

xxxy

Substitute { } [ ]{ }qT=α  into the shape function, we have
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where iN  is called the shape functions or interpolation functions and
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If we plot the shape function iN  with respect to the coordinate x , we obtain 4 curves

as shown in Fig. 4.12. Physically, each of the 4 shape functions represents the deflection

curve for the beam element produced by setting the corresponding degree of freedom to be

one and the others to be zero.

Fig. 4.12

The first differentiation (slope) of the shape function of the beam element can be

obtained as

{ }q
dx
dN

dx
dy





=

where







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
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326634166
L
x

L
x

L
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L
x

L
x

L
x

L
x

L
x

dx
dN

The second differentiation (curvature) of the shape function of the beam element can

be obtained as

{ } { }








=







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2
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2
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dx
Ndqq
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
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




2322322

2 6212664126
L

x
LL

x
LL

x
LL

x
Ldx

Nd

Let us consider the simply supported beam subjected to a uniformly distributed load as

shown in Fig. 4.13.

By using the finite element method, we divide the beam into four segments. The

positive degrees of freedom ix  of each node of the beam are specified as shown. It should be

noted that in this case we use the notation of the degree of freedom ix  replacing iq  since iq  is

the local degree of freedom of the beam element. However, when we consider the whole

beam, we need to use the global degree of freedom ix  of the beam.

The total potential energy of a beam element i  can be determined from the equation
)()()( iii UV Ω+=
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Fig. 4.13

Stiffness Equation of the Beam Element

 The strain energy of the beam element can be written in the form of

dx
dx

ydEIU
L 2

0
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2
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Rearranging the equation,
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The ][k  matrix is the called the stiffness matrix of the beam element.

The potential energy due to external load of the beam element can be determined from

the equation
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dyyw
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o∫−=Ω
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For the beam in this case, we have
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Therefore, the total potential energy of a beam element i  can be determined from

}{}{}]{[}{
2
1)( QqqkqV TTi −=

From the principle of stationary (minimum) potential energy, we can determine the value of

the degree of freedom of each node of the beam.
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Let us consider the element 2 of the beam, the strain energy stored in this element is
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Then, the partial derivative of the strain energy with respect to the degree of freedom 3x  to 6x

can be determined as following
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Then, the partial derivative of the external potential energy with respect to the degree of

freedom 3x  to 6x  can be determined as following
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Rewriting the strain energy and the external potential energy of the element 2 in the

global coordinate, we have
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In general, we have

{ } { } 1101010110
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and the total potential energy of all four elements of the beam is
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For equilibrium, the partial derivative of the total potential energy of the beam with

respect to the degree of freedom ix  must be zero.

{ } { }0],,[,
4

1

)()( =Ω+= ∑
=i

i
i

i
i

i xxUxV

{ } { } { }0}]{[,
4

1

4

1

=+= ∑ ∑
= =i i

i
i QxkxV

where ∑
=

4

1

][
i

ik  is the global stiffness matrix of the beam and ∑
=

4

1

}{
i

Q  is the load vector of the

beam. Symbolically, the global stiffness matrix ∑
=

4

1

][
i

ik  is usually written by using [ ]K . In

details, the partial derivative of the total potential energy of the beam with respect to the

degree of freedom ix  can be written as shown in the next page. In this equation, since the

supports are pin and roller, the degrees of freedom 1x  and 9x  are known to be zero. It should

be noted that the obtained global stiffness matrix [ ]K  is the same as one that we found by

using the matrix structural analysis.
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Let us redefine the degree of freedom of the beam from ix  to ix′  as shown in the

figure. The degree of freedom ix′  is arranged so that the known degree of freedom

(displacement at the supports) are numbered first and followed by the unknown degree of

freedom. This kind of set-up will help us to partition the global stiffness matrix, which will

ease the matrix manipulation.

Fig. 4.14

From the Fig. 4.14, we can relate the degree of freedom ix  with the degree of freedom

ix′  by the matrix
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In the symbolic form,

{ } [ ]{ }xTx ′=

We usually call matrix [ ]T  as transformation matrix. Then, we can rewrite the total

potential energy of the beam based on the new global degree of freedom ix′  as

{ } [ ] [ ][ ]{ } { } [ ]{ }

}{}{}]{[}{
2
1
2
1

}{}{}]{[}{
2
1

QxxKx

QTxxTKTx

QxxKxV

TT

TTT

TT
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′−′′=
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where [ ] [ ] [ ][ ]TKTK T=′  and { } [ ]{ }QTQ =′

Taking the partial derivative of the total potential energy of the beam with respect to

the degree of freedom ix′  and setting the result to be zero, we have

{ } [ ]{ } { } 0, =′−′′=′=








′∂
∂ PxKxV
x
V

i
i

Partitioning the global stiffness matrix by separating the known displacements at the

supports from the unknown displacements, we have
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where ∆  is the known support settlements, x′  is the unknown displacements, sP′   is the

known external loads acting on the supports, P′  is the known external loads, and R  is the

unknown support reactions. It should be noted that [ ]K ′  is a symmetric matrix and

[ ] [ ]TRxP KK ′=′∆  and vice versa. Thus, we can find the unknown displacements x′  from the

equation

[ ]{ } [ ]{ } { } { }0=′−′′+∆′∆ PxKK PxP

{ } [ ] { } [ ]{ }{ }∆′−′′=′ ∆
−

PPx KPKx 1

Then, we can solve for the unknown support reactions from

[ ]{ } [ ]{ } { } { } { }0=+′−′′+∆′∆ RPxKK sRxR

{ } [ ]{ } [ ]{ } { }sRxR PxKKR ′+′′−∆′−= ∆
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Chapter 5
Static Failure and Failure Criteria

5.1 Definition of Failure

Failure can be defined as any changes in the size, shape or material properties of a

structure or mechanical part the render it incapable of satisfactorily performing its intended

functions.

Failure can be caused by the following agents:

Forces: steady, dynamic, transient, cyclic, random

Time: very short, short, long time

Temperature: low, elevated, room, steady, random, cyclic, transient

Environment: Chemical, nuclear, rain, sand

5.2 Modes of Failure

When a structural member is subjected to loads, its response depends not only on the

type of material, but also on the types of loads and environment conditions. Thus, the modes

of failure can be classified as

Yielding failure – The plastic deformation in the structure under operational loads

that is large enough to interfere with the ability of the structure to satisfactorily performing its

intended functions as an example shown in Fig. 5.1.

Fig. 5.1

Force induced elastic deformation – The elastic deformation that is recoverable in a

structure under operational loads become large enough to interfere with the ability of the

structure to satisfactorily performing its intended functions such as stiffness loss as an

example shown in Fig. 5.2.

Fig. 5.2
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Ductile failure – The plastic deformation in the structure that exhibits ductile

behavior and is carried to the extreme so that it separates into two or more pieces as an

example shown in Fig. 5.3.

Fig. 5.3

Brittle failure – The elastic deformation in the structure that exhibits ductile behavior

and is carried to the extreme so that it separates into two or more pieces as an example shown

in Fig. 5.4.

Fig. 5.4

Fatigue failure – The separation of a structure into two or more pieces or a certain

size of crack initiation as a result of fatigue load or deformation for a period of time.

Low cycle fatigue: fatigue life < 510  cycles

High cycle fatigue: fatigue life ≥  510  cycles

Thermal fatigue

Sonic fatigue

Buckling failure – The deflection of a structure suddenly increased greatly with only

a slight change in load. The buckled part is no longer capable of performing its intended

function as an example shown in Fig. 5.5.

Fig. 5.5
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Creep failure – The plastic deformation in a structure under the influence of stress or

temperature over a period of time and becoming so large enough to interfere with the ability

of the structure to satisfactorily performing its intended function.

5.3 Failure Criteria

The stress analysis itself can not be able to predict the failure of a structure. To know

about how high stress can a structure be sustained or how high the strength of the structure, a

failure criteria is needed.

The criteria discussed in this section will be focused on the failure due to static loads

such as force-induced failure, yielding, ductile, and brittle failure. Once the state of stresses

at a critical point on a structure is determined, the principal stresses can be computed,

and the failure criteria can be used.

5.3.1 Maximum principal normal stress fracture criterion

Experimental observations show that brittle isotropic materials such as cast iron tend

to fail suddenly by fracture without yielding.

Failure will occur when the maximum principal normal stress become equal to or

exceed the maximum normal stress in a simple tension (or compression) test using a specimen

of the same material.

Mathematically, if the material is subjected to plane stress the failure will occur when

ultσ
σ
σ

≥




2

1 

where 1σ , 2σ  are the principal normal stresses

=ultσ  ultimate tensile (or compressive) strength obtained from the tension test

Thus, we have

11 =±
ultσ
σ and 12 =±

ultσ
σ

A plot of these equations is in the rectangular shape and is shown in Fig. 5.6.

Fig. 5.6
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Any stress falling within the rectangular indicates that the material behave elastically.

Points on the hexagon indicate that the material is failing by separation or fracture.

5.3.2 Maximum shear stress yield criterion

Experimental evidence indicates that, in ductile isotropic material such as mild steel,

slip occurs during yielding along critical oriented planes. This suggests that the maximum

shearing stress play an important role in the failure of the ductile materials.

Failure will occur when the magnitude of the absolute maximum principal shear stress

becomes equal to or exceed the maximum shear stress in a simple tension test using a

specimen of the same material.

Mathematically, if the material is subjected to plane stress the failure will occur when

2
21

max

σσ
τ

−
=abs yτ≥

where =
max
absτ  absolute maximum principal shear stress

=yτ  maximum shear strength obtained from the tension test 
22

0 yy σσ
=

−
= .

Thus, 21 σσ − yσ≥












−±

yy σ
σ

σ
σ 21 1=  if 1σ  and 2σ  have the opposite signs














=











±

=











±

1

1

2

1

y

y

σ
σ

σ
σ

if 1σ  and 2σ  have the same signs

Fig. 5.7
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A plot of these equations is in the hexagonal shape and is shown in Fig. 5.7. Any

stress falling within the hexagon indicates that the material behave elastically. Points on the

hexagon indicate that the material is yielding.

5.3.3 Maximum principal normal strain fracture criterion

Failure will occur when the maximum principal normal strain become equal to or

exceed the ultimate strain in a simple tension (or compression) test using a specimen of the

same material.

This criterion is an improvement over the maximum principal stress criterion, but it

does not reliably predict failure by yielding. In practice, this criterion is rarely used excepting

in the design of thick-walled cylinder. Mathematically, if the material is subjected to plane

stress the failure will occur when

ultεε ≥1

or ultεε ≥2

where 21,εε  are the principal strains which are 
EE

21
1

σ
ν

σ
ε −=  and 

EE
12

2
σ

ν
σ

ε −= .

==
E
ult

ult
σ

ε  maximum tensile (or compressive) strain obtained from the tension test

Thus, )( 21 νσσ −± ultσ=

)( 12 νσσ −± ultσ=

A plot of these equations is shown in Fig. 5.8.

Fig. 5.8

ultσ
σ 2

1

1-1

-1

ultσ
σ 1
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5.3.4 Maximum distortion energy yield criterion

Failure will occur when the distortion energy density become equal to or exceed the

distortion energy density at failure in a simple tension test using a specimen of the same

material.

The total strain energy density oU  can be divided into two parts:

1. Due to solely volume change or dilation, voU , .

2. Due to solely change in shape or distortion, doU , .

332211 2
1

2
1

2
1 εσεσεσ ++=oU

Since the strain-stress relations in the form of principal strains and principal stresses

are )(1
3211 νσνσσε −−=

E
, )(1

3122 νσσσε −−=
E

, and )(1
1233 νσνσσε −−=

E
, then, we

can write the total strain energy density as

[ ])(2
2
1

133221
2
3

2
2

2
1 σσσσσσνσσσ ++−++=

E
U o

Fig. 5.9

From chapter 1, we have the mean stress or hydrostatic stress acting on a stress

element which is the average of the principal stresses 
3

321
.

σσσ
σ

++
=avg . The

corresponding hydrostatic strains can be determined as

.. )21(1
avgavg E

σνε −=

The dilation strain energy density,







 ++−






 ++

=
3

21
32

13 321321
,

σσσνσσσ
E

U vo

2
321

, 3
21

2
3







 ++






 −

=
σσσν

E
U vo
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The distortion strain energy density is voodo UUU ,, −= . Thus,

( )2
13

2
32

2
21, )()()(

3
1

2
1 σσσσσσν

−+−+−





 +

=
E

U do

The distortion strain energy density in simple tension test at failure is

2
, 3

1
ydyo E

U σν






 +

=

Mathematically, if the material is subjected to a general state of stresses the failure

will occur when dyodo UU ,, = . Thus,

( ) =−+−+−





 + 2

13
2

32
2

21 )()()(
3

1
2
1 σσσσσσν
E

2

3
1

yE
σν






 +

=−+−+− 2
13

2
32

2
21 )()()( σσσσσσ 22 yσ

If the material is subjected to plane stress, the failure will occur when

=−++− 2
1

2
2

2
21 )()()( σσσσ 22 yσ

=−+ 21
2
2

2
1 σσσσ 2

yσ

1
2

221

2

1 =









+










−











yyyy σ
σ

σ
σ

σ
σ

σ
σ

This is an equation of an ellipse. The plot of this equation is shown in Fig. 5.10. Any

stress falling within the ellipse indicates that the material behave elastically. Points on the

ellipse indicate that the material is yielding. Experimental investigations show that this

criterion is best fitted for isotropic materials that fail by yielding or ductile rupture.

Fig. 5.10



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 5-8

5.3.5 Maximum octahedral shearing stress yield criterion

This failure criterion gives the same results as the maximum distortion energy

criterion does. However, this criterion provides us to deal only with the stresses instead of the

energy. From does the maximum distortion energy criterion, we have

=−+−+− 2
13

2
32

2
21 )()()( σσσσσσ 22 yσ

From chapter 1, we have the octahedral shearing stress as

[ ] 2/12
13

2
32

2
21 )()()(

3
1 σσσσσστ −+−+−=oct

or

[ ] 2/1222222 666)()()(
3
1

yzxzxyzyzxyxoct τττσσσσσστ +++−+−+−=

Mathematically, if the material is subjected to three-dimensional stress, the failure will

occur when

yoct στ
3
2

=

Failure will occur when the maximum octahedral shearing stress become equal to or

exceed the octahedral shearing stress at failure in a simple tension test using a specimen of

the same material.

5.3.6 Coulomb-Mohr fracture criterion

In some brittle materials such as gray cast iron and concrete, the tension and

compression properties are different. The failure of these materials should be predicted by

using the Coulomb-Mohr criterion.

In the Coulomb-Mohr criterion, the fracture is hypothesized to occur on a given plane

in the material when a critical combination of shear and normal stress acts on this plane. The

simplest mathematical relation giving the critical combination of stresses is in the form of

linear relationship. At fracture, we have

iτµστ =+

where τ  and σ  are the shearing stress and normal stress acting on the fracture plane,

respectively, and µ  and iτ  are constants for a given material. This equation forms a line on a

plot of σ  versus τ  and the line has a slope of µ−  and intercepts the τ  axis at iτ  as shown

in Fig. 5.11.

Consider a stress element subjected to the principal stress 1σ , 2σ , and 3σ . The

Mohr’s circle of the state of stresses can be drawn as shown in Fig. The failure is occurred if



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 5-9

the largest of the three circles touch the line. Thus, the line represents a failure envelope for

the Mohr’s circle.

Fig. 5.11

As shown in the figure, the touching point has the coordinate ( τσ ′′  , ) where

φ
σσσσ

σ cos
22

3131 −
+

+
=′

φ
σσ

τ sin
2

31 −=′

Also, the failure planes are occurred where the maximum principal stress acts by a rotation

2/φ  in either direction and

µ
φ 1tan =

Substituting σ ′ , τ ′ , and 
µ

φ 1tan =  into the relation iτµστ =+ , we have

um τσσσσ 2)( 3131 =++−

where φ
µ

µ cos
1 2

=
+

=m  and φτ
µ

τ
τ sin

1 2 i
i

u =
+

= .

For torsion test, we have τσσ =−= 31  and 02 =σ . Thus,

um τττττ 2)( =−++

uττ =

The uτ  is the pure shear necessary to causes fracture. The corresponding largest Mohr’s circle

and predicted fracture planes are show in Fig. 5.12.
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Fig. 5.12

For uniaxial tensile test, we have utσσ =1  and 032 == σσ . Thus,

uutut m τσσ 2)0(0 =++−

m
u

ut +
=

1
2τ

σ

For uniaxial compression test, we have 021 == σσ  and ucσσ −=3 . Thus,

uucuc m τσσ 2)0(0 =−++

m
u

uc −
=

1
2τσ

It should be noted that ucσ  must have a negative value or 
m
u

uc −
−=

1
2τσ  since it is the

compressive stress. The fracture planes predicted by the Coulomb-Mohr criterion for uniaxial

tensile test and uniaxial compression test are shown in Fig 5.13.

Fig 5.13

Eliminating uτ , we have

utuc m
mσσ

−
+

−=
1
1

Solving for m , we obtain
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utuc

utucm
σσ
σσ

−
+

=

We can see that for a positive value of m , the strength in tension is predicted to be

less than that in compression.

If the subscript for the principal stresses are assumed to be arbitrary assigned, then,

um τσσσσ 2)( 3131 =++−

um τσσσσ 2)( 3232 =++−

um τσσσσ 2)( 2121 =++−

For plane stress,

um τσσ 211 =+

um τσσ 222 =+

um τσσσσ 2)( 2121 =++−

The plot of this equation is shown in Fig. 5.14.

Fig. 5.14

It should be noted that the Coulomb-Mohr criterion with the constant 0=m  is

equivalent to the maximum shear stress criterion and Fig. 5.14 will be the same as Fig. 5.7.

5.4 Comparison of the Failure Criteria

Fig. 5.15 shows the experimental results with the failure criteria presented before. It is

concluded that

1. The maximum principal stress criterion is best fitted for isotropic material that is

failed by the brittle fracture.

2. The maximum distortion energy criterion is best fitted for isotropic materials that

fail by yielding or ductile rupture.
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3. The maximum shearing stress criterion is almost as good as the maximum

distortion energy criterion for isotropic materials that fail by yielding or ductile

rupture.

Fig. 5.15
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Example 5-1

The stesolid shaft as shown in Fig. Ex 5-1a has a radius of mm 7.12 and is made of

steel having MPa 250=yσ . Determine if the loadings cause the shaft to fail according to the

maximum shearing stress criterion and the maximum distortion energy criterion.

Fig. Ex5-1

Let the x - axis is in the longitudinal direction of the shaft. The averaged axial stress

due to the axial force is

MPa 15.138
)0127.0(

70
2 ==

π
σ x

The maximum shear stress caused by the torque is

MPa 0.115

2
)0127.0(
)127.0(370
4 ==

π
τ xy

The stress element at point A  is as shown in Fig. Ex 5-1b.

The principal normal stresses due to the state of stresses as shown in Fig. Ex 5-1b are

2
2

2
1 0.115

2
015.138

2
015.138

+





 −−

±
+−

=σ

MPa 07.651 =σ

MPa 23.2032 −=σ

Maximum shearing stress criterion

Since the principal normal stresses have the opposite sign,












−±

yy σ
σ

σ
σ 21 1

?
≤
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0.1073.1
250

23.203
250

07.65
>=



 −

−

Thus, the loadings cause the shaft to fail according to the maximum shearing stress criterion.

Maximum distortion energy criterion

1
?

2

221

2

1 ≤









+










−











yyyy σ
σ

σ
σ

σ
σ

σ
σ

0.1940.0
250

23.203
250

23.203
250

07.65
250

07.65 22

<=





 −+






 −

−







Thus, the loadings do not cause the shaft to fail according to the maximum distortion energy

criterion.
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Example 5-2

A circular cylindrical shaft is made of steel with MPa 700=Yσ , GPa 200=E , and

29.0=ν . The shaft is subjected to a static bending m-KN 0.13=M  and a static torque of

m-kN 0.30=T  as shown in Fig. Ex 5-2. Using the factor of safety of 60.2=SF , determine

the minimum diameter of the shaft based on the maximum octahedral shearing stress

criterion (or equivalently the maximum distortion energy criterion) and the maximum

shearing stress criterion.

Fig. Ex 5-2

The shaft is subjected to a static bending moment m-KN 0.13=M  and a static torque

of m-kN 0.30=T . However, due to the factor of safety of 60.2=SF , the moment and the

torque must be increased by the factor. Thus, if we let the x - axis is in the longitudinal

direction of the shaft, the stresses due to the loadings are

3

)(32
d

MSF
I

McSFx π
σ ==

3

)(16
d

TSF
J

TcSFxy π
τ ==

For the maximum octahedral shearing stress criterion,

Yoct στ
3
2

(max) =

Yyzxzxyzyzxyx στττσσσσσσ
3
2666)()()(

3
1 222222 =+++−+−+−

Yxyx στσ
3
262

3
1 22 =+

22 3 xyxY τσσ +=

Substituting the stresses into the obtained equation, we get

22
3 34)(16 TM

d
SF

Y +=
π

σ

or
3/1

22
min 34)(16









+= TMSFd

Yπσ

mm 103min =d
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For the maximum shearing stress criterion,

2max
Yσ

τ =

22
2

2

Y
xy

yx σ
τ

σσ
=+







 −

2
4

2
1 22 Y

xyx
σ

τσ =+

Substituting the stresses into the obtained equation and rearranging the term, we get
3/1

22
min

)(32








+= TMSFd

Yπσ

mm 107min =d
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Chapter 6
Introduction to Fracture Mechanics

6.1 Introduction

Traditionally, the structural design approaches are based on the concept that the

structures must have enough strength, stiffness, and stability to resist the loads.

For the strength criteria, the applied stress must be less than the yielding or ultimate

strength of the material. However, when a crack is occurred in a component of the structure, it

can cause the failure (in the form of fracture) at stresses well below the material's yielding

strength. In this case, a special methodology called fracture mechanics can be used in design

to minimize the possibility of failure.

Fracture mechanics is important in engineering design since cracks and crack-like

flaw occur more frequently than we might expect. For example, the periodic inspections of

large commercial aircraft frequently reveal cracks that must be repaired. Also, they are

commonly occurred in ship structures, in bridge structures and in pressure vessel and piping.

The ability of a given material to resist a crack depends principally on the toughness

of the material. Generally, fracture toughness in some metals such as steel increase with

temperature as shown in Fig. 6.1. Also, there is an especially abrupt change in toughness over

a relative small temperature range such as Co50−  for A469 steel. The temperature at this

point is called the transition temperature. Thus, the fracture of the steel can be promoted by

the temperature below the transition temperature.

Fig. 6.1

Generally, fracture process can be categorized into three stages.

1. Crack initiation – micromechanics and dislocation theory
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2. Crack extension – slow crack growth

3. Fast crack propagation

Thus, in fracture mechanics, a preexistent crack is assumed. Fracture mechanics is used to

study the growth behavior of crack and residual strength of cracked structures, and to evaluate

the life.

The growth of a crack and its corresponding stress can be shown as in Fig. 6.2.

Fig. 6.2

The following questions are important in designing a structure using fracture

mechanics.σ

1. What is the maximum permissible crack size?

2. What is the residual strength as a function of crack size?

3. How long does it take from the maximum detectable crack size to the maximum

permissible crack size?

4. During the period available for crack detection, how often should the structure be

inspected for crack?

6.2 Fracture Modes

Once a crack has been initiated, subsequent crack propagation may occur in several

ways depending on the relative displacement of the particles in the two faces (surfaces) of the

crack. There are three fundamental modes of fracture acting on the crack surface displacement

as shown in Fig. 6.3.

1. Opening mode (Mode I) - The stress acts perpendicular to the crack growth

direction and the crack growth plane. The crack surfaces move directly apart.

2. Shearing mode (Mode II) - The stress acts parallel to the crack growth direction

and the crack growth plane. The crack surfaces move (slide) normal to the crack

edge and remain in the plane of the crack.



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 6-3

3. Tearing mode (Mode III) - The stress acts perpendicular to the crack growth

direction and parallel to the crack growth plane. The crack surfaces move parallel

to the crack edge and remain in the plane of the crack.

The most general cases of crack surface displacements are obtained by superposition

of these basic three modes.

Fig. 6.3

6.3 Stress and Displacement Field at the Crack Tip

In 1950, Irwin showed that the local stresses near the crack tip, as the curvature at the

crack tip goes to zero as shown in Fig. 6.4, are of the form

)(
2

θ
π

σ ijij f
r

K
=

and we can see that ασ →ij  as 0→r . Thus, the stress field is a singular stress field with a

singularity of r . The term K  is called the stress intensity factor, which defines the

intensities or magnitudes of the singular stress around the crack tip. The expression of K

depends on the fracture modes.
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Fig. 6.4

6.3.1 Mode I

Fig. 6.5

 The stresses at a point having a distance r  and angle θ  from the crack tip and for

Mode I as shown in Fig. 6.5 are







 −=

2
3sin

2
sin1

2
cos

2
θθθ

π
σ

r
K I

x







 +=

2
3sin

2
sin1

2
cos

2
θθθ

π
σ

r
K I

y

2
3cos

2
sin

2
cos

2
θθθ

π
τ

r
K I

xy =

Plane stress 0=== xzyzz ττσ

Plane strain )( yxz σσνσ +=

0== xzyz ττ

where arK oyrI πσπσ
θ

==
=→

)2(lim
00
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The displacements at a point having a distance r  from the crack tip and angle θ  with

the x  axis are





 −−=

2
3cos)12(

2
cos

28
θθ

π
Kr

G
Ku I

x

)()( θθ −= xx uu





 −−=

2
3sin)12(

2
sin

28
θθ

π
Kr

G
Ku I

y

)()( θθ −−= yy uu

where






+
−
−

=
stress plane     

1
3

strain plane     43

ν
ν
ν

K

6.3.2 Mode II

Fig. 6.6

 The stresses at a point having a distance r  from the crack tip and angle θ  with the x

axis for Mode II as shown in Fig. 6.6 are







 +−=

2
3cos

2
cos2

2
sin

2
θθθ

π
σ

r
K II

x

2
3cos

2
sin

2
cos

2
θθθ

π
σ

r
K II

y =







 −=

2
3sin

2
sin1

2
cos

2
θθθ

π
τ

r
K II

xy

Plane stress 0=== xzyzz ττσ

Plane strain )( yxz σσνσ +=

0== xzyz ττ

where aK oII πτ=
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The displacements at a point having a distance r  from the crack tip and angle θ  with

the x  axis for Mode II are





 ++=

2
3sin

2
sin)32(2

8
θθ

π
Kr

G
Ku II

x

)()( θθ −−= xx uu





 −−−=

2
3cos

2
cos)32(2

8
θθ

π
Kr

G
Ku II

y

)()( θθ −= yy uu

where






+
−
−

=
stress plane     

1
3

strain plane     43

ν
ν
ν

K

6.3.3 Mode III

Fig. 6.7

 The stresses at a point having a distance r  from the crack tip and angle θ  with the x

axis for Mode III as shown in Fig. 6.7 are

2
sin

2
θ

π
τ

r
K III

xz −=

2
cos

2
θ

π
τ

r
K III

yz =

0==== xyzyz τσσσ

where aK oIII πτ=

The displacements at a point having a distance r  from the crack tip and angle θ  with

the x  axis for Mode III are
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θ
π

sin2r
G

Ku III
z = and 0== yx uu

6.4 Stress Intensity Factor (SIF or K )

Stress intensity factors are needed to measure the intensity or magnitude of the

singular stress field in the vicinity of an ideally sharp crack tip in a linear elastic and

isotropic material. This approach is called linear-elastic fracture mechanics (LEFM). The

factors do depend on loading condition, crack size, crack shape, and geometric boundaries.

The general form of the stress intensity factors is given by

afK πσ.=

where σ  = applied stress

a  = effective crack length

f  = correction factor. For infinity plate, 1=f .

Thus, stress intensity factor K  has a unit in inksi  or mMPa . The solutions of the stress

intensity factors have been obtained for wide variety of problems and published in a

handbook form. The followings are the typical solution for SIF:

6.4.a Center crack

Fig. 6.8







=

b
afaK oI 2

.πσ







=








b
a

b
af

2
sec

2
π

6.4.b Double edge crack







=

b
afaK oI .πσ
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32
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
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−+=


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Fig. 6.9

6.4.c Single edge crack

Fig. 6.10
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6.4.d Crack under bending

Fig. 6.11
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6.5 Superposition of SIF

Stress intensity factor for combined loading can be obtained by the superposition

method, that is, by adding the contribution to K  from the individual load components. It is

valid only for combination of the same mode of failure.

Consider an eccentric load applied at a distance e  from a centerline of a member with

a single edge crack as shown in Fig. 6.12. This eccentric load is statically equivalent to the

combination of a centrally applied tension load and a bending moment.

The stress intensity factor for the centrally applied tension load is







=

b
afa

bt
PK aa

I .π

The stress intensity factor for the bending moment is







=

b
afa

tb
MK bb

I .6
2 π

Thus, the total stress intensity factor of this case is

a
b
af

b
e

b
af

bt
PKKK bab

I
a
II π














+






=+=

6

Fig. 6.12

6.6 Fracture Toughness (Critical SIF)

Fracture toughness ICK  is the critical value of the stress intensity factor K . If the

stress intensity factor K  occurred in a given material is less than the fracture toughness, the

material will have ability to resist the crack without brittle fracture.
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Fracture toughness is a material parameter, but it depends on both temperature and

specimen thickness.







=

b
afaK cIC .πσ









=

b
afa

K IC
c

π
σ







=

b
afaK cIC .πσ

where ca  = critical crack size.

It should be noted that in order to ensure that the state of stress is plane strain for each

of the cases in Section 6-4, the magnitudes of the crack half-length a  and the thickness t

should satisfy
2

5.2, 









≥

y

ICKta
σ

Table 6-1 shows ICK  at the room temperature for several metals.

Table 6-1
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Example 6-1

Determine the stress intensity factor for the edge-cracked beam having the crack half-

length a  of in. 1.75 when subjected to a moment of ft-kips 100 . It the beam was made of an

extremely tough steel that has ksi 195=yσ  and a ICK  of in.ksi. 150 . The width of the

beam is in. 4  and the depth of the beam is in. 12 . If the moment applied to the beam was

increased to ft-kips 400 , would this beam fail?

The flexural stress due to the moment ft-kips 100  is

ksi 5.12
)12(4

)12)(100(66
)12/(
)2/(

223 =====
tb
M

tb
bM

I
Mcσ

Since the crack half-length a  of the beam is in. 75.1 ,

14583.0
12
75.1

==
b
a

329.11408.1333.740.112.1
432

=





+






−






+−=








b
a

b
a

b
a

b
a

b
af

The stress intensity factor for the edge-cracked beam is

in.ksi. 95.38)329.1()75.1(5.12 == πIK

The flexural stress due to the moment ft-kips 400  is

ksi 50
)12(4

)12)(400(6
2 ===σ

in.ksi. 80.155)329.1()75.1(50 == πIK

Since the stress intensity factor is larger than ICK  of in.ksi. 150  and the flexural stress is

less than the yielding strength ksi 195=yσ , the beam does fail by fracture.
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Example 6-2

A tool as shown in Fig. Ex 6-2 is used to dig up old road beds before replacing them.

Let the tool be made of AISI 4340. The dimensions of the tool are mm 250=d , mm 60=b ,

and the width mm 25=t . Determine the magnitude of the fracture load P  for the crack

length of mm 5=a .

Fig. Ex 6-2

The crack half-length a  and the thickness t  satisfy the condition

mm 9.3)mm/m 10(
1503

595.25.2, 3
2

=





=










≥

y

ICKta
σ

Thus, we can consider the problem as a plane strain problem.

At the crack section, the tool is subjected to combine axial load and bending.

Assuming the behavior of the tool is in the linear-elastic range and by using the superposition

method. Thus,
b
I

a
II KKK +=

For the crack length of mm 5=a , 0833.060/5/ ==ba .

163.139.3072.2155.10231.012.1
432
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b
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047.11408.1333.740.112.1
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

−
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


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a
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M

b
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PK ba

IC π













+






= 2

6

)5()047.1(
25)60(

)280(6)163.1(
)60(25

100059 2 π







+=

PP

kN 17.23=P

The total maximum stress is

MPa 1503MPa 448
)025.0(060.0

17.23)280.0(6
)060.0(025.0

17.236
22 =<=+=+= ytb

M
bt
P σσ

which is in accordance with the assumption of linear elastic behavior.
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6.7 Strain Energy Release Rate and Its Equivalent to SIF

Consider a cracked member under a Mode I as shown in Fig. 6.13a. Assume that the

behavior of the material is linear elastic under the action of load P . As a result of the elastic

deformation, the strain energy stored in the member as shown in Fig. 6.13a is

PvU
2
1

=

where v  is the displacement at the loading point.

Fig. 6.13

If the crack moves ahead by a small distance da , while the displacement is held

constant, the stiffness of the member decreases as shown in Fig. 6.13b. This results in the

decreasing in the strain energy by the amount of dU , that is, U  decreases due to a release of

this amount of energy.

The strain energy release rate (G ) is defined as the rate of change of strain energy

with increase in crack area .

a
U

tA
UG

∂
∂

−=
∂
∂

−=
1

where t  = thickness of the plate. Since G  has a unit in 
in
lb

in
inlb

2 =
− , G  is sometimes

considered as a crack driving force.

For plane stress,

E
KG I

I

2

=

E
KG II

II

2

=

21
IIIIII K

E
G ν+

=
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For plane strain,

2
21

II K
E

G ν−
=

2
21

IIII K
E

G ν−
=

21
IIIIII K

E
G ν+

=

6.8 Plastic Zone Size

Irwin has shown that the local stress at the crack tip as shown in Fig 6.14 is in the

form of

)(
2

θ
π

σ ij
I

ij f
r

K
=

This means that at the crack tip or 0→r , the local stress is infinite or ασ →ij . However,

real materials can not support these theoretical infinite stresses. Thus, upon loading, the crack

tip becomes blunted and a region of yielding or microcracking forms. This region of yielding

is called plastic zone.

Fig. 6.14

For any cases of Mode I loading, the stresses near the crack tip are







 −=

2
3sin

2
sin1

2
cos

2
θθθ

π
σ

r
K I

x







 +=

2
3sin

2
sin1

2
cos

2
θθθ

π
σ

r
K I

y

2
3cos

2
sin

2
cos

2
θθθ

π
τ

r
K I

xy =

Plane stress 0=== xzyzz ττσ

Plane strain )( yxz σσνσ +=  and 0== xzyz ττ
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where aK oI πσ=

For plane stress, the state of stress at the plane of the crack where the angle o0=θ  is

r
K I

yx π
σσ

2
==

0==== xyxzyzz τττσ

Since all shear stress along the plane of the crack are zero, yx σσ , , and zσ  are the

principal normal stresses. The maximum shear stress and the maximum octahedral shearing

stress criteria estimate the yielding at

ysyx σσσ ==

where ysσ  is the yielding strength. Therefore, we obtain the radius of the plastic zone for the

plane stress in the form of
2

2
1












=

ys

I
y

Kr
σπ

For the plane strain, the radius of the plastic zone can be determined by using the

equation
2

6
1












=

ys

I
y

Kr
σπ

It should be noted that the radius of the plastic zone for the plane strain is smaller than

one of the plane stress. This is due to the fact that the stress zσ  for the plane strain is nonzero,

and this elevates the value of yx σσ =  necessary to cause yielding, in turn decreasing the

plastic zone size relative to that for plane stress.

Thus, for different materials, the one having a lower ysσ  will have a larger yr . The plastic

zone size for plane stress condition is larger than that of the plane strain condition.

For cyclic loading, the cyclic plastic zone size can be determined by

For plane stress,
2

8
1












=
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I
y

Kr
σπ

For plane strain,
2

24
1












=

ys

I
y

Kr
σπ

Hence, we can see that 
staticycyclicy rr < .
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Example 6-3

A large plate made of 4140 steel ( ksi 90=ysσ ) containing a in. 2.0  center crack is

subjected to a tensile stress of ksi 30=oσ .

a.) Determine the plastic zone size.

This problem is a plane stress problem. The plastic zone size can be determined by

using the equation
2

2
1












=

ys

I
y

Kr
σπ

The stress intensity factor,







=

b
afaK oI 2

.πσ

0.1
2

sec
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
=








b
a

b
af π

inksi. 81.16)1.(2/)2.0(30 == πIK

Thus, the plastic zone size is in. )10(56.5 3−=yr

b.) Are the LEFM's assumptions violated?

The assumptions remain valid since the plastic zone size is small relative to the crack

size and cracked body.

c.) If the yielding strength of the material is reduced by a factor of 2.0, cal culate the

plastic zone size. Are the LEFM's assumptions violated

in. 022.0
45

81.16
2
1 2

=



=

πyr

The assumptions are violated since the plastic zone size is quite large compared to the

crack size (about 22% of the half crack size).
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Chapter 7
Fatigue

7.1 Introduction

Structural members and mechanical parts are often found to have failed under the

action of repeated or fluctuating stresses called fatigue failure. The actual maximum repeated

stresses were well below the ultimate strength of the material and quite frequently evens

below the yield strength. Typical fatigue failures do not involve macroscopic plastic

deformation.

Fatigue failure often begins with a small crack. The initial crack is so minute that it

can not be detected by the naked eyes and even by the X-ray method. The small cracks are

usually developed at high stress gradient area. Once crack is developed, the stress gradient

becomes larger and larger, and the crack progresses more rapidly.

At present, there are three major approaches to analyzing and designing against

fatigue failure. They are stress-based approach, strain-based approach, and fracture mechanic

approach.

Stress-based approach is based on the nominal stresses in the region of the component

being analyzed. The nominal stress that can be resisted under cyclic loading is determined by

considering mean stresses and by making adjustments for the effects of stress risers such as

holes and fillet.

Strain-based approach involves more detailed analysis of the localized yielding that

may occur at stress risers during cyclic loading.

Fracture mechanic approach is used to treat growing crack due to cyclic loading by

using the method of fracture mechanics.

7.2 Nomenclature

Some practical applications involve cycling between maximum and minimum stress

levels that are constant. This is called constant amplitude stressing as shown in Fig. 7.1 and

7.2.

The following nomenclatures for cyclic loading are important.

Mean stress is the average of the maximum stress and the minimum stress.

2
minmax σσ

σ
+

=m

Stress range is the difference between the maximum stress and the minimum stress.

minmax σσσ −=∆

Stress amplitude is half of the stress range.
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2
minmax σσ

σ
−

=a

Stress ratio is the ratio of the minimum stress over the maximum stress.

max

min

σ
σ

=R

Amplitude ratio is the ratio of the stress amplitude over the mean amplitude

m

aa
σ
σ

=

Cyclic loading needs two independent variables to specify. Some combinations that

may be used are: aσ  and mσ , maxσ  and R , σ∆  and R , maxσ  and minσ  and aσ  and a .

Fig. 7.1

Fig. 7.2
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Point stresses Versus Nominal Stresses

It is important to distinguish between the stress at a point, σ , and the nominal stress,

S . Nominal stress, S , is equal to point stress, σ , only in certain situations.

For simple axial loading, the point stress, σ , is the same everywhere and so is equal

to the nominal stress, APS /= .

For bending, the nominal stress is usually calculated from the elastic bending

equation, IMcS /= . Hence, S=σ  at the edge of the bending member, with σ  being less

everywhere. However, if yielding occurs, the actual stress distribution becomes nonlinear, and

σ  at the edge of the bending member is no longer equal to S . Thus, in material testing, it is

essential to distinguish S  from σ  when the yielding occurs.

For notched member, the nominal stress, S , is determined from the net area remaining

after removal of the notch. Due to the stress raiser effect, the nominal stress, S , needs to be

multiplied by a stress concentration factor, tk . Thus, the peak stress at the notch σ  is equal to

Skt .

7.3 Cyclic Stress-Strain Behavior of Metals

Consider a stress-strain response curve from a fatigue test of a metal specimen as

shown by the solid line in Fig. 7.3. When the strain is increased from 0 to maxε , the stress is

also increased from 0 to maxσ  by following the dashed line of the stress-strain curve. Then,

when we unload the specimen from the strain maxε  to minε , the stress-strain curve follows the

unloaded line, and the stress is decreased from maxσ  to minσ . Finally, if we reload the

specimen from minε  to maxε , the stress is increased from minσ  to maxσ  by following the reload

curve.  It can be seen that there is a loop occurred due to the unloading and reloading the

specimen. This loop is called hystereis loop. It represents measurement of plastic deformation

work done on the material. The area within the loop is the energy per unit volume dissipates

during a cycle.

Fig. 7.3
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Bauschinger Effect

Consider the monotonic tensile stress-strain curve as shown in Fig. 7.4a. If the

specimen is loaded passed the yielding strength otσ  to reach a maximum stress maxσ  and the

direction of straining is reversed, the stress-strain path that is followed differs from the initial

monotonic one as illustrated in Fig. 7.4b. Yielding on unloading generally occurs prior to the

stress reaching the yield strength ocσ  for monotonic compression, as at point A . This early

yielding behavior is called the Bauschinger effect.

Fig. 7.4

The cyclic stress-strain response of metal is dramatically altered due to plastic strain.

It depends on the initial conditions of the specimen such as quenching, tempering, and

annealing, and its testing conditions.

Under the strain-controlled fatigue test, a metal specimen may exhibit the cyclic

stress-strain response as following:

a.) Cyclically hardening

If the stress required to enforce the strain increases on subsequence reversals, the

material undergoes cyclic hardening as shown in Fig. 7.5. In this case, the yield and ultimate

strength of the material are increased. The example of the metal that exhibits this response is

the annealed pure metal.

b.) Cyclically softening

If the stress required to enforce the strain decreases on subsequence reversals, the

material undergoes cyclic softening as shown in Fig. 7.5. In this case, the yield and ultimate

strength of the material are decreased. The example of the metal that exhibits this response is

the cold worked pure metal.

c.) Cyclically stable

Through the cyclic hardening and softening, some intermediate strength levels are

attained which represents a cyclically stable condition. The stable condition is usually reached

in about 20-40% of total fatigue life.
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Fig. 7.5

d.) Mixed behavior

A material exhibits cyclic softening at the early stage of fatigue life and then cyclic

hardening at the later stage of fatigue life.

7.3.1 Comparison of Metal Behavior between Monotonic and Cyclic Tests

Cyclic stress-strain curves for several engineering metals are compared with

monotonic tension curves as shown in Fig. 7.6. When the cyclic curve is above the monotonic

one, the material is one that cyclically hardens and when the cyclic curve is below the

monotonic one, the material is one that cyclically softens. A mixed behavior may also occur,

with crossing of the curves indicating softening at some strain levels and hardening at the

others.

The following criteria were proposed by Manson.

If 4.1
2.0

>
y

S
Sult

σ

, cyclically hardening.

If 2.1
2.0

<
y

S
Sult

σ

, cyclically softening.

If 4.12.1
2.0

<<
y

S
Sult

σ

, generally stable, or may hardening or softening.

The monotonic strain-hardening coefficient n  is needed for predicting the material

cyclic behavior. In general,

If 20.0>n , cyclically hardening.

If 10.0<n , cyclically softening.
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Fig. 7.6

7.4 Cyclic Stress-Strain Curve

There are several test methods that can be used to develop a cyclic stress-strain curve.

For most metallic material, the controlled strain amplitude fatigue test will generate a

stabilized hysterisis loop. The stress-strain curve is constructed by a sequence of the stabilized

hysterisis loop.

a.) Companion sample method

The cyclic stress-strain curve is constructed by a set of test specimens at various strain

levels as shown in Fig. 7.7. This method is time-consuming and requires a large number of

tests.

Fig. 7.7
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Massing’s hypothesis states that the stabilized hysterisis loop can be obtained by

doubling the cyclic stress-strain curve as shown in Fig. 7.8.

Fig. 7.8

b.) Incremental step method

A cyclic stress-strain curve is constructed by a sequence of gradually increasing or

decreasing strain amplitude in a single test as shown by the strain-time curve in Fig. 7.9.

Fig. 7.9

In general, the material will be stabilized after three to four blocks of loading. After

the incremental step test, the cyclic stress-strain curve will be nearly identical to the one

obtained by connecting the loop tips.

7.5 NS −  Diagram and Stress Life Relation

The NS −  curve is a plot of alternating stress, S , versus cycles to failure, fN

obtained from the fatigue test. The NS −  data are usually presented on a log-log plot with the

actual NS −  line representing the mean of the data as shown in Fig. 7.10.

Certain materials exhibit an endurance limit, which is stress level below that the

material has an infinite life. For engineering purpose, the infinite life is usually considered as
610  cycles. For most nonferrous metal such as aluminum, there exist no distinct endurance

limit and the NS −  curve has a continuous slope. A pseudo-endurance limit for these

materials is taken on the stress value corresponding to 8)10(5  cycles.
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Fig. 7.10

Empirical relations of endurance limit are

)(25.0)ksi( BHNSe =

)(73.1)MPa( BHNSe =

where =BHN  brinell hardeness number. In addition,

ksi 100≈eS  for 400>BHN

ulte SS 0.5≈  for ksi 200<ultS

ksi 100≈eS  for ksi 200≥ultS

Stress-Life relation

Consider a general NS −  curve plotted on a log-log coordinate as shown in Fig. 7.11.

Fig. 7.11

For the number of cycle is 63 1010 ≤≤ fN , the NS −  curve is a straight line. The

following equation can be fitted to obtain a mathematical representation of the curve.
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Cb
f

Cb
f

C
f

f

N

N

Nb

CNbS

10log         

10loglog         

10loglog         

loglog

=

+=

+=

+=

Thus, we have
b
f

C NS 10=

The exponents b  and C  are determined by using two end points. In general,

alternating stress level corresponding to a life of 310  cycles can be estimated as

ultSS 9.01000 = . Also, the endurance limit at 610  cycles can be estimated as, ulte SS 5.0= .

Thus,

CbCbSe +=+= 610loglog 6

CbCbS +=+= 310loglog 3
1000

bSC 3log 1000 −=

1000log3log SbSe +=

bSS e 3loglog 1000 −=−

085.0log
3
1 1000 −=−=

eS
S

b

ult
e

S
S

S
C 62.1loglog

2
1000 ==

Thus, the mathematical representation of the curve is
085.062.1 −= fult NSS

The general form of the above equation may be written as
B

fNAS )(=

In some cases, this equation is written in another form of
b

ff NS )2(σ ′=

The fitting constant for of the two forms are related by

f
bA σ ′= 2  and bB =

and are given in Table 7-1 for several engineering metals.

It should be noted that the NS −  curve is primary valid within the elastic range of the

material and does not work well in low-cycle fatigue.
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Table 7-1
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Example 7-1

From axially loaded fatigue testing under zero mean stress of unnotched AISI 4340

steel specimen, we obtain the stress amplitude and corresponding stress as shown in Table Ex

7-1. Plot the data on the log-log coordinate and determine the constant A  and B  of the

equation B
fNAS )(= .

Table Ex 7-1

)MPa(aσ (Cycles)fN

948 222

834 992

703 6004

631 14130

579 43860

524 132150

The plotted data are shown in the Fig Ex 7-1a. They seem to fall along a straight line,

and the first and the last points represent the line well. Using this two point and denoting them

( 11, fNσ ) and ( 22 , fNσ ), we have

B
fNA )( 11 =σ B

fNA )( 22 =σ

It should be noted that for axially loaded fatigue testing, the nominal stress, S , is

equal to the point stress, σ .

Fig Ex 7-1

Dividing the second equation into the first, and take logarithms of both sides.
B

f

f

N
N











=

2

1

2

1

σ
σ
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2

1

2

1 loglog
f

f

N
N

B=
σ
σ

Solving for B ,

21

21

2

1

2

1

loglog
loglog

log

log

ff

f

f NN
N
N

B
−
−

==
σσσ

σ

0928.0
132150log222log

524log948log
−=

−
−

=B

Then, we can find A .

MPa 1565
222

948
)( 0928.0

1

1 === −B
fN

A
σ
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7.6 Fatigue Strength Diagram (Haigh diagram)

A fatigue strength diagram is a plot of alternating stress versus mean stress with lines

of constant life.

Fig. 7.12

Fig. 7.12 is a fatigue strength diagram for alloy steel, =uS  125 to 180 ksi, axial

loading. Since the tests required to generate a fatigue strength diagram is expensive, several

relationships have been proposed to generate the lines defining the infinite life design region.

The following relationships are commonly used for an infinite life.

a.) Soderberg (USA, 1930)

1=+
y

m

e

a

SS
σσ

b.) Gerber (German, 1874)

1
2

=







+

ult

m

e

a

SS
σσ

c.) Goodman (England, 1899)

1=+
ult

m

e

a

SS
σσ

The curves of each relationship are shown in Fig. 7.13. For finite life, the eS  in the

above equations can be replaced with a fully reversed alternating stress level corresponding to

that finite life. It should be noted that

1. The Soderberg model is too conservative and seldom used.

2. The Gerber model is good for ductile material.

3. The Goodman model is good for brittle material.
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Fig. 7.13
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Example 7-2

A mm 30  diameter shaft is subjected to the cyclic loading as shown in Fig. Ex 7-2a

where the magnitude of the load varies from maxmin 60.0 PP −=  to maxP . The shaft is made of

stress-relieved cold-worked SAE 1040 steel having the ultimate stress of MPa 830 , yielding

stress of MPa 660 , the endurance limit of MPa 410 . Determine the magnitude of maxP  based

on a factor of safety of 1.80 against the failure at 710=fN  cycles.

Fig. Ex 7-2a

Since the steel is a ductile material, we will use the Gerber relation to determine the

magnitude of maxP .

1
2

=







+

ult

m

e

a

SS
σσ

For the linear elastic behavior of the material under the cyclic loading and we have the

relationship of the minimum load and the maximum load in the form of maxmin 60.0 PP −= ,

then, we obtain the relationship of the minimum stress and the maximum stress of the form

maxmin 60.0 σσ −=

The stress amplitude is 
2

minmax σσ
σ

−
=a . Then, we have

aσσ 25.1max =

Since am σσσ +=max , the mean stress is

am σσ 25.0=

Thus, from the Gerber relation, we have
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1
830
25.0

410

2

=





+ aa σσ

Solving the polynomial equation, we obtain the alternating stress equal to MPa 9.403

and the maximum stress and the maximum stress equal to

MPa 9.50425.1max === aσσ

MPa 9.30260.0 maxmin −=−= σσ

Since MPa 660max =< yσσ , the failure would be by fatigue and not by the general

yielding.

The loads need to be multiplied by 1.80 due to the factor of safety. Then, we can draw

the bending moment diagram and torque diagram as shown in Fig. Ex 7-2b.

Fig. Ex 7-2b

The maximum bending moment occurred on the shaft is

PPPM 1.224)5.67()75.213( 22
max =+=

The maximum toque occurred on the shaft is P27 . The moment of inertia and the

polar moment of inertia of the shaft are

49
44

m )10(76.39
64

)030.0(
64

−===
ππdI
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49
44

m )10(52.79
32

)030.0(
32

−===
ππdI

Let maxPP = . The flexural stress doe to the bending moment is

max
6

9
max )10(564.84

)10(76.39
)015.0(15.224

P
P

I
Mc

=== −σ

and the shearing stress due to  the torque is

max
6

9
max )10(093.5

)10(52.79
)015.0(27

P
P

J
Tc

=== −τ

For the steel, we use the maximum octahedral shearing stress criteria to predict maxP .

2
max

223 σστ =+

266.352
max =P

N 93.5max =P

N 56.3min −=P
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7.7 Endurance Limit Modifying Factor

The endurance limit of metallic materials is often obtained in the laboratory by a

rotating beam specimen test. However, in most structural applications, the endurance limit of

a structural member is obtained from modifying the data from the tests. There are many

factors that affect the endurance limit. The followings are significant factors:

eedcbae SKKKKKS ′=

where =eS  endurance limit of the structural member.

=′eS  endurance limit of the test specimens.

=aK  surface factor.

=bK size factor.

=cK  load factor.

=dK  temperature factor.

=eK  other factor.

7.7.1 ,aK  surface factor

b
ulta aSK =

Surface finish a b

ksi MPa

Ground 1.34 1.58 -0.085

Machine or cold drawn 2.70 4.51 -0.265

Hot-rolled 14.4 57.7 -0.718

Forged 39.9 272 -0.995

7.7.2 ,bK  size factor

For bending and torsion loading,












≤≤





≤≤





=
−

−

mm 5179.2          
62.7

in. 211.0            
3.0

1333.0

1133.0

dd

dd

Kb

For tension loading, 1=bK .

7.7.3 ,cK  load factor

=cK 0.923  for axial loading when ksi 220≤ultS

=cK 1.0  for axial loading when ksi 220>ultS
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=cK 1.0  for bending

=cK 0.577  for torsion and shear

7.7.4 ,dK  temperature factor

RT

T
d S

SK =

where =TS  tensile strength at the operating temperature

=RTS  tensile strength at the room temperature

7.7.5 ,eK  other factor

Only the stress concentration factor will be considered here.

f
e K

K 1
=

where =fK  fatigue stress concentration factor,

)1(1 −+= tf KqK

=q  material parameter

=tK  static stress concentration factor

7.8 Fatigue Crack Propagation

The presence of a crack can significantly reduce the strength of an engineering

component due to brittle fracture. However, it is unusual for a crack of dangerous size to exist

initially. Normally, the crack is developed from a small flaw until it reaches the critical size.

Crack propagation can be caused by cyclic loading. Typical constant amplitude crack

propagation is shown in Fig. 7.14.

Fig. 7.14

 Crack propagation rate is defined as crack extension per cycle, 
dN
da . The growth rate

of crack is a function of stress intensity factor.

)(Kf
dN
da

=
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Fig. 7.15 is the typical experimental data plot of the crack propagation rate 
dN
da  versus

stress intensity range K∆ .

 
Fig. 7.15

It can be seen that the plot can be separated into three regions.

Region I: Crack behavior is associated with fatigue crack growth threshold value thK∆

below which the crack growth is negligible.

810−<
dN
da  in/cycle

Region II: The relationship between 
dN
dalog  versus K∆log  is linear and steeper than

the curve in Region I. This is due to rapid unstable crack growth just prior to final failure of

the test specimen

74 1010 −− <<
dN
da  in/cycle

The relationship representing this line is
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mKC
dN
da )(∆=

where C  is a constant and m  is the slope on the log-log plot, assuming that the decades on

both log scales are the same length. The value of m  is important since it indicates the degree

of sensitivity of the growth rate of the stress. For example, if 3=m , doubling the stress range

S∆  doubles the stress intensity range, thus increasing the growth rate by a factor 0f 82 =m .

Region III: The crack growth rate is extremely high and little fatigue life is involved.

7.9 Factors Affecting the Fatigue Crack Growth

Stress ratio effect

max

min

σ
σ

=R

For a constant K , the more positive R , the higher crack growth rate as shown in Fig.

7.16.

Fig. 7.16

Two crack growth models accounting for the stress ratio effect are

1. Forman’s crack growth model

KKR
KC

dN
da

c

m

∆−−
∆

=
)1(
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where cK  is the fracture toughness for the plane stress condition.

2. Walker’s crack growth model

[ ]nm KRC
dN
da

max)1( −=

Frequency effect

At normal environmental condition, frequency has little effect on fatigue life for

metallic structure. However, the growth rate will be significantly affected if under an adverse

environment.

Temperature effect

Fatigue life will be reduced if the temperature is increased as shown in Fig. 7.17.

Fig. 7.17
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Chapter 8
Beams on Elastic Foundation

8.1 Introduction

In some applications such as railroad track and the rail of movable crane, the rail does

usually acts as a beam of relatively small flexural stiffness placed on elastic foundation. The

loads are transferred through the beam to the elastic foundation. This rail can be analyzed as a

beam supported by series of discrete elastic springs. However, this analytical method is very

tedious. It is usually more practical to idealize the supports as a continuous elastic foundation.

8.2 General Theory

The response of a beam on elastic foundation can be depicted by a single differential

equation subject to different boundary conditions.

Assumptions

1. The foundation has sufficient strength to prevent failure.

2. The foundation behaves linearly elastic under loads with a small deflection.

3. The beam is fully attached to the foundation.

Consider a beam of infinite length resting on an elastic foundation with infinite length

and subjected to a point load P  acting at the origin of the coordinate  ( x , y , z ) as shown in

Fig. 8.1a. Under the action of the load P , the beam is deflected as shown in Fig. 8.1c, which

induces a distributed force q  between the beam and the foundation.

Consider a free body diagram of an element z∆  as shown in Fig. 8.1b subjected to the

positive shear forces and moments. For small displacement analysis, we have the differential

relation of the displacement and the forces as

θ=
dz
dy

   xx M
dz

ydEI −=2

2

8.1

yx V
dz

ydEI −=3

3

q
dz

ydEI x −=4

4

where the distributed reaction force q  is positive when acting upward.

For linearly elastic foundation, the distributed force q  is linearly proportional to the

deflection y . Thus,

        kyq = 8.2
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       obkk = 8.3

where k  is the elastic coefficient, ok  is the elastic foundation modulus, and b  is the width of

the foundation.

Fig. 8.1

The ok  usually has a value between /mN/m)20(10 26  to /mN/m)200(10 26  for soil.

Large values of k  are best. Then,

ky
dz

ydEI x −=4

4

8.4

y
EI
k

dz
yd

x

−=4

4

To solve this homogeneous, fourth order, linear differential equation with constant

coefficients, we let 44β=
xEI

k , then,

04 4
4

4

=+ y
dz

yd β 8.5

By using the method of differential equations or by direct substituting into Eq. 8.5, the

general solution of y  is
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)cossin()cossin( 4321 zCzCezCzCey zz ββββ ββ +++= − 8.6

where the constant of integration 1C , 2C , 3C , and 4C  can be determined by using the

boundary conditions of the beam.

Consider a semi-infinite beam on elastic foundation as shown in Fig. 8.2, which is a

half of the beam in Fig. 8.1. Since the deflection 0=y  when α→z , then, the term αβ →ze

and 0→− ze β . Hence, we obtain 021 == CC  and

)cossin( 43 zCzCey z βββ += − 0≥z 8.7

Due to the symmetry of the beam, we can determine the deflection of the beam for

negative value of z  by )()( zyzy =− .

Fig. 8.2

8.3 Infinite Beam Subjected to Point Load

The constant of integration 3C  and 4C  of the Eq. 8.7 can be determined by using the

following boundary conditions of the infinite beam:

1. The slope of the beam 0=
dz
dy  at 0=z  due to the symmetry of the beam.

0)sincos()cossin( 4343 =−++−= −− zCzCezCzCe
dz
dy zz ββββββ ββ

CCC == 43

      )cos(sin zzCey z βββ += − 8.8

2. A half of the point load P  is carried by the beam specified by z+  and the other

half is carried by the beam specified by z− .

∫ =
α

0

2 Pkydz

∫ =+−
α

β ββ
0

)cos(sin2 PdzzzkCe z

∫ ∫ =+ −−
α α

ββ ββ
0 0 2

)(cos)(sin
kC
Pdzzedzze zz
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kC
P

22
1

2
1

=+
ββ

k
PC
2
β

= 8.9

Therefore, the deflection, the slope, the moment, and the shear of the beam can be written as

)cos(sin
2

zze
k

Py z βββ β += − 0≥z 8.10

]sin[   

)](sin2[
2

2

ze
k

P

ze
k

P
dz
dy

z

z

ββ

βββθ

β

β

−

−

−=

−==
0≥z 8.11

)]sin(cos[
4

     

)]sin(cos[     

)]sin(cos[     

)](sin[

3

2

2

2

2

zzeP

zze
k

PEI

zze
k

PEI

ze
dz
d

k
PEI

dz
ydEIM

z

z
x

z
x

z
xxx

ββ
β

βββ

ββββ

ββ

β

β

β

β

−=

−=

−=

=−=

−

−

−

−

0≥z

8.12

]cos[
2

   

)]cos2([
4

   

)]sin(cos[
4

zeP

zeP

zzeP
dz
d

dz
dMV

z

z

z
y

β

ββ
β

ββ
β

β

β

β

−

−

−

−=

−=









−−=−=

0≥z 8.13

Defining

)cos(sin zzeA z
z βββ
β += − zeB z

z ββ
β sin−=

                      )sin(cos zzeC z
z βββ
β −= −        zeD z

z ββ
β cos −= 8.14

Then, we have

 zA
k

Py β
β

2
= 0≥z           8.10

zB
k

P
β

βθ
2

−= 0≥z             8.11

zx CPM ββ4
= 0≥z           8.12

zy DPV β2
−= 0≥z           8.13
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Example 8-1

A rail road uses steel rails ( GPa 200=E ) with a depth of mm 184 . The distance from

the top of the rail to its centroid is mm 1.99 , and the moment of inertia of the rail is
46 mm )10.(36 . The rail is supported by ties, ballast, and a road bed that together are assumed

to act as an elastic foundation with spring constant 2N/mm 0.14=k .

a.) Determine the maximum deflection, maximum bending moment, and maximum

flexural stress in the rail for a single wheel load of kN 170  as shown in Fig. Ex 8-

1a.

Fig. Ex 8-1a

b.) If a locomotive has 3 wheels per truck equally spaced at m 70.1 , determine the

maximum deflection, maximum bending moment, and maximum flexural stress in

the rail when the load on each wheel is kN 170 .

Since the equations of deflection and bending moment require the value of β ,

1-
4 634 mm 000830.0

10)9.36(10)200(4
14

4
===

xEI
kβ

a.) The maximum deflection and the maximum bending moment occur under the load

where

0.1== zz CA ββ

Thus,

mm 039.5)1(
)14(2
000830.0)10(170

2

3

max === zA
k

Py β
β

m-kN 21.51)1(
)000830.0(4

)10(170
4

3

max === zCPM ββ

MPa 5.137
)10(9.36

1.99)10(21.51
6

6
max

max ===
xI

cM
σ

b.) The deflection and the bending moment at any section of the beam obtained by

superposition the effects of each wheel of the 3 wheel loads.

By using the superposition method, the maximum deflection and the maximum

bending moment may be under 2 following cases:

1. Under one of the end wheel as shown in Fig. Ex 8-1b.
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Fig. Ex 8-1b

2. Under the center wheel as shown in Fig. Ex 8-1c

Fig. Ex 8-1c

For case 1, let the origin of the coordinate be located under one of the end wheel. The

distance to the first wheel 01 =z , we have

0.111 == zz CA ββ

The distance from the origin to the next wheel is mm 17002 =z , we have

2797.02 =zAβ 2018.02 −=zCβ

The distance from the origin to the next wheel is mm 34003 =z , we have

0377.03 −=zAβ 0752.03 −=zCβ

Therefore, for this case, we get the maximum deflection and the maximum bending moment

equal to

mm 258.6)0377.02797.01(039.5)(
2 321max =−+=++= zzz AAA

k
Py βββ
β

m-kN 02.37)0752.02018.01)(10(20.51)(
4

6
321max =−−=++= zzz CCCPM ββββ

For case 2, let the origin of the coordinate be located under the center wheel. The

distance to the first wheel 01 =z , we have

0.111 == zz CA ββ

The distance from the origin to either of the end wheel is mm 17002 =z , we have

2797.02 =zAβ 2018.02 −=zCβ

Therefore, for this case, we get the maximum deflection and the maximum bending moment

equal to

mm 858.7))2797.0(21(039.5)2(
2 21max =+=+= zz AA

k
Py ββ
β
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m-kN 54.30))2018.0(21)(10(20.51)2(
4

6
21max =−=+= zz CCPM βββ

From the calculation, we obtain

mm 858.7max =y

m-kN 02.37max =M

and MPa  4.99
)10(9.36

1.99)10(02.37
6

6
max

max ===
xI

cM
σ



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 8-8

8.4 Beam Supported on Equally Spaced Separated Elastic Supports

The concept of beam on elastic foundation previously mentioned can be applied to the

problem of long beam supported by elastic supports equally spaced along the beam as the one

shown in Fig. 8.3.

Fig. 8.3

Let each spring in Fig. 8.3a has the same spring constant K . The reaction force R

that each spring exert on the beam is directly proportional to the deflection y  of the beam at

the section where the spring is attached. Thus,

KyR =

If l  is the spring spacing, the load R  can be idealized as uniformly distributed over a

total span l  ( 2/l  on either side of the spring) as shown in Fig. 8.3b. If the stepped distributed

loading is approximated by the dashed curve, the approximate distributed load is similar to

the distributed load q  of Fig. 8.1a. If the two forces are to be the same, then,

kylKy =

l
Kk =

where k  is the elastic coefficient for this case. Then, we can use Eq. 8-10 to Eq. 8-13 to find

the deflection, the slope, the moment, and the shear of the beam. However, it has been found

that the solutions are only practically useful when
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β
π
4

≤l

The approximate solution for a beam of infinite length, with equally spaced elastic

supports, may be used to obtain a reasonable approximate solution for a sufficiently long

finite length beam as shown in Fig. 8.4a. In general, the end springs do not coincide with the

ends of the beam, but lie at some distance less than 2/l  from the end of the beam as shown in

Fig. 8.4b. Thus, we extend the beam of length L  to a beam of length L ′′ , where

mlL =′′

and integer m  is the number of spring supports. To obtain a reasonable approximate solution,

β
π

2
3

≥′′L

Fig. 8.4
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Example 8-2

An aluminum alloy I-beam (depth = mm 100 , 46 mm )10(45.2=xI , GPa 72=E ) as

shown in Fig. Ex 8-2 has a length of m 6.6=L  and is supported by 7 springs

( N/mm 110=K ) spaced at distance m 10.1=l  center to center along the beam. A  load

kN 0.12=P  is applied at the center of the beam. Determine the load carried by each spring,

the maximum deflection of the beam, the maximum bending moment, and the maximum

bending stress in the beam.

Fig. Ex 8-2

The elastic coefficient,

2N/mm 100.0
1100
110

==k

and the value of β ,

1-
4 63 mm 000614.0

10)45.2(10)72(4
100.0

==β

Check the spacing of the spring.

           mm 1279
)000614.0(44
==<

π
β
πl O.K.

Check the length of the beam.

>=+=′′ mm 770011006600L mm 7675
)000614.0(2

3
2
3

==
π

β
π O.K.

The maximum deflection and the maximum bending moment of the beam occur under

the load where

0.1== zz CA ββ

Thus,

mm 84.36)1(
)10.0(2

000614.0)10(12
2

3

max === zA
k

Py β
β

m-N )10(886.4)1(
)000614.0(4

)10(12
4

6
3

max === zCPM ββ
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MPa 7.99max
max ==

xI
cM

σ

Due to the symmetry of the beam, the magnitude of zβ , the corresponding zAβ , and

the deflection for the first (point C ), second (point B ), and third (point A ) springs to the

right and left of the load are

6754.0=lβ 7153.0=lAβ mm 53.26)7153.0(84.36
2

=== lC A
k

Py β
β

3508.12 =lβ 3094.02 =lA β mm 40.11)3094.0(84.36
2 2 === lB A

k
Py β
β

0262.23 =lβ 0605.03 =lA β mm 23.2)0605.0(84.36
2 3 === lA A

k
Py β
β

The reaction for each spring can be obtained by using the equation KyR =  and the

results are shown in the Table Ex 8-2.

Table Ex 8-2

Approximate solution Exact solution

Reaction A N 245 N 454−

Reaction B N 1254 N 1216

Reaction C N 2899 N 3094

Reaction D N 4052 N 4288

maxy mm 84.36 mm 98.38

maxM m-N 886.4 m-N 580.4

Comparing the results with the exact results by using the energy method, we can see

that only the reaction at A  are considerably in error.
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8.5 Infinite Beam Subjected to a Distributed Load Segment

Consider the beam on elastic foundation subjected to uniformly distributed load

segment as shown in Fig. 8.5.

Fig. 8.5

From the displacement solution of the beam subjected to concentrated load, Eq. 8.10,

)cos(sin
2

zze
k

Py z βββ β += − 0≥z 8.10

Then,

dzzze
k
wdy z

H )cos(sin
2

βββ β += −

By using the principle of superposition, the total deflection due to the distributed load is

∫

∫

++

+=

−

−

b
z

a
z

H

dzzze
k
w

dzzze
k
wy

0

0

)cos(sin
2

          

)cos(sin
2

βββ

βββ

β

β

( ) ( )

[ ]beae
k

w

beae
k

wy

ba

ba
H

ββ

β
β

β
β

β

ββ

ββ

coscos2
2

      

cos11cos11
2

−−

−−

−−=









−+−=

8.11

Then, by using the differential relations, the deflection, the slope, the shear force, and

the bending moment of the beam can be determined and simplified as

[ ]baH DD
k

wy ββ −−= 2
2

 

[ ]βbβa

a b
HH

H AA
k

w dz
dz

dydz
dz

dyθ −=+= ∫ ∫ 20 0

β 8.12

[ ]baH BBwM βββ
+= 24

 

[ ]baH CCwV βββ
−=

4
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where

)cos(sin aaeA a
a βββ
β += − aeB a

a ββ
β sin−=

                      )sin(cos aaeC a
a βββ
β −= −        aeD a

a ββ
β cos −=

)cos(sin bbeA b
b βββ
β += − beB b

b ββ
β sin−=

                      )sin(cos bbeC b
b βββ
β −= −        beD b

b ββ
β cos −=

Fig. 8.6

Fig. 8.6 shows the plot of the expressions of the deflection, the slope, the shear force,

and the bending moment of the beam with respect to the z  axis. We can see that the

maximum deflection occurs at the center of the segment L′ . However, the location of the

maximum bending moment may or may not occur at the center of the segment L′ , depending

on the magnitude of L′β .

If πβ ≤′L , then, the location of the maximum bending moment is at the center of the

segment L′ .

If αβ →′L , then, 0→θ , 0→xM , 0→yV , and 
k
wy → . Therefore, the location of

the maximum bending moment of the beam is at either 4/πβ =a  or 4π/βb = .

If πβ >′L , then, the location of the maximum bending moment may lie outside the

segment L′ . However, the maximum value outside the segment L′  is larger than the
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maximum value within the segment L′  only 3%. Thus, we may assume that the location of

the maximum bending moment in this case is at βπ 4/  from either ends of the uniformly

distributed load within the segment L′ .
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Example 8-3

A long wood beam ( GPa 0.10=E ) has a rectangular cross section with a depth of

mm 200  and a width of mm 100 . It rests on an earth foundation having spring constant of
3N/mm 040.0=ok  and is subjected to a uniformly distributed load N/mm 0.35=w

extending over a length m 61.3=′L . Taking the origin of the coordinate at the center of the

segment L′ , determine the maximum deflection, the maximum bending stress in the beam,

and the maximum pressure between the beam and the foundation.

The moment of inertia of the beam about x -axis is
46 mm )10(67.66=xI

The elastic coefficient,
2N/mm 00.4)040.0(100 === obkk

and the value of β ,

1-
4 63 mm 001107.0

10)67.66(10)10(4
4

==β

From the graph of the deflection of the beam as shown in Fig. 8.6b, the maximum

deflection occurs at the center of segment L′ .  Since 2/Lba ′== ,

0.2
2
=

′
==

Lba βββ

0563.0−== ba DD ββ

[ ] mm 243.9))0563.0(22(
4

352
2

 max =−−=−−= ba DD
k

wy ββ

The maximum pressure between the beam and the foundation occurs at the point of

the maximum deflection.

MPa 370.0)243.9(040.0maxmax === ykq o

They are 4 possible locations at which the maximum bending moment may occur.

However, since the beam is symmetry with respect to the center of the segment L′ , the

maximum bending moment may be occurred at the center of the segment L′  or where

0=HV .

Since πβ >==′ 00.410)61.3(001107.0 3L , the maximum bending moment does not

occur at the center of the segment L′ . Hence, L′ , the maximum bending moment will occur

at the location where 0=HV .

[ ] 0
4

 =−= baH CCwV βββ
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ba CC ββ =

)sin(cos aae a βββ −− )sin(cos bbe b βββ −= −

Using the above equation and ab ββ −= 0.4 , we can solve the equation and obtain

858.0=aβ  and 777.0− . The corresponding 142.3=bβ  and 777.4 , respectively. These

conditions locate the position of the maximum relative bending moments inside segment L′

and outside segment L′ .

By comparing the conditions, we can see that the maximum bending moment occurs

outside segment L′  and

[ ]

[ ]

m-kN 363.2         

)0086.0(3223.0
)001107.0(4

35         

4
 

2

2max

=

−−=

−
−

= ba BBwM βββ

which is larder than the bending moments occurred inside segment L′  by about 3%.

The corresponding bending stress is

MPa 544.3max
max ==

xI
cM

σ

It should be noted that if the maximum bending moment is assumed to occur at

βπ 4/ , 4/πβ =a  and 4/4 πβ −=b  (inside segment L′ ), we obtain the bending moments

equal to

[ ]

[ ]

m-kN 362.2         

)0029.0(3224.0
)001107.0(4

35         

4
 

2

2

=

−+=

+= baH BBwM βββ
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8.6 Semi-infinite beam Subjected to Loads at Its End

Consider the semi-infinite beam subjected to a point load P  and a positive bending

moment oM  at its end as shown in Fig. 8.7. The displacement solution of the beam is in the

form of, Eq. 8.7,

)cossin( 43 zCzCey z βββ += − 0≥z

In this case the constants of integration 3C  and 4C  can be determined by using the

boundary conditions:

o
z

x M
dz

ydEI −=
=0

2

2

PV
dz

ydEI y
z

x =−=
=0

3

3

8.13

Fig. 8.7

Since [ ]zCzC
edz

yd
z βββ
β sincos2

43

2

2

2

−−= ,

k
M

EI
MC o

x

o
2

23
2

2
β

β
== 8.14

Since [ ]zCzCzCzC
edz

yd
z βββββ
β sincoscossin2

4343

3

3

3

−++= ,

k
P

EI
PCC

x

β
β

2
2 343 ==+

k
M

k
PC o

2

4
22 ββ

−=

Thus, the deflection of the beam in this case is

[ ])sin(coscos2 zzMzP
k
ey o

z

βββββ β

−−=
−

8.15

Rearranging and simplifying the equation, we have

z
o

z C
k
M

D
k
Py ββ

ββ 222
−=
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The expressions of the slope, shear force, and bending moment can be found by using

the differential relation.

z
o

z D
k
MA

k
P

ββ
ββθ

32 42
+−=

zozx AMBPM βββ
+−=

zozy BMPCV ββ β2−−=
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Example 8-4

A steel I-beam ( GPa 200=E ) has a depth of mm 102 , a width of mm 68 , a moment

of inertia of 46 mm )10(53.2=xI , and a length of m 4 . It is attached to a rubber foundation

for which 3N/mm 350.0=ok . A concentrated load kN 0.30=P  is applied at one end of the

beam. Determine the maximum deflection, the maximum bending stress in the beam, and

their locations.

The spring coefficient,
2N/mm 8.23)350.0(68 ==k

and the value of β ,

1-
4 63 mm 001852.0

10)53.2(10)200(4
8.23

==β

Since

mm 2540
2
3mm 4000 =>=
β
πL

the beam can be considered as a long beam.

The maximum deflection occurs at the end where load P  is applied ( 0=z ), since

zDβ  is maximum. We have 0=zβ  and 0.1=zDβ .

mm 67.4)1(
8.23

)001852.0(10)30(22 3

max === zD
k
Py β
β

The maximum bending occurs at βπ 4/=z , where zBβ  is maximum. This is the same

location of the maximum bending stress.

m-kN 22.5)3224.0(
001852.0

)10(30 3

max −=−=−= zBPM ββ

and

MPa 3.105max =σ



 



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 9-1

Chapter 9
Flat Plates

9.1 Introduction

Flat plate is a structural element whose middle surface lies in a flat plane and

subjected to lateral load q . Floor slabs and pavements are the common examples. The plate

can be categorized according to its thickness relative to its other dimensions and according to

its lateral deflection compared to its thickness.

1. Relatively thick plates with small deflections

2. Relatively thin plates with small deflections

3. Very thin plate with large deflection

4. Extremely thin plates or membrane

Fig. 9.1

Under the action of the lateral load q , the midsurface of the flat plate is deflected as

shown in Fig. 9.1a. Fig. 9.1b shows the state of stresses and their distribution in a small

element of the plate. The governing equations of the flat plate can be determined by using the

equilibrium equations, the strain-displacement relations, and the stress-strain relations.

9.2 Assumptions and Limitations of Thin Plate with Small Deflection

In the classical thin-plate theory or Kirchhoff theory, the following assumptions are

applied:

1. The plate is flat and has a constant thickness.

2. The plate has a relatively small thickness compared to the smallest lateral

dimensions.
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3. The plate is made of linearly elastic, isotropic, homogeneous materials.

4. The plate is subjected to lateral loads applied perpendicular to the midsurface.

5. The midsurface deflection w  is small in comparison with its thickness t .

6. The midsurface remains neutral during loading. There is no deformation in the

midsurface of the plate. The strain xε , yε , and xyγ  are zero at 0=z .

7. A line normal to the midsurface before loading remains normal to the midsurface

after loading. The transverse shear strain yzγ  and xzγ  are zero.

8. The normal stress in the direction transverse to the plate zσ  is negligible in

comparison with xσ  and yσ .

Following the assumptions, the lateral deflection of the plate is a function of only

coordinate x  and y , and the stresses xσ , yσ , and xyτ  are linearly distributed as shown in

Fig. 9.1b.

9.3 Force-Stress Relations

Fig. 9.2
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Consider a plate differential element as shown in Fig. 9.1 and Fig. 9.2. The increment

of the bending moments xdM  and ydM , the twisting moment xydM , and the transverse shear

forces xdQ  and ydQ  can be found in the form of

)( dAzdM xx σ=

)( dAzdM yy σ=

)( dAzdM xyxy τ=

dAdQ xzx τ=

     dAdQ yzy τ= 9.1

If we define the bending moments xM  and yM , the twisting moment xyM , and the

transverse shear forces xQ  and yQ  per unit length. Then, the differential area dA  is

dzdA )1(= , and the moments and the shear forces can be found by integrating the

corresponding moments and shear forces.

∫
−

=
2/

2/

t

t
xx zdzM σ

∫
−

=
2/

2/

t

t
yy zdzM σ

∫
−

=
2/

2/

t

t
xyxy zdzM τ

∫
−

=
2/

2/

t

t
xzx dzQ τ

     ∫
−

=
2/

2/

t

t
yzy dzQ τ 9.2

9.4 Equilibrium Equations

By using the equilibrium equations on the plate differential element as shown in Fig.

9.2b, we have

∑ =↓+ ;0zF

dyQx− dxQy− qdxdy+ dydx
x
Q

Q x
x 





∂
∂

++ 0=







∂

∂
++ dxdy

y
Q

Q y
y

dydx
x
Qx






∂
∂

dxdy
y
Qy









∂

∂
+ 0=+ qdxdy
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x
Qx
∂
∂

+
y
Qy

∂

∂
+ 0=q 9.3

∑ = ;0xM

dyM xy− dxM y− + dydx
x
M

M xy
xy 








∂

∂
+ + dxdy

y
M

M y
y 








∂

∂
+ dxdydy

y
Q

Q y
y 








∂

∂
+−

2
dydydx

x
QQ x

x 





∂
∂

+−
2
dydyQx+ 0

2
=−

dyqdxdy

Neglecting the higher-order term, we have

dydx
x
M xy









∂

∂
+ dxdy

y
M y









∂

∂
0=− dxdyQy

x
M xy

∂

∂

y
M y

∂

∂
+ 0=− yQ 9.4

Similarly, the ∑ = 0yM  will provide us with the equation

x
M x

∂
∂

y
M xy

∂

∂
+ 0=− xQ 9.5

Substituting Eq. 9.4 and 9.5 into Eq. 9.3, we have the equation relating the external

lateral load q  with the internal resultant bending moments in the form of

2

2

x
M x

∂
∂

yx
M xy

∂∂

∂
+

2

2 02

2

=+
∂

∂
+ q

y
M y 9.6

9.5 Kinetics: Strain-Displacement Relations

Fig. 9.3

Consider Fig. 9.3 showing the differential slice of the plate viewed parallel to the y

axis. The displacement in the x  axis of the point P  is

x
wzu
∂
∂

−=
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If we view the slice of the plate parallel to the x  axis, we have the displacement in the

y  axis of the point P  is

y
wzv
∂
∂

−=

Hence, the strains components on the element due to the displacement are

2

2

x
wz

x
u

x ∂
∂

−=
∂
∂

=ε

2

2

y
wz

y
v

y ∂
∂

−=
∂
∂

=ε

      
yx
wz

x
v

y
u

xy ∂∂
∂

−=
∂
∂

+
∂
∂

=
2

2γ 9.7

9.6 Stress-Strain Relations

For linear elastic isotropic homogeneous material,

)(
1 2 yxx
E νεε
ν

σ +
−

=

)(
1 2 xyy
E νεε
ν

σ +
−

=

     xyxy Gγτ = 9.8

where 
)1(2 ν+

=
EG .

9.7 Stress-Deflection Relations

Substituting Eq. 9.7 into Eq. 9.8, we have









∂
∂

−
∂
∂

−
−

= 2

2

2

2

21 y
wz

x
wzE

x ν
ν

σ









∂
∂

+
∂
∂

−
−= 2

2

2

2

21 y
w

x
wEz

x ν
ν

σ 9.9a









∂
∂

+
∂
∂

−
−= 2

2

2

2

21 x
w

y
wEz

y ν
ν

σ 9.9b

yx
wGzxy ∂∂

∂
−=

2

2τ 9.9c

9.8 Governing Differential Equations

Substituting Eq. 9.9 into the internal force-stress relations, Eq. 9.2, we have the

expressions for the internal forces and the displacement w .



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 9-6

∫∫
−−









∂
∂

+
∂
∂

−
−==

2/

2/
2

2

2

2

2

22/

2/ 1

t

t

t

t
xx dz

y
w

x
wEzzdzM ν

ν
σ

∫
−








∂
∂

+
∂
∂

−
−=

2/

2/

2
2

2

2

2

21

t

t
x dzz

y
w

x
wEM ν

ν

Since 
12

32/

2/

2 tdzz
t

t

=∫
−

,









∂
∂

+
∂
∂

−
−= 2

2

2

2

2

3

)1(12 y
w

x
wEtM x ν

ν

Defining 
)1(12 2

3

ν−
=

EtD  which is the plate flexural rigidity.

   







∂
∂

+
∂
∂

−= 2

2

2

2

y
w

x
wDM x ν           9.10a

Similarly,

   







∂
∂

+
∂
∂

−= 2

2

2

2

x
w

y
wDM y ν           9.10b

yx
wEtdzz

yx
wEM

t

t
xy ∂∂

∂
+

−=
∂∂

∂
+

−= ∫
−

232/

2/

2
2

)1(12)1(2
2

νν

      
yx
wDM xy ∂∂

∂
−−=

2

)1( ν           9.10c

Substituting Eq. 9.10 into the equilibrium equation, Eq 9.6, we have the governing

equation for the thin flat plate.

2

2

x
M x

∂
∂

yx
M xy

∂∂

∂
+

2

2 02

2

=+
∂

∂
+ q

y
M y









∂∂

∂
+

∂
∂

− 22

4

4

4

yx
w

x
wD ν 22

4

)1(2
yx
wD
∂∂

∂
−− ν 022

4

4

4

=+







∂∂

∂
+

∂
∂

− q
yx

w
y
wD ν

4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+

D
yxq

y
w ),(
4

4

=
∂
∂

+ 9.11

The deflection of the midsurface of the flat plate ),( yxww =  can be determined by

integrating this governing equation. Then, the moment expressions are obtained by

substituting the deflection expressions into the expressions of the moment, Eq. 9.10.









∂
∂

+
∂
∂

−= 2

2

2

2

y
w

x
wDM x ν
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







∂
∂

+
∂
∂

−= 2

2

2

2

x
w

y
wDM y ν

yx
wDM xy ∂∂

∂
−−=

2

)1( ν

The transverse shearing force can be obtained from the Eq. 9.4 and 9.5,

=xQ x
M x

∂
∂

y
M xy

∂

∂
+

=yQ x
M xy

∂

∂

y
M y

∂

∂
+

Thus,









∂∂
∂

+
∂
∂

−=







∂∂
∂

−
∂∂
∂

+
∂∂
∂

+
∂
∂

−= 2

3

3

3

2

3

2

3

2

3

3

3

yx
w

x
wD

yx
w

yx
w

yx
w

x
wDQx νν

       







∂
∂

+
∂
∂

∂
∂

−= 2

2

2

2

y
w

x
w

x
DQx           9.12a

Similarly,

       







∂
∂

+
∂
∂

∂
∂

−= 2

2

2

2

y
w

x
w

y
DQy           9.12b

By assuming that the transverse

9.9 Boundary Conditions

The most frequently encountered boundary conditions for rectangular plates are

essentially the same as those for beams. They are either fixed, simply supported, free, or

partially fixed as shown in Fig. 9.4.

Fig. 9.4

x

y

z

a

b

Fixed

Free

Simply-supported

Partially
restrained



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 9-8

Fixed Edges

For the fixed edge, the deflection and slope are zero. Thus,

0=
=by

w

      0=
∂
∂

=byy
w 9.13

Simply Supported edge

For simply supported edge, the deflection and moment are zero. Thus,

      0
0
=

=y
w           9.14a

0
0

2

2

2

2

0
=








∂
∂

+
∂
∂

−=
=

=
y

yy x
w

y
wDM ν

The expression 2

2

x
w

∂
∂ν  can be rewritten as 







∂
∂

∂
∂

x
w

x
ν . The term 

x
w
∂
∂  is the rate of

change of the slope at the boundary. But, the change in slope along the simply support edge

0=y  is always zero. Hence, the quantity 2

2

x
w

∂
∂ν  vanishes and the moment boundary

condition is

0
0

2

2

0
=

∂
∂

=
=

=
y

yy y
wM           9.14b

Free Edge

At the free edge, the moment and shear are zero. Thus,

0===
=== axxaxxyaxx

QMM

02

2

2

2

=







∂
∂

+
∂
∂

=axy
w

x
w ν           9.15a

The last two boundary conditions can be combined into a single equation. Consider

the Fig. 9.5, Kirchhoff has shown that the moment xyM  can be though of as a series of

couples acting on an infinitesimal section. Hence, at any point along the edge

ax

xy

y
M

Q
=

∂

∂
=′

This equivalent shearing force, Q′ , must be added to the shearing force xQ  acting at

the edge. Therefore, the total shearing force is

       0=







∂

∂
+=

=ax

xy
xx y

M
QV           9.15b
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Substituting 







∂
∂

+
∂
∂

∂
∂

−= 2

2

2

2

y
w

x
w

x
DQx  and 

yx
wDM xy ∂∂

∂
−−=

2

)1( ν  into Eq. 9.15b, we

obtain

    0)2( 2

3

3

3

=







∂∂
∂

−+
∂
∂

=ax
yx
w

x
w ν           9.15c

Fig. 9.5

Partially Restrained Edge

A partially restrained edge occurs in when the plate is connected to the beam as shown

in Fig. 9.6. In this case, the following boundary conditions must be satisfied.

Fig. 9.6

beamplate
VV =

   
0

4

4

0
2

3

3

3

)2(
==









∂
∂

=







∂∂
∂

−+
∂
∂

−
xx

y
wEI

yx
w

x
wD ν           9.16a

and

beamplate
MM =

         
0

2

3

0
2

2

2

2

==








∂∂
∂

=







∂
∂

+
∂
∂

−
xx

yx
wGJ

y
w

x
wD ν           9.16b
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Corner Reactions

It was shown in the derivation of the boundary condition of the shearing force at the

free edge that the torsion moment xyM  as shown in Fig. 9.5 can be resolved into a series of

couples. At any corners such as at ax =  and by = , the moment xyM  results in an upward

force R  as shown in Fig. 9.7.

by
axby

axxy yx
wDMR

=
==

= 







∂∂

∂
−=−=

2

)1(22 ν 9.17

This equation is usually used to determine the force in corner bolts of rectangular

plates.

Fig. 9.7
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Example 9-1

Determine the moment and reaction for a simply supported rectangular plate of length

a  in the x  direction and width b  in the y  direction as shown in Fig. Ex 9-1. The plate is

subjected to a sinusoidal lateral load, 
b
y

a
xqq o

ππ sinsin= .

Fig. Ex 9-1

The governing differential equation of the plate, Eq. 9.11, is

4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+

b
y

a
x

D
q

y
w o ππ sinsin4

4

=
∂
∂

+

For the simply supported plate, the boundary conditions, Eq. 9.14, are

0=w  and 02

2

=
∂
∂
x
w  at 0=x  and ax =

0=w  and 02

2

=
∂
∂
y
w  at 0=y  and by =

In order to solve the governing differential equation for the deflection, the assumed

deflection equation must be in the same form as that of the governing equation and must

satisfy the boundary conditions. Thus,

b
y

a
xCw ππ sinsin=

Substituting the deflection equation into the governing equation, we obtain
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2

22
4 11







 +

=

ba
D

qC o

π

Thus, the assumed deflection equation is

b
y

a
x

ba
D

qw o ππ

π
sinsin

11 2

22
4 






 +

=

Substituting this equation into the force-stress relations, Eq. 9.10, we get

b
y

a
x

ba
ba

q
y
w

x
wDM o

x
ππν

π
ν sinsin1

11 222

22
4

2

2

2

2







 +







 +

=







∂
∂

+
∂
∂

−=

b
y

a
x

ba
ba

q
x
w

y
wDM o

y
ππν

π
ν sinsin1

11 222

22
4

2

2

2

2







 +







 +

=







∂
∂

+
∂
∂

−=

b
y

a
x

ab
ba

q
yx
wDM o

xy
ππ

π

ν
ν coscos

11
)1(

)1( 2

22
4

2







 +

−
−=

∂∂
∂

−−=

It should be noted that the maximum xM  and yM  occur at 2/ax =  and 2/by = .

Substituting the deflection equation into the transverse shearing forces, Eq. 9.12, we have

b
y

a
x

ba
a

q
y
w

x
w

x
DQ o

x
ππ

π
sincos

11 2

22

2

2

2

2







 +

=







∂
∂

+
∂
∂

∂
∂

−=

b
y

a
x

ba
b

q
y
w

x
w

y
DQ o

y
ππ

π
cossin

11 2

22

2

2

2

2







 +

=







∂
∂

+
∂
∂

∂
∂

−=

The reaction on edge ax =  can be determined by using the Eq. 9.15b,

b
y

ba
ba

a

q
y
M

QV o

ax

xy
xx

πν

π
sin21

11 222

22







 −

+







 +

−=







∂

∂
+=

=

The reaction on edge by =  can be determined by using the equation,

a
x

ab
ba

b

q
x
M

QV o

by

xy
yy

πν

π
sin21

11 222

22







 −

+







 +

−=







∂

∂
+=

=
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The total reaction around the plate can be determined by integrating the reaction

equations from 0=x  to ax =  and from 0=y  to by =  and then multiplying by 2 due to

symmetry.

ab
ba

qabq oo
2

22
2

2 11
)1(84

reaction total







 +

−
+=

π

ν
π

The first part of this equation can also be obtained by integrating the applied load over

the total area.

dxdy
b
y

a
xq

b a

o∫ ∫
0 0

sinsin ππ

The second part is the summation of the four corner reactions that can be determined

by using the Eq. 9.17. Thus, for example,

ab
ba

q
yx
wDMR o

y
xy

xxy 2

22
20

0

2

0
0

11
)1(2

)1(22







 +

−
=








∂∂

∂
−=−=

=
==

=

π

ν
ν

The positive value of R  at the corner 0== yx  means that the reaction force has the

downward direction. Thus, it indicates that the corners tend to lift up. This action must be

considered when designing the concrete slab. The top corner reinforcements as shown in Fig.

Ex 9-1c are needed to resist these forces.

Fig. Ex 9-1c
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9.10 Double Series Solution of Simply Supported Plates

Navier has present the solution of a simply supported rectangular plate subjected to

uniform load q  by representing the load in the double trigonometric series as

         ∑∑
= =

=
α α ππ

1 1
sinsin),(

m n
mn b

yn
a
xmqyxq 9.18

To calculate any particular coefficient nmq ′′  of this series, we multiply both sides of the

series by dy
b
yn π′sin  and integrate from 0=y  to by = . Then we can see that

0sinsin
0

=
′

∫
b

dy
b
yn

b
yn ππ when nn ′≠

2
sinsin

0

bdy
b
yn

b
ynb

=
′

∫
ππ when nn ′=

In this way, we find

∑∫
=

′=
′ α ππ

10

sin
2

sin),(
m

nm

b

a
xmqbdy

b
ynyxf

Multiplying both sides of this equation by dx
a
xm π′sin  and integrating from 0=x  to

ax = , we obtain

nm

a b

qabdxdy
b
yn

a
xmyxf ′′=

′′
∫ ∫ 4

sinsin),(
0 0

ππ

Thus, the coefficient mnq  can be written as

∫ ∫=
a b

mn dxdy
b
yn

a
xmyxf

ab
q

0 0

sinsin),(4 ππ 9.19

Similarly, the plate deflection w  is determined by

    ∑∑
= =

=
α α ππ

1 1
sinsin),(

m n
mn b

yn
a
xmwyxw 9.20

This equation satisfies four boundary conditions of a simply supported plate. The

constant mnw  can be determined by substituting the plate deflection equation into the

governing differential equation of the plate.
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Example 9-2

Determine the maximum deflection and bending moments a simply supported plate as

shown in Fig. Ex 9-2a due to a uniformly distributed load, oq .

Fig. Ex 9-2a

Since the load is uniformly distributed over the entire plate,

oqyxf =),(

Then, the coefficient mnq  is

mn
qnm

mn
q

dxdy
b
yn

a
xm

ab
qq

oo

a b
o

mn

22

0 0

16
)1)(cos1(cos

4
      

sinsin
4

π
ππ

π

ππ

=−−=

′′
= ∫ ∫

where K,5,3,1=m  and K,5,3,1=n .

Thus, the uniformly distributed load can be represented by the double trigonometric

series as

∑ ∑
= =

=
α α ππ

π K K,5,3,1 ,5,3,1
2 sinsin116

),(
m n

o

b
yn

a
xm

mn
q

yxq

Substituting this equation and the plate deflection w  into the governing differential

equation of the plate, 4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+

D
q

y
w
=

∂
∂

+ 4

4

, we obtain the coefficient mnw  as

222
6

16


















+








=

b
n

a
mmnD

q
w o
mn

π

where K,5,3,1=m  and K,5,3,1=n . Thus, the deflection of the plate is
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∑ ∑
= =


















+








=
α α

ππ

π K K,5,3,1 ,5,3,1
2226

sinsin16
m n

o

b
n

a
mmn

b
yn

a
xm

D
qw

In this case, the deflection is symmetric with respect to the axes 2/ax =  and

2/by = . The maximum deflection is occurred at the center of the plate in which 2/ax =

and 2/by = . Then,

∑ ∑
= =

−
+


















+








−
=

α α

π K K,5,3,1 ,5,3,1
222

1
2

6max
)1(16

m n

nm

o

b
n

a
mmn

D
qw

It should be noted that this series converge rapidly to the exact solution. Substituting

the deflection equation into the force-stress relations, Eq. 9.10, we get the bending moments

as

b
yn

a
xmFq

y
w

x
wDM

m n
mn

o
x

ππ
π

ν
α α

sinsin
16

,5,3,1 ,5,3,1
42

2

2

2

∑ ∑
= =

=







∂
∂

+
∂
∂

−=
K K

b
yn

a
xmGq

x
w

y
wDM

m n
mn

o
y

ππ
π

ν
α α

sinsin
16

,5,3,1 ,5,3,1
42

2

2

2

∑ ∑
= =

=







∂
∂

+
∂
∂

−=
K K

b
yn

a
xmHq

yx
wDM

m n
mn

o
xy

ππ
π

ν
ν

α α

coscos
)1(16

)1(
,5,3,1 ,5,3,1

4

2

∑ ∑
= =

−
−=

∂∂
∂

−−=
K K

where 222

22


















+














+








=

b
n

a
mmn

b
n

a
m

Fmn
ν

222

22


















+














+








=

b
n

a
mmn

b
n

a
m

Gmn
ν

222

1


















+








=

b
n

a
mab

Hmn

The maximum bending moments are occurred at the center of the plate in which

2/ax =  and 2/by = . Fig. Ex 9-2b shows a plot of the equations of the bending moments by

assuming that 3.0=ν . The figure also shows a plot of the bending moments 1M  and 2M  that
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are obtained from Mohr’s circle along the diagonal of the plate. It should be noted that 1M

becomes negative near the corner of the plate. This is due to the uplift tendency at the corners.

This uplift is resisted by the reaction R  that causes tension at the top portion of the plate near

the corners as mentioned before.

Fig. Ex 9-2b

Finally, substituting 2/ax =  and 2/by =  into the equation of the bending moment,

we obtain toe maximum bending moment.
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Example 9-3

A simply supported square plate of uniform thickness has the width on each side of

mm 500  as shown in Fig. Ex 9-3. The plate must carry the uniform lateral pressure

MPa 0.1=oq  without deflecting more than one-fourth its thickness and without exceeding

the allowable normal stress of MPa 250 . Let the material of the plate has GPa 200=E  and

30.0=ν  and using the maximum octahedral shearing stress criterion, determine the

minimum allowable thickness.

Fig. Ex 9-3

Check the deflection

Due to the symmetry of the plate and loading, the maximum bending moment is

occurred at the center of the plate m )25.0,25.0(),( =yx .

∑ ∑
= =

−
+


















+








−
=

α α

π K K,5,3,1 ,5,3,1
222

1
2

6max
)1(16

m n

nm

o

b
n

a
mmn

D
qw

Since this series converge rapidly to the exact solution, we will use the first three

nonzero series terms for which nm +  is smallest which are

1=m  and 1=n

3=m  and 1=n

1=m  and 3=n








































+








−
+


















+








−
+


















+








−
=

−
+

−
+

−
+

222

1
2
31

222

1
2

13

222

1
2
11

6max

5.0
3

5.0
1)3(1

)1(

5.0
1

5.0
3)1(3

)1(

5.0
1

5.0
1)1(1

)1(16
D
qw o

π

D
q

w o)10(573.256 6
max

−=
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The plate stiffness is

39
2

3

)10(315.18
)1(12

tEtD =
−

=
ν

Hence, we have the plate thickness of

39

6
6

)10(315.18
)10(1)10(573.256

4 t
t −=

mm 4.15=t

Check the allowable normal stress

Due to the symmetry of the plate and loading, the maximum bending moment is

occurred at the center of the plate m )25.0,25.0(),( =yx  and

MMM yx ==  and 0=xyM

From example 9-2, the maximum bending moment at the center of the plate

)2/,2/(),( bayx =  and the width ba =  is

b
yn

a
xm

b
n

a
mmn

b
n

a
m

qM
m n

o
x

ππ
ν

π

α α

sinsin
16

,5,3,1 ,5,3,1
222

22

4 ∑ ∑
= =


















+














+








=
K K

∑ ∑
= =


















+














+








=
α α ν

π K K,5,3,1 ,5,3,1
222

22

4max
16

m n

o

a
n

a
mmn

a
n

a
m

qM

Since this series converge rapidly to the exact solution, we will use the first three

nonzero series terms for which nm +  is smallest which are

1=m  and 1=n

3=m  and 1=n

1=m  and 3=n

Thus, we get







































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






+






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
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
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



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


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





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




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+












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




+














+








= 222

22

222

22

222

22

4max

5.0
3

5.0
1)3(1

5.0
33.0

5.0
1

5.0
1

5.0
3)1(3

5.0
13.0

5.0
3

5.0
1

5.0
1)1(1

5.0
13.0

5.0
1

16
π

oqM

m-N 3.11566max =M

The flexural stresses due to the bending moment for unit width of the plate are
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23

69398
12/)(1

)2/(3.11566
tt

t
I
Mc

yx ===== σσσ

Since 0=xyM , xyτ  at the center of the plate is zero and the obtained flexural stresses

are the principal normal stresses. Using the maximum octahedral shearing stress criterion,
22

221
2
1 250=+− σσσσ

222 2502 =−σσ

)10(25069398 6
2 =
t

mm 7.16=t

Since the thickness based on the maximum octahedral shearing stress criterion is

larger than the maximum moment condition, determine the allowable thickness is at least

mm 7.16=t
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Example 9-4

Determine the deflection for the simply supported plate subjected to the uniformly

distributed load over the area of rectangular as shown in Fig. Ex 9-4.

By virtual of Eq. 9.18 and Eq. 9.19, the coefficient mnq  of the uniformly distributed

load can be determined from the equation

∫ ∫
+

−

+

−

=
2/

2/

2/

2/

sinsin4 df

df

ce

ce
omn dxdy

b
yn

a
xmq

abcd
q ππ

b
dn

b
fn

a
cm

a
em

mncd
q

q o
mn 2

sinsin
2

sinsin
16

2

ππππ
π

=

Fig. Ex 9-4

Substituting mnq  and the plate deflection w  into the governing differential equation of

the plate, 4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+

D
q

y
w
=

∂
∂

+ 4

4

, we obtain the coefficient mnw  as

cdD
qw o

mn 6

16
π

= 222

2
sinsin

2
sinsin


















+








b
n

a
mmn

b
dn

b
fn

a
cm

a
em ππππ

This equation will be reduced to the same equation in the previous example by setting

ac = , bd = , 2/ae = , and 2/bf = . Finally, the deflection of the plate can be determined

from the equation

∑ ∑
= =

=
α α ππ

K K,3,1 ,3,1
sinsin

m n
mn b

yn
a
xmww
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9.11 Single Series Solution of Simply Supported Plates

Levy in 1900 developed the solution of a simply supported rectangular plate subjected

to various loading conditions by using single trigonometric series. He suggested that the

solution of the governing equation of the plate can be separated into two parts: homogeneous

part and particular part.

    ph www += 9.21

Each of these parts consists of a single trigonometric series where the unknown function is

determined from the boundary conditions. The homogeneous part is written as

       
a
xmyfw

m
mh

πα

sin)(
1
∑
=

= 9.22

where )(yfm  is a function of y  only. This equation satisfies the simply supported boundary

condition at 0=x  and ax = .

Substituting hw  into the governing differential equation of the plate, 4x
w

∂
∂

222
yx
w
∂∂

∂
+

D
q

y
w
=

∂
∂

+ 4

4

, we obtain

0sin
)()(

2)( 4

4

2

224

=











+






−








a
xm

dy
yfd

dy
yfd

a
myf

a
m mm

m
πππ

This equation only satisfies when the bracketed term is equal to zero. Thus,

0)(
)(

2
)( 4

2

22

4

4

=





+






− yf

a
m

dy
yfd

a
m

dy
yfd

m
mm ππ 9.23

The solution of this differential equation can be expressed as

    yR
mm

meFyf =)( 9.24

Substituting Eq. 9.24 into Eq. 9.23, we have

02
4

2
2

4 =





+






−

a
mR

a
mR mm

ππ

The roots of this equation are

a
m

a
mRm

ππ
±±= ,

Hence, the general solution of the differential equation Eq. 9.23 is

a
ym

m
a
ym

m
a
ym

m
a
ym

mm yeCyeCeCeCyf
ππππ

−−
+++= 4321)(

where mC1 , mC2 , mC3 , and mC4  are constants. This equation can also be written as

a
ymyD

a
ymyC

a
ymB

a
ymAyf mmmmm

ππππ coshsinhcoshsinh)( +++=
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Therefore, the homogeneous solution, Eq. 9.22, is

     
a
xm

a
ymyD

a
ymyC

a
ymB

a
ymAw

m
mmmmh

πππππα

sincoshsinhcoshsinh
1
∑
=





 +++=    9.25

where the constants mA , mB , mC , and mD  are determined by using the boundary conditions

of the plate.

The particular solution, pw , can be expressed in a single trigonometric series as

         
a
xmykw

m
mp

πα

sin)(
1
∑
=

= 9.26

This equation also satisfies the simply supported boundary condition at 0=x  and ax = .

The distributed load q  can be expressed as

        
a
xmyqyxq

m
m

πα

sin)(),(
1
∑
=

= 9.27

where the coefficient )(yqm  is

∫=
a

m dx
a
xmyxq

a
yq

0

sin),(2)( π

Substituting the equations of the particular solution pw , Eq. 9.26, and the distributed

load q , Eq. 9.27, into the governing differential equation, we obtain

D
yqyk

a
m

dy
ykd

a
m

dy
ykd m

m
mm )(

)(
)(

2
)( 4

2

22

4

4

=





+






−

ππ 9.28

Finally, the solution of the governing differential equation is determined by using Eq.

9.25 and the solution of Eq. 9.28.
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Example 9-5

The rectangular plate as shown in Fig. Ex 9-5 is subjected to uniformly distributed

load oq . Determine the deflection of the plate.

Fig. Ex 9-5

Since oqyxq =),(  which is a constant, the coefficient )(yqm  of the uniformly

distributed load can be expressed as

π

π
π

π

m
q

m
m
q

dx
a
xm

a
qyq

o

o

a
o

m

4

)1cos(
2

sin
2

)(
0

=

+−=

= ∫

          

          where K,5 ,3 ,1=m .

Substituting the distributed load q  into Eq. 9.28, we have

Dm
qyk

a
m

dy
ykd

a
m

dy
ykd o

m
mm

π
ππ 4

)(
)(

2
)( 4

2

22

4

4

=





+






−

The solution of this differential equation can be taken as == mm kyk )(  a constant, and

the particular solution 
a
xmkw

m
mp

πα

sin
1
∑
=

=  satisfies the boundary conditions. Then,

Dm
qa

k o
m 55

44
π

=  where K,5 ,3 ,1=m .

The particular solution for the deflection of the plate is

a
xm

mD
qaw

m

o
p

π
π

α

sin14
,3,1

55

4

∑
=

=
K

The homogeneous solution for the deflection of the plate is obtained from Eq. 9.25.

a
xm

a
ymyD

a
ymyC

a
ymB

a
ymAw

m
mmmmh

πππππα

sincoshsinhcoshsinh
1
∑
=





 +++=

By observing the deflection of the plate due to the uniform load, we can see that the

deflection in the y  direction is symmetric about the x  axis. Thus, the constants mA  and mD
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must be set to zero since the quantities 
a
ymπsinh  and 

a
ymy πcosh  are odd functions as y

varies from positive to negative.

In addition, m  must be set to K,5 ,3 ,1  in order for the term 
a
xmπsin  to be symmetric

about 2/ax = . Hence,

a
xm

a
ymyC

a
ymBw

m
mmh

πππα

sinsinhcosh
,3,1

∑
=





 +=

K

The total deflection of the plate is

a
xm

Dm
qa

a
ymyC

a
ymBw

m

o
mm

π
π

ππα

sin
4

sinhcosh
,3,1

55

4

∑
=









++=

K

The boundary conditions along the y  axis are

0=w  at 2/by ±=

0=yM  or 02

2

=
∂
∂
y
w  at 2/by ±=

Then, we have

0
4

2
sinh

22
cosh 55

4

=++
Dm
qa

a
bmbC

a
bmB o

mm π
ππ

0
2

sinh
22

cosh =





+








+








a
bm

a
bmC

a
bmbC

a
mB mmm

ππππ

Solving these two simultaneous equations, we obtain

a
bmDm

qaC o
m

2
cosh

2
44

3

ππ
=

a
bmDm

a
bmbaqmqa

B
oo

m

2
cosh

2
tanh4

55

34

ππ

ππ+
=

a
xm

Dm
qa

a
ymy

a
bmDm

qa

a
ym

a
bmDm

a
bmbaqmqa

w
m

oo

oo

π

π
π

ππ

π
ππ

ππ

α

sin
4

sinh

2
cosh

2

cosh

2
cosh

2
tanh4

,3,1

55

4

44

3

55

34

∑
=



























++

+

=
K

The maximum deflection is obtained at the center of the plate 2/ax =  and 0=y .
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Chapter 10
Buckling and Instability

10.1 Introduction

The selection of structural members is based on three characteristics:

1. strength

2. stiffness

3. stability

Structural instability can occur in numerous situations where the compressive stresses

are present. For example,

Long and slender columns subjected to axial compression can buckle long before the

material reach the ultimate compressive strength.

Thin-walled tubes can wrinkle when subjected to axial compression.

Narrow beams, unbraced laterally, can turn sidewise and collapse under transverse

loads.

Vacuum tank can severely distort under external pressure.

The structural instability and buckling failures are occurred suddenly and dangerous.

For the structural members as shown in Fig. 10.1, we can classify the buckling modes as

followings:

Fig. 10.1

a.) For the column that has limited flexural stiffness but adequate torsional stiffness

subjected to compressive force, the dominant buckling mode is the flexural

buckling.
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b.) For the same column in a.) subjected to bending moment, the dominant buckling

mode is the flexural-torsional buckling.

c.) For the same column in a.) subjected to eccentric axial force, the dominant

buckling mode is the flexural-torsional buckling.

d.) For the column that has limited torsional stiffness but adequate flexural stiffness

subjected to compressive force, the dominant buckling mode is the torsional

buckling.

10.2 Column Buckling

Consider an ideal perfectly straight column with pinned supports at both ends as

shown in Fig. 10.2. The column is subjected to axially concentric compressive force P  and

deformed as shown. The bending moment due to the axial force P  is M Pv= − .

Fig. 10.2

The differential equation for the elastic curve of the column is

EI
d v
dx

M
2

2 =

M Pv= −

EI
d v
dx

Pv
2

2 = −

d v
dx

P
EI
v

2

2 0+ =
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This is the homogenous, linear, differential equation of second order with constant

coefficients. It can be solved by assuming that k
P
EI

2 = . Then,

′′ + =v k v2 0 

The solution of this equation is in the form of

v C kx C kx= +1 2sin cos  

The constants of integration C1  and C2  can be determined by using the boundary

conditions.

At x = 0 , v = 0 ; C2 0=

kxCv  sin1=

At x L= , v = 0 ; C kL1 0sin  =

This condition is satisfied either C1 0=  or sin  kL = 0 .

If the constant C1 0= , the term 0 sin ≠kL . Then, the term kL  can have any values

and the load P  can also be any values since P k EI= 2 ( ) .  Thus, C1 0=  is the trivial solution.

If the term sin  kL = 0  and 01 ≠C , then, kL = 0 2 3, , , ,.....   π π π . When the term

kL = 0  (or k = 0 ) , the critical load P k EI= =2 0( )   Therefore,

kL n= π n = 1 2 3, , ,...  

P
n EI
L

=
2 2

2

π
n = 1 2 3, , ,...  

The least force at which a buckled mode is possible is occurred when n = 1 and called

the critical or Euler buckling load.

P
EI
Lcr =

π2

2

where Pcr =  critical bucking load. ycr PP <

E = modulus of elasticity

I =  moment of inertia

L =  length of the column

Consider a column subjected to axial compressive load. If the column is so slender

that its material is always linear elastic until the critical load is reached at point B  as shown

in Fig. 10.3a, the column can behave into two possible ways when subjected to an increasing

axial compressive load. If the column is an ideal column, the column may remain straight

(path BC ). If the column has a slight imperfection, the column may bend (path BD  or path

BF ) depending on the analytical approaches. If the column has a larger imperfection, the

response of the column will follow the path OE .
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The somewhat slender column behaves similar to the very slender column as shown in

Fig. 10.3b. However, the material of the column will reach the yielding strength, as the

deflection grows larger and larger as shown by the downward curve OBD . If the column has

a larger imperfection, the response of the column will follow the path OE .

For a lesser slender column, the capacity of the column will be influenced by the

yielding strength of the material.

Fig. 10.3

10.3 Plate Buckling

The differential equation of a rectangular plate subjected to lateral load q  is obtained

in previous chapter as

4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+

D
q

y
w
=

∂
∂

+ 4

4

Plates Subjected to Combined Bending and In-plane Loads

If the plate is additionally loaded in its plane by the compression as shown in the Fig.

10.4, summation of forces in the x  direction gives

0=−−







∂

∂
++





∂
∂

+ dxNdyNdxdy
y
N

Ndydx
x
NN yx

yx
yx

x
x

0=
∂

∂
+

∂
∂

y
N

x
N yxx

Similarly, summation of forces in the y  direction provides

0=
∂

∂
+

∂

∂

x
N

y
N xyy

In considering the forces in the in the z  direction, we must take into account the

deflection of the plate. Due to the curvature of the plate in the xz  plane, the projection of the

normal forces xN  on the z  axis is

dydx
x
w

x
wdx

x
NN

x
wdyN x

xx 







∂
∂

+
∂
∂







∂
∂

++
∂
∂

− 2

2

)(
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Fig. 10.4

By neglecting the higher order terms, we have

dxdy
x
w

x
Ndxdy

x
wN x

x ∂
∂

∂
∂

+
∂
∂

2

2

Similarly, the projection of the normal forces yN  on the z  axis is

dxdy
y
w

y
N

dxdy
y
wN y

y ∂
∂

∂

∂
+

∂
∂

2

2

Due to the shearing forces xyN  and dx
x
N

N xy
xy ∂

∂
+ , the midsurface of the plate is

deformed as shown in Fig. 10.5. Owing to the angle 
y
w
∂
∂  and dx

yx
w

y
w

∂∂
∂

+
∂
∂ 2

, the shearing

forces xyN  have a projection on the z  axis as

dydx
yx
w

y
wdx

x
N

N
y
wdyN xy

xyxy 







∂∂

∂
+

∂
∂









∂

∂
++








∂
∂

−
2

dxdy
y
w

x
N

dxdy
yx
wN xy

xy ∂
∂

∂

∂
+

∂∂
∂ 2
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Fig. 10.5

Similarly for yxN

dxdy
x
w

y
N

dxdy
yx
wN yx

yx ∂
∂

∂

∂
+

∂∂
∂ 2

Since xyyx NN = , the final expression for the projection of the shearing forces on the

z  axis is

dxdy
x
w

y
N

dxdy
y
w

x
N

dxdy
yx
wN yxxy

xy ∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂∂
∂ 2

2

The total summation of the forces in the z  axis is

dxdy
x
w

x
Ndxdy

x
wN x

x ∂
∂

∂
∂

+
∂
∂

2

2

+ dxdy
y
w

y
N

dxdy
y
wN y

y ∂
∂

∂

∂
+

∂
∂

2

2

dxdy
x
w

y
N

dxdy
y
w

x
N

dxdy
yx
wN yxxy

xy ∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂∂
∂

+
2

2 0=+ qdxdy

 By using the equations 0=
∂

∂
+

∂
∂

y
N

x
N yxx  and 0=

∂

∂
+

∂

∂

x
N

y
N xyy , we have

yx
wN

y
wN

x
wNq xyyx ∂∂

∂
+

∂
∂

+
∂
∂

+
2

2

2

2

2

2

The differential equation of a rectangular plate subjected to the combined bending and

in-plane loads is obtained by substituting the total summation of the forces in the z  axis into

the differential equation of a rectangular plate subjected to bending. Then,

4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+ 








∂∂

∂
+

∂
∂

+
∂
∂

+=
∂
∂

+
yx
wN

y
wN

x
wNq

Dy
w

xyyx

2

2

2

2

2

4

4

21

Strain Energy in Bending of Plates

The strain energy density of isotropic material is
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[ ]xzxzyzyzxyxyzzyyxxoU γτγτγτεσεσεσ +++++=
2
1

Thus, the strain energy of a small plate element is

[ ] dxdydzU
Vol

xyxyyyxx   
2
1
∫ ++= γτεσεσ

Substituting the stress-deflection relations,






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
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∂
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∂
∂
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−= 2

2

2
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21 y
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
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
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∂
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∂
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2

21 x
w

y
wEz

y ν
ν

σ
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wGzxy ∂∂

∂
−=

2

2τ

and the strain-deflection relations,

2

2

x
wzx ∂

∂
−=ε

2

2

y
wzy ∂

∂
−=ε

      
yx
wzxy ∂∂

∂
−=

2

2γ

into the equation of the strain energy of a small plate element, we have

dxdy
yx
w

y
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x
w

y
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x
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∂
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∂
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
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∂
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ν

Strain Energy Due to In-plane Loads of Plates

The strain energy due to in-plane loads of plates is derived from Fig. 10.6, which

shows the deflection of a unit segment dx . Hence,

2
2 







∂
∂

−=′ dx
x
wdxxd

dx
x
wxddxx

2

2
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






∂
∂

=′−=δ

or for a unit length
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2

2
1








∂
∂

=
x
w

xε

Fig. 10.6

Similarly,
2

2
1









∂
∂

=
y
w

yε

It can also shown that

y
w

x
w

xy ∂
∂

∂
∂

=γ

Thus, the strain energy due to the in-plane forces is

[ ] dxdyNNNU
Area

xyxyyyxx   ∫ ++= γεε

dxdy
y
w

x
wN

y
wN

x
wNU

Area
xyyx   2

2
1

22

∫



















∂
∂

∂
∂

+







∂
∂

+






∂
∂

=

Strain Energy Due to Bending and In-plane Loads of Plates

The total strain energy due to bending and in-plane loads is

dxdy
yx
w

y
w

x
w

y
w

x
wDU

Area
∫
































∂∂

∂
−

∂
∂

∂
∂

−−







∂
∂

+
∂
∂

=
22

2

2

2

22

2

2

2

2

)1(2
2

ν

dxdy
y
w

x
wN

y
wN

x
wN

Area
xyyx   2

2
1

22

∫



















∂
∂

∂
∂

+







∂
∂

+






∂
∂

+

The total potential energy of the plate is

UV +Ω=

In order for the plate to be in equilibrium, the total potential energy of the plate must

be minimum.
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Example 10-1

Find the buckling stress of a simply supported rectangular plate subjected to the force

xN  as shown in Fig. Ex 10-1a.

Fig. Ex 10-1a

Let the deflection of the plate be expressed as

∑∑
= =

=
α α ππ

1 1

sinsin),(
m n

mn b
yn

a
xmAyxw

which satisfies the boundary condition of the plate.

Substituting the deflection equation into the total strain energy and noting that the

term 0)1(2
22

2

2

2

2

=



















∂∂

∂
−

∂
∂

∂
∂

−
yx
w

y
w

x
wν , we have

dxdy
b
yn

a
xm

b
n

a
mADU

b a

m n
mn∫ ∫∑∑

= = 


















+=

0 0 1 1

22
2

2

22

2

22
2 sinsin

2

α α ππππ

dxdy
b
yn

a
xm

a
mAN

b a

m n
mnx∫ ∫ ∑∑

= =
















−+

0 0 1 1

22
2

22
2 sinsin)(

2
1 α α πππ

or

∑∑
= = 



















+=

α απ
1 1

2

2

2

2

2
2

4

8 m n
mn b

n
a
mADabU [ ]∑∑

= =

−
α απ

1 1

22
2

8 m n
mnx AmN

a
b

Since there are no lateral loads,

UV =

For the plate to be in equilibrium, 0=
∂
∂

mnA
V . Then, we have

2

2

2

2

2

2

22

, 







+=
b
n

a
m

m
DaN crx

π
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The smallest value of the compressive forces crxN ,  is occurred when 1=n . The

physical meaning of this is that a plate buckles in such a way that there can be several half-

waves in the direction of compression but only one half-wave in the perpendicular direction.

Thus,
2

2

2

2

2

,
1









+=

b
a

m
m

a
DN crx

π

If we substituting 
t
Ncr

cr =σ  and 
)1(12 2

3

ν−
=

EtD , we get the critical stress in the form

of

K

t
b

E
cr 2

2

2

)1(12 





−

=

ν

πσ

where 
2/

/






 +=

m
ba

ba
mK . The plot of the critical stress is shown in Fig. Ex 10-1b and shows

that the minimum value of K  is 4.0.

Fig. Ex 10-1b
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10.4 Plates with Various Boundary Conditions

Fig. 10.7

Fig. 10.7 shows a rectangular plate simply supported on sides 0=x  and ax =  and

subjected to the axial compression xN . The governing differential equation of this plate is

4

4

x
w

∂
∂

22

4

2
yx
w
∂∂

∂
+ 2

2

4

4

x
w

D
N

y
w x

∂
∂

−=
∂
∂

+

Let the deflection solution of this plate is in the form of

∑
=

=
α π

1
sin)(),(

m a
xmyfyxw

This solution satisfies the two boundary conditions 02

2

=
∂
∂

=
x
ww  at 0=x  and ax = .

Substituting the deflection solution into the governing differential equation, we obtain

02
24

4

=+− Bf
dy
fdA

dy
fd

where 2

222
a
mA π

=

2

22

4

44

a
m

D
N

a
mB x ππ

−=

The general solution of this fourth order differential equation is

yCyCeCeCyf yy ββαα sincos)( 4321 +++= −

where 2

22

2

22

a
m

D
N

a
m x ππα +=

2

22

2

22

a
m

D
N

a
m x ππβ +−=

The values of the constants 1C  through 4C  are obtained from the boundary conditions

0=y  and by = .
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Case 1

Side 0=y  is fixed and side by =  is free.

At 0=y , the deflection 0=w  and the rotaion 0=
∂
∂
y
w .

At by = , the moment 02

2

2

2

=







∂
∂

+
∂
∂

=
x
w

y
wM y ν  and the shear

0)2( 2

3

3

3

=







∂∂
∂

−+
∂
∂

=
yx
w

y
wQ ν

From the first boundary condition, we obtain

0321 =++ CCC

From the second boundary condition, we obtain

0321 =++− CCC βαα

or

α
β
22

43
1

CCC +−=

and

α
β
22

43
2

CCC −−=

Substituting 1C  and 2C  into yCyCeCeCyf yy ββαα sincos)( 4321 +++= − , we get

)sinh(sin)cosh(cos)( 43 yyCyyCyf α
α
ββαβ −+−=

Substituting )(yf  into the deflection equation, we have

∑
=





 −+−=

α πα
α
ββαβ

1
43 sin)sinh(sin)cosh(cos),(

m a
xmyyCyyCyxw

Using the last two boundary conditions, we obtain two simultaneous equations. The

critical value of the compressive force, xN , is determined by equating the determinant of

these equations to zero.

bbghbbhggh βββα
αβ

ββ sinhsin)(1coshcos)(2 222222 −=+

where 2

22
2

a
mg πνα −=  and 2

22
2

a
mh πνβ += . For 1=m , the minimum value of the critical

compressive stress is
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K

t
b

E
cr 2

2

2

)1(12 





−

=

ν

πσ

For 25.0=v ,

328.1min =K

Case 2

Side 0=y  is simply supported and side by =  is free.

Similarly, in this case, the maximum value of K  is

2

2

456.0
a
bK +=  for 25.0=ν

Case 3

Side 0=y  and side by =  are fixed. In this case, the maximum value of K  is

0.7=K for 25.0=ν
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Example 10-2

Let the plate in Fig. Ex 10-1a be simply supported at 0=x  and ax = , simply

supported at 0=y , and free at by = . Determine the required thickness if m 560.0=a ,

m 430.0=b , N/m 52500=xN , 25.0=ν , MPa 250=yσ , GPa 200=E , and factor of safety

= 2.0.

Assuming that mm 5.6=t . From case 2, the value of 046.1=K . Then, the critical

compressive stress is

MPa 93.41)046.1(

0065.0
430.0)25.01(12

)200000(
2

2

2

=







−

=
πσ cr

which is significantly less than the yielding stress MPa 250=yσ .

Thus, the allowable stress is MPa 95.202/9.41 = .

The actual applied stress is MPa 07.80065.0/52500 = . O.K. ∴
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10.5 Application of Buckling to Design Problems

The AISC assumes the buckling stress of unsupported members in compression not to

exceed the yielding strength of the material. Thus,

K

t
b

E
y 2

2

2

)1(12 





−

=

ν

πσ

This equation is based on the assumption that the interaction between the buckling

stress and the yielding stress is designated by the curve ABC  as shown in Fig. 10.8. For steel

members with 3.0=ν  and ksi 29000=E , we have

y

K
t
b

σ
162=

Fig. 10.8

However, due to the residual stress occurred in the steel member during the

manufacturing, the actual interaction curve is represented by the curve ADC . Therefore,

AISC use a factor of 0.7 to account for this effect and

y

K
t
b

σ
114=

Single Angles

Consider the leg AB  of a single angle as shown in Fig. 10.9a as a plate. The plate AB

has a free support at point B  and has simply supported support at point A  since the point A

can only rotate due to the deflection. Thus, 2

2

456.0
a
bK +=   and 456.0min =K . Then,
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yyt
b

σσ
76456.0114 ==

Double-Angles

Due to the symmetry of the double angles as shown in Fig. 10.9b, the possibility of

rotation of the section under the axial compression load is significantly reduced from the

previous case. Thus, AISC uses the average of the case 2 (simply supported-free) and the

average of the case 1 (fixed-free) and the case 2 (simply supported-free).

674.0
2

2
328.1456.0456.0

=

+
+

=K

Therefore, we have

yyt
b

σσ
95674.0114 ==

Fig. 10.9
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Stems of T-section

Consider the stem of the T-section as shown in Fig. 10.9c as a plate. The support at

point A  is considered as a fixed support and the support at point B  is considered as a free

support. Therefore, the K  value is 1.328 for case 1.

yyt
b

σσ
132328.1114 ==

In practice, the AISC reduces the coefficient of this equation from 132 to 127.

Flanges of Box Sections

Consider the flange of the box section as shown in Fig. 10.9c as a plate. The support at

point A  and B  can be conservatively considered as simply supported. Therefore, 0.4=K .

yyt
b

σσ
2280.4114 ==

The AISC increases the coefficient of this equation from 228 to 238 to match the

experimental results.

Perforated Cover plates

For the perforated plate as shown edge in Fig. 10.9e, the supports of the plate between

the perforation and the edge are assumed to be fixed. This is because the continuous areas

between the perforations add more rigidity to the plate. If the ratio of the dimension a  and b

of the perforated plate is equal to one, the value of K  is about 7.69. This value is higher than

that obtained in case 3 since it is based on the smallest possible value of K . Thus,

yyt
b

σσ
31769.7114 ==

Other Compressed Members

Other compressed members are assumed to have the K  values between 4.0 for simply

supported edge to 7.0 for fixed edges. The AISC uses the value of 90.4=K .

yyt
b

σσ
25390.4114 ==
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