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Chapter 1

Theories of Stress and Strain
1.1 Definition of Stress at a Point

Mechanics of materials is a branch of mechanics that studies

1.) The relationships between the external loads applied to a deformable body and

intensity of internal forces acting within the body.

2.) The deformation and the stability of the body under the action of the external

loads.

In this study, the body is made of the material that is continuous (consist of a
continuum or uniform distribution of matter having no voids) and cohesive (all portions of the
material are connected together without breaks, cracks, and separations).

The external loads that we are interested can be idealized as concentrated force,

surface force, and linear distributed load as shown in Fig. 1.1.

Concenirated force
idealization

surface
force

Linear distributed
load idealization

Fig. 1.1

Consider the body subjected to a loading condition as shown in Fig. 1.2a. Under the
action of these loads, the body is deformed and has internal forces to hold the body together.
At a given section, the internal forces are distributed as shown in Fig. 1.2b and we can find
the resultant of the internal forces at a given point O as shown in Fig. 1.2c.

The distribution of the internal forces at a given point on the sectioned area of the
body can be determined by using the concept of stress.

Stress describes the intensity of the internal force on a specific plane or area passing
through a point as shown in Fig. 1.3. It can be classified into two types based on its acting
directions: normal stress and shear stress. Since the stresses generally vary from point to
point, the definitions of stresses must relate to an infinitesimal element.

Normal stress or o is the intensity of force that acts normal to the area AA4. If the
normal force or stress pulls on the area element AA4, it is referred to as tensile stress, whereas

if it pushes on the area A4, it is referred to as compressive stress. It can be defined as



Advanced Mechanics of Materials by Dr. Sittichai Seangatith

Fy

(b)

(a)

Fig. 1.2

Fig. 1.3

o= lim—~
AM—-0 A4

Shear stress or 7 is the intensity of force that acts tangent to the area A4 .

7= lim —¢
A—0 A4
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1.2 Stress Notation

L]
™

Fig. 1.4

By passing the imaginary section through the body parallel to the x-y plane as shown

in Fig. 1.4, the stress on the element area A4 = AxAy can be resolved into stress components

in the rectangular orthogonal Cartesian coordinate axes x, y,andz as o, 7, , and 7, where

o, =lim—=
AM—0 A4

7. = lim —
- AM—-0 AA
7., = lim —
N VEN Y|

Notation

» The first subscript notation refers to the orientation of areca AA, which is
perpendicular to the subscript notation.

» The second subscript notation refers to the direction line of the stress.

By passing the imaginary section through the body parallel to the x-z plane as shown

in Fig. 1.5, we obtain the stress components as o, 7., 7

yx 2 “yz*
By passing the imaginary section through the body parallel to the y-z plane as shown

in Fig. 1.6, we obtain the stress componentsas o, 7, T

xy? “xz°
If we continue cut the body in this manner by using the corresponding parallel plane,
we will obtain a cubic volume element of material that represents the state of stress acting

around the chosen point on the body as shown in Fig. 1.7.
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Zz

o,
T.'I:'E
Tor
In array form, we have
Stress on the plane
erpendicular to x -axis
o) 7, T. perp
Gif Tyx O-y yz
sz sz O-z

Stresses in the x -direction
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|

Fig. 1.7
1.3 Symmetry of the Stress Array and Stress on an Arbitrarily Oriented Plane

If the stress around the chosen point on the body is constant, some of the stress
components can be reduced by using the force and moment equilibrium for the element.

Normal Stress Components

For a constant state of stress as shown in Fig. 1.8, each of the three normal stress

components must be equal in magnitude, but opposite in direction.

2 F. =0 o, (AyAz) — o' (AyAz) = 0

Similarly, we have
z Fy =0 O =0 ;

2 F.=0; c. =0

Shear Stress Components
For a constant state of stress as shown in Fig. 1.9, pairs of shear stresses on adjacent

faces of the element must have equal magnitude and be directed either toward or away from

the corners of the element.
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g

Fig. 1.9

2F =0; 7, (AxAz) ~ 7!, (AxAz) = 0
T, = r;x

> M, =0; 7, (AVAZ)Ax — 7, (AxAz)Ay =0
Ty =Ty

Similarly, we have

Therefore, in matrix form,

x xy Xz
O-ij = O-y vz
Sym. o,

Stress Acting on Arbitrary Plane
The stress vector on the plane that is perpendicular to the x -axis as shown in Fig. 1.10

can be written as
6,=0,i+7, j+7.k
In a similar fashion, the stress vector on the planes that are perpendicular to the y -
and z -axes can be written as
6,=1,0i+0,j+7.k
O, =7, 0+7, ]+ o.k
Consider an arbitrary oblique plane P as shown in Fig. 1.11. Let the plane is defined
by a unit normal vector
N=1Ii+mj+ nk
where [/ =cosa, m=cosf}, and n=cosy. From Fig. 1.12, we have [°+n’>=d” and
d* +m* =1. Thus,

+m*+n*=1
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Fig. 1.10
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In addition, if the infinitesimal area ABC is defines as dA4 .,

dApe = ldA e

dA,,c = mdA 5

dA, 5 = ndA pc

Remark:

The area dA,,., dA,,., and dA,,, are the projection of area dA ,,. on the respective

coordinate plane. Let consider the figure of the wedge shown below and compare the volumes

determined from two methods.

A B
1. Let the area associated with the side AC be A ,. and corresponding wedge height

be AB . The volume of the wedge is
1
5 AB(A,c)

2. Let the area associated with the side CB be A, and corresponding wedge height

be ABcos8 = ABI . The volume of the wedge is
L aBiC4,)
2
By equating the two volumes, we have

AAC = IACB

[ =

Thus, we can write the stress vector &, on the oblique plane P by summing the force

vectors acting on the stress element as shown in Fig. 1.11.

6-P (dAABC) = 5)( (dAOBC) + 6y (dAOAC) + 6-2 (dAOAB)
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6p=0Jl+c,m+3&.n

Gp= (o-xf + Txyj + szlg)l +
(t,i+o,j+7, k)m+

(r.1+ szj + o*zlg)n

6p=(cl+7,m+ T n)i +
(t l+o,m+z n)j+

(t.l+7,.m+ o*zn)/€

Also, the projections of the stress vector &, on the x, y, and z -axes may be written

as

A

Gp=0pl+ O'Py]' +0,k
Comparing the stress vector & ,, we have
Op =0 l+7, m+7_n
Op, =T, l+o,m+7_n
Op, =T l+7, m+o.n
Normal Stress and Shearing Stress on an Oblique Plane

The normal stress on the plane P or o, is the projection of the stress vector &, in

the direction of the unit normal vector N . Thus, the magnitude of the normal stress & ,, can

be determined from

Opy =0p N
= (prf+apyj+(7pzl€)-(Zf+m}+nl€)

=opltop,m+o,n

Since 7, =7,,7,=7,,and 7_ =7_,wehave

yx’ vz zy’ zx 2
opy =0+, m+r n)l+(t l+om+7 nmm+(r l+7, m+o.nn

_ 2 2 2
=o l"+om" +o.n" +2mnt  +2nlt _ +2mz,,

In matrix notation, we can see that if we write the unit normal vector N =i + mj + nk

in the form of

i
N=[l m n}j

A

k

or,
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~.

b

Then, we have
GX
GPN = \_l m l’lJ z-)cy ¥y z-yz

T T O n

Xz vz z

or,

o =[NJo]N[

Plane P

Fig. 1.13

Also, form Fig. 1.13, the magnitude of the shearing stress on plane P or o, can be

determined from the equation

Ops = \/O—; - O-;N = \/0-123): + 0-129y + 0-1292 - O-fw
Of all the infinite number of planes passing through point O, there is a set of three
mutually perpendicular planes that the normal stress o,, has a maximum value called the
principal planes. The maximum normal stress is called the maximum principal stress. On

these planes, the shearing stresses vanish. Also, the three mutually perpendicular axes that are

normal to the three planes are called principal axes.
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1.4 Transformation of Stress, Principal Stresses, and Other Properties

Transformation of Stress

Fig. 1.14

", z") denote two rectangular coordinate systems with a

Let (x, y, z) and (x', y
common origin as shown in Fig. 1.14. Also, let a general point in space A4 has coordinate (x,

v, z)and (x', y', z") in the respective coordinate system. The direction cosines between

the coordinate axes (x, y, z)and (x', ', z') can be determined by finding the coordinate

x", ¥, z' of the point A in term of the coordinate x, y, z.

E:Oﬁzxf+yj+z/€

NIRRT PG keit|(x
VAR =i G kg
2| AR ik ok kK ||z

’ 3 M3 n ||z
x' X
yi=[Thy
z' z

where [T'] is called the transformation matrix.

As shown in Fig. 1.15, the stress components in the (x, y, z ) coordinates are

0,,0,,0.,7T,,7.,and 7

x
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and the stress components in the (x’, y', z") coordinates are

Gy, 0,,0., 7T

T.and 7.

Xy X'z

X'

Fig. 1.15

From the previous discussions, the normal stress component o . is the components in

the x' direction of the stress vector on a plane perpendicular to the x'-axis. Thus, from the

o-x Txy sz l
equation o, :|_l m nj r, O, T, |ym,wehave
T. 7, O.||n
O-x Txy sz ll
o, =|_ll m, nlj T, O, T,.|ym

T, T, O,||n

Xz yz z
2 2 2
oy,=0l +o,m +o.n +2mnz, +2nl7_ +2mz,
Similarly,

o-x Txy sz 12
O'y,:\_l2 m, nzj r, o0, T m,
sz Tyz O-z n2

_ 2 2 2
o, =0l +o,m;+o.n, +2myn,t, +2n,l,v +2l,m,7

O-X 2-)cy sz 13
0. = |_l3 ms ”3J To Oy T |\
sz Tyz O—z n3
_ 2 2 2
o.,=0l; +o,m;+o.n;+2mnt  +2nlit +2m,T
The shear stress component 7., is the components in the y’ direction of the stress

vector on a plane perpendicular to the x'-axis. Thus,
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O-x
Tx'y' = |_Zl m, n J Txy y Tyz

T, T, O,||n,

Xz yz z

or
O-x xy Xz Zl
Ty = |_l2 m, nZJ T, O, T,.|{m
sz 7’-yz O-z nl
To =0 Ll,+o mm,+o.nn,+
(myn, + m2nl)ryz +(mly +myl)z +(m, +12ml)z—xy
Similarly,
O-x z-)cy sz 13
z-x'z’ = Lll ml nlJ z-xy Jy z-yz m3
sz z-yz Jz n3

T =0 Ll +o,mm;+o nn,+

(m,ny +m3”1)77yz +(mly +nsl))T +(4my +l3ml)z—xy

o, 1, T A

X Xy Xz

Ty,Z,:|_l2 m, n2J T, O, T m,

T, T, O,||m

Xz vz z
T, =0 Ll +0 ,mm;+o n,n; +
(myny +myn, )Tyz +(nyly +nly)z +(my +1m, )Txy
T . : '
By analogous to &,, =|N [c] N|', we can write down the stress vector in the (x',

!

y", z") coordinates in the matrix form as

Oy Tyy Tyy _11 mn ] O, T, T, i L L
Toy Oy Ty |=|l, my nyl|z, o, T _||m my m
| Ty Ty O | L5 my oy [T Ty O | Ny Ny
- 1 - -r Tr T
Oy Ty Ty L m n||o, Ty Tx L, m n
Toy Oy Tyol|= [, m, n, w O, T, l, m, n,
| Tz Ty Oy ] L5 my oy | T Ty O] L5 my ny

or, in short



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-14

Principal Normal Stresses

Three Dimensions

Y

I

¥

Fig. 1.16
From section 1-3, since the shearing stresses vanish on the principal plane ABC, the

principal stress vector &, is the only stress vector acting on the principal plane and in the
direction of the unit normal vector N to the principal plane.
N=Ii+ mj + nk
If the infinitesimal area ABC as shown in Fig. 1.16 is defines as dA4 ,,., then,
dAyze =1dA 5
dA, - = mdA 5
dA, .z =ndA ;5
The projection of the principal stress vector &, along the coordinate (x, y, z ) are
Gy =0yli+o,mj+ O'ang
From the force equilibrium equations, we have
SF =0, (Oy dA )]~ 0, dd gl —T,, dA yyem — 7, dA yen =0
Y F, =0 (oy dAye)m —o, dA yem =7, dAyen =7, dA 0l =0

ZFZ =0; (o dApc)n =0, dApen =7, dA el =7, dA,pem =0
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(o, —oy)l+ T m+T . n= 0
tl+(oc,—oy)m+7,.n=0
T 1+ T, m+ (0.—oy)n=0

These 3 equations are linear homogeneous equations. Since all three direction cosines

can not be zero (/° +m” +n° =1), the system of the linear homogeneous equations has a

nontrivial solution if and only if the determinant of the coefficients of /, m, and n vanish.

Thus, we have

O-x - JN z-)cy sz
o o,—0Oy . |=0
Tvz Tyz O-z - GN

Expansion of the determinant gives
3 2
oy—-loy+1l,0,-1,=0
where
Iy, =0,+0,+0,

2
Xy

— 2 2
l,=0,0,+0,0,+0.0, —(r:, + T, +7_)

O-x Txy sz

_ _ 2 2 2

I, = r, 0, 7,.=000, + 2TxyTszxz — (O'xTyZ +o,7, +0.7,
sz z-yz Jz

This cubic polynomial equation has three roots o,, o,, and o, which are the

principal normal stresses at point 0 .

o 0
c,=|0 o, 0 o, 20, 2 0,
0. 0 o,

The magnitudes and directions of the principal stresses o,, o,, and o, for a given

member depend only on the loads being applied to the member. They are independent upon

the choice of initial coordinate system (x, y, z ) used to specify the state of stress at point 0.
Thus, the constants /,, /,, and /, must remain the same magnitudes for all the choices of
initial coordinate system (x, y, z ), and hence they are invariant of stress.

Determine the direction cosines of the principal normal stresses o,, o,,and o,

The direction cosines of the principal normal stresses o, (i =1,2,3) can be determined

by:
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1. Substituting any one of the three roots o,(i =1,2,3) into any two of the cubic
equation, we obtain
(o, -0l + T m;+T, N = 0
t i +(o,—o)m, +7,.n =0
T 1+ T,.m; + (o0,-0,)n, =0
2. Solving two of the above three equations together with the equation
I? +m] +n’ =1 for the direction cosines /,, m,, and n,.
For example, if we need to find the direction cosines of the principal stress o, or /,,
m,, and n,.
- Substituting the principal stress o, into any two of the cubic equation such as
(c,—o)+7t m+7._n =0
t i +(o,—o)m +7,.n =0
- Dividing the above equations by 7,

[ m
1 1 —
(O-x _Gl)_+ 2-xy _+sz =0
n, n,

X

[ m
1 1 _
t,—+(o,-0)—+7,=0
n, n,

: . [ m
- Solving the equations for -~ and —-
n, n,

- Substituting the direction cosines /, and m, which are the functions of the

direction cosine 7, into the equation I/ +m} +n =1, and solving for n,
Two Dimensions
Consider the plate structure subjected only to the external load parallel to the plate as
shown in Fig. 1.17. If the plate is very thin compared to the dimension of the plate, the

stresses o, 7,., and 7, on an infinitesimal small element far away from the loading points

are approximately equal to zero. In addition, let us assume that the remaining stress

components o, o, and 7, are independent of z. This kind of state of stresses on the

y7

infinitesimal small element is called the plane stress as shown in Fig. 1.18.
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I T
T
.
i

.

s

Fig. 1.18

In the similar fashion as for the coordinate transformation in three dimensions, we can

determine the coordinate transformation matrix of the plane stress as following.

Yy
; r
y L
¢ :iD
|
i
8 ] M X
0 A B
Fig. 1.19

Let (x, y)and (x', y") denote two rectangular coordinate systems with a common
origin as shown in Fig. 1.19. Also, let a general point in space P has coordinate (x, y ) and

(x", y") in the respective coordinate system. The angle between the coordinate axes (x, y)
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and (x', y")is 8. Therefore, the relationship between the has coordinate (x, y ) and (x',

y") can be written as

x=x"cosf —y'sinf

y=x'sin@+ y'cosd

Thus, in matrix notation, we have

y:

cosf@

zZ=z

sin@ O]|[x

—sind cos@ Oy

0 11|z

1-18

The transformation of the stress components from the (x, y) coordinates to the (x',

y") coordinates,

x x'y
Txryr Gyr
z-x’z 'z

N
[}

3 © o o

n

where m =cos@ and n=sind.

sinf O||lo, 7, ©

cosd 0
0
n* 0
m> 0
0 1
0 O
0 O
mn 0

xy Xz
T, O, T,
T. T, O, 0
0 0 2mn ||C
0 O —-2mn ||O
0 0 0 o
m —n 0 T
n m 0
0 0 m-n||z,

cos@

sin @

=

N

yz

—sind 0
cos@ O
0 1

Since o,=7_=7 _= 0 in state of plane stresses, then, the stress components in the

(x", y") coordinates are

or

G}) .
cos 20+, sin 20

O- .
~c0s 20—t sin 20

oc.—0, .
—  Ysin20+1._ cos20
2 i
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Fig. 1.20

Fig. 1.20 shows the variation of the stress o, o, and 7, versus 0 for o, =020,

and 7, =080, .

Mohr’s Circle in Two Dimensions

Rewriting the equation of ¢, and 7., in the form of

o.+0 o,—0 '
O'x,—L yJ:[ 5 yjcos2¢9+rxys1n29

2

Tx,y,

Squaring each equation and adding the equations together, we have

2 2
O_+0O O._—0

oc.—-0o, ).
= —(—yJ sin 260 + 7. cos 20
2 i

This equation is the equation of a circle in the o and 7, plane as shown in Fig.

1.21. The center C of the circle has coordinate

o, to,

and radius of the circle is
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it l'T_I [ e
. oy " B(6 =90°)
¥ .
DI’
_Txy
v Py
0 Py C B 1 I
?’EPI Try
—a,—> 28 _L Txy
 D(6 = 8) l
S
AB=0)
o+ 0, o, — Oy
< Uayer = - : ] 3
* 0y *
T

Fig. 1.21

1-20
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Principal Shearing Stresses

3 3
(@) o (c) 45"/‘
| - =
| T2
f —_— 2
— 2
Ll % o,
-
= AN
T2
’03
T— 2
o, \45°
1
(d)
Fig. 1.22

Consider the stress element subjected to the state of principal stresses o,, o,, and o,
as shown in Fig. 1.22a. Also, consider the plane containing any two principal normal stresses,
such as o, and o,. The maximum shear stress in this plane (the 2-3 plane) occurs on the
stress element that is rotated 45° about the remaining o, principal stress axis as shown in
Fig. 1.22b. Since the principal stress o, is independent from the state of stresses on the 2-3

plane, thus, the shear stress 7,
2-3

is one of three principal shear stresses on the stress element

and 1t has the absolute value of

c,—0O
Tmax = :
2-3 2
Similarly, the shear stresses 7, and r ., are the principal shear stresses on the 1-3 plane
1-3 1-2

and the plane 1-2 of the stress element as shown in Fig. 1.22c and 1.22d, respectively. They

have the absolute value of

0, -0,

max
1-2 2

One of the 7, , 7,.,, and 7, 1is the maximum shear stress that occurs for all
2-3 1-3 1-2

possible choices of coordinate system of the stress element.
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Each plane of the principal shear stress is also acted upon by a normal stress that is the

same in the two orthogonal directions.

. o, + (O
Tmax plane’ 61,273 =
2-3 2
) (e + 63
Tmax plane’ O—r,1—3 =
1-3 2
. (o + o,
Tmax plane’ O—T,I—Z =
-2 2

Mohr’s Circles for the Principal Planes
Consider a state of stress that has two components of shear stress equal to zero such as

7..=7,.=0 as shown in Fig. 1.23.

Y
c
‘ d %y
mry t
Tyy —_— Txy
'_* Ox y -I—I @ '-b- a
< . . .
z
- z X —
: '

Fig. 1.23

Then, the normal stress o, in the direction normal to the plane of the nonzero
component of shear stress 7 is one of the principal stresses of the state of stresses shown.
o, =0,
From the discussions of the plane stress transformation, we can see that the normal
stress o, does not influence the transformation equations. Thus, in terms of the principal

stresses (no shear stress), the Morh’s circle can be constructed by using any two of the

principal stresses as shown in Fig. 1.24.

T3
T1
X o
0
ta— 3, —=
3 ~2-3
plane
~1-3 plane
!
- 62 -
61 ...... o
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Octahedral Planes and Octahedral Stress
The octahedral planes are the oblique planes that intersect the principal axes (1, 2,3) at

equal distance from the origin 0 as shown in Fig. 1.25. The unit normal vectors to these

planes satisfy the relation

Fig. 1.25

Thus, the octahedral normal stress, o, ., (or the hydrostatic stress) can be determined from the

oct

equation
_ 2 2 2
Opy=0,l"+o,m” +o.n" +2mnt,_+2nlt,_+2Imzt,

Since for the principal axes o, =0, 0, =0,, 0, =0;,and 7, , =7_ =7 _ =0, then

1
O, =§(61 +0,+0;)

O

In addition, since o, + 0, + 0, =0 _+0, + 0, (see Example 1-1), we have

1 1
Goct =§(O'x +O_y +O_z) :?1

The the octahedral shearing stress, 7, ., can be determined from the equation

oct

_ 2 2 _ 2 2 2 2
Ops = \/GP —Opv = \/GPx TOp, +O0p, —Opy

1 1 1 1
Tou = \/5012 +§022 +50'32 —5(01 +o0, +0'3)2

9T§ct = (o, _0-2)2 + (o, _0—3)2 +(o, _0-3)2 :2112 -6/,

Substitution of the stress invariant into = __, we have

oct



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-24

972, =21} -6l

oct

. 2 2 2 2 2 2
= (o, —Gy) +(o,-0.) +(0'y -0,) +6er +67_ +6ryz
The term o,, and r,, are the important quantities as they are used to predict the
failure of materials under complex states of stress.
Mean and Deviator Stress

In the theory of plasticity and experiments, it has been shown that yielding and plastic

deformations of many metals are independent of the applied normal stress o, ,

Il

O, =04 _g(o-x +Gy +Gz)_§(o-1 +02 +G3)_?

Therefore, the plastic behavior of the materials is related mainly to the part of stresses that is

independent of o, .
Rewriting the stress tensor, we have
Ir=T7T,+T,
where the stress array 7, is called the mean stress tensor or hydrostatic stress tensor, and the

stress array 7, is called the deviator stress tensor.

O-x+o_y+az 0 0
(o} T T 3
x xy xz
o . _ 0 O-x+o-y+o-z 0 wT
yx y yz 3 d
zx zy o, 0 0 O-x+o:;y+o-z
O'X+O'y+O'z
O, — 3 z-xy Ty
o +0, 6 +0
- _ Tx y z
T, = (" o, — T,
_O-y+o-y+o-z
sz sz o, 3

3 Txy sz
T . 20,-0, -0, .
d — yx 3 yz
20,-0,-0,
sz sz 3

If the stress tensor is the principal stress tensor, we can determine the principal values

of the stress deviator as following
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o, +0,+0, 0
o 09 > o, to,+0
0 o, 0]= 0 %
0 0 o,
0 0
61_0'1+0'2+0'3 0
3
T, = 0 0_2_01+o;+0'3
0 0 o,
20, -0, -0, 0
3
T, - 0 20—%
0 0
S, 0 0
I,=10 §, O
0o 0 S

3

20, -0, —

+7,

1-25

We can see that S, +S, +S5; =0, thus only two of the principal stresses of 7, are

independent (we can find the 3™ term from these two).
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Example 1-1
Given a state of stresses at a point with respect to a convenient coordinate system ( x,

y,z)be o, =100MPa, o, =—60MPa, o, =40MPa, 7 =80MPa, 7 =7 _=0MPa.

a.) Determine the principal normal stresses and the direction cosine of the principal
normal stresses

b.) Determine the principal shear stresses.

c.) Determine the octahedral normal stresses and octahedral shearing stresses.

d.) Determine the mean and deviator stress.

The principal normal stresses

100 -0 80 0
80 -60-o 0 |=0
0 0 40-o0

o’ -lc’+1l,0 —1,=0
where the stress invariants,
I, =100 - 60 + 40 = 80 MPa
I, =100(=60) +100(40) + (-60)40 — 80> = —10800 (MPa)’
I, =100(=60)40 + 2(80)0(0) —100(0)* — (—60)*(0)* — 40(80)> = —496000 (MPa)*
o’ —800” —108000 + 496000 = 0

Solving the equation, we obtain
o, =133.137 MPa
o, =40 MPa
o, =-93.137MPa

It should be noted that o, + o, + 03 =0, + 0, + 0. =80 MPa

The direction cosine of the principal normal stresses

Substituting 0, and 0,, 0,, 0., 7,,, 7., and 7 into the equations

)

vz
(oc,—0)l. + T m +T. N, = 0and 7 _[ + T,.m, + (o0,—-0,)n, =0
(100-133.137)/, +80m, +0=0
0+0+(40-133.137)n, =0

We obtain n, =0 and /, = 2.414m,. Since [ +m +n} =1,

m = | L 0383 and 1, =0.924
6.8274
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We can see that the principal axis for o, lie in the x—y plane at the angle of
o =22.5° counter-clockwise from the x — axis.
By using the same calculation procedures, we have the direction cosines of the
principal normal stress o, and o, are
[,=-0383 m,=0924 n,=0
;=0 my; =0 ny, =1
It should be noticed that the principal axis for o, also lie in the x—y plane and is
perpendicular to the principal axis for o,. In addition, the principal axis for o, is coincident
with the original z — axis.
The principal shear stresses

0, —0;

133.137-(-93.137)| _

max :| |:| —11314MP3

3 | 2 | | 2

. :|02 —a3|:|40—(—93.137)|:66'56MP21
=2 | 2 |

Tmax :|O-l _0-2| = |133137_40| = 4656 MPa
2 | |

It should be noted that since there is only one nonzero component of shear stress 7,
the stress normal to the plane of 7, is one of the principal normal stresses.
o, =0, =40MPa
Then, the Mohr’s circle as shown in Fig. Ex 1-1 below may be used to determine the principal

normal stresses, the direction cosine of the principal normal stresses, and the principal shear

stresses in the x — y plane as for the 2-D problem.

4]
(133.1, 0)

(-83.1, 0)
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The octahedral normal stresses
O, = %(0'1 +0,+0;)= %(133.137 +40-93.137) =26.667 MPa

The octahedral shearing stresses
_ 1 \/ 2 2 2
Toet _E (0,-0,) +(0,-03)" +(0,—0;)

= %/(133.137 —40)% +(133.137 = (=93.137))* + (40 — (=93.137))?

=92.856 MPa

The mean stress

133.137+4310—93.137 0 0
T - 0 133.137+4310—93.137 0
0 0 133.137 +40-93.137
i 3
26.667 0 0
T =| 0  26.667 0 |MPa
0 0  26.667
The deviator stress
[2(133.137) — 40 —(-93.137) 0 0
3
T, - 0 2(40)-133.12}7—(—93.137) 0
0 0 2(-93.137)-133.137 - 40
i 3
106.470 0 0
T,=| 0 13.333 0 MPa

0 0 —119.804
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Example 1-2

Given the state of stresses at the dark spot on the surface of a pressure vessel as shown
in Fig. Ex 1-2a.

a.) Determine the state of principal stresses.

b.) Determine the state of maximum in-plane shear stress.

90 MPa

—T— 60 MPa

20 MPa
(a)
Fig. Ex 1-2a
From the element right-hand face and the sign convention,
o, =—-20MPa o, =+90MPa r,, =60MPa

The center of the Mohr’s circle is located at (o, ,0)
c.+to, -

The radius of the Mohr’s circle is
o,-o,) 20-90)’
R = \/(%] + T,fy = \/(%j +60*> =81.4 MPa

Then, the initial point 4 (-20,+60) and the center C(35,0) are plotted on the Mohr’s circle as

shown in Fig. Ex 1-2b.

Determine the state of principal stresses

The principal stresses are indicated by the coordinate of points B and D on Mohr’s
circle.

o, =35+81.4=116.4 MPa
o, =35-81.4=-46.4MPa

The orientation of the element is determined by calculating the counterclockwise

angle 26, from the radius line AC to BC.
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4, 60 0
20, =180" —¢ =180" —tan '—=1325
' 55

0, = 46.4
I e o, =116 ——

|

o (MPa)

(b)
T(MPa)
Fig. Ex 1-2b
Thus, the orientation of the planes that contain the state of the principal stresses is
0, = 132.5° _ 66.3°

Fig. Ex 1-2c shows the state of the principal stresses.

x

/
i/

90 MPa /6, =116 MPa

\ B, =66.3°

—T— 60MPa o

20 MPa

&, = 46.4 MPa

(c)
Fig. Ex 1-2c
The state of maximum in-plane shear stress
The maximum in-plane shear stress and the average normal stress are identified by the
point £ and F on the Mohr’s circle in Fig. Ex 1-2d. Hence, we have
T =81.4 MPa

max
in—plane

and
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O e =35MPa
The counterclockwise angle 26, from the radius line AC to the radius line EC is
20, =90° —¢ =90° —47.5° =42.5°

Thus, the orientation of the planes that contain the state of the maximum in-plane shear stress

is

425

0 =21.3°

sl

F
T

e
Ln

o(MPa)

l ! !

0 =47.5°\ ;

\ 20, " !
- 81.4

R=814"

(d)
T(MPa)
Fig. Ex 1-2d

Fig. Ex 1-2e shows the state of the maximum in-plane shear stress.

90 MPa

Y 81.4 MPa
35 MPa_.—*
%

—T— 60 MPa

20 MPa

(€)
Fig. Ex 1-2¢
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1.5 Differential Equations of Equilibrium of a Deformable Body

Consider Fig. 1.26, the differential equations of equilibrium in rectangular coordinate
axes (x, y, z ) can be written as following,

Ty

Fig. 1.26
oo or,,
YF =0, (o,+—~dx—-o0,)dydz+(z,, + dy —7,,)dxdz
; o ; ! Y
or
+ (7, +—=dz —7t_)dxdy+B (dxdydz) =0
4
oo, Ot or

+—=+—=+B =0
ox oy 0z :

where B_ is the body force per unit volume in the x direction including the inertia forces
Similarly,

ZFy =0;

ZFZ =0;
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Equilibrium Equations: Plane Problem

r-hjf.!l.
a, + = dy

Fig. 1.27
If the body is a plane body of uniform thickness as shown in Fig. 1.27, the differential

equations of equilibrium of the three-dimensional body can be reduced to

0
do, Rl +B.=0
ox oy
or 0
o 2% g —0
ox oy !

Equilibrium Equations in Polar Coordinate: Plane Problem
Consider a plane body of uniform thickness in polar coordinate (7, ) as shown in

Fig. 1.28, the differential equations of motion of this plane body can be written as following,

f'i‘.l'm.
Tt + _li fj dﬂ rl]l-rr‘
‘ Trg+ - dr do,

— 1/ *

¢ =0 line

i
S - ——

Fig. 1.28

SF =0

— o .(rd0) -1 ,(dr) - o, sin % (dr) + {ar + aaa, dr}(r +dr)do +
.
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e+ 9% a0 \ar - o, + 292 40 |sin % (ar) + B rdrd6 = 0
00 00 2

ZF(; =0;

0T dr}(r +dr)dO+
or

-7,,rd0)-0c,(dr)-1, sin%(dr) + [T,,g +

o, +%d0 dr —| 7, + 0T do sinﬁ(dr) + B,rdrd@ =0
00 00 2

Expanding the above two equations, setting sind—ze = d_249’ and neglecting the higher-

order terms, we have the equilibrium equations in the polar coordinate.

80r+161“9 0',—0'9+Br=0
or r 00 r

199, +—ar’9 +2Ti+39 =0
r 060 or r

1.6 Deformation of a Deformable Body

A — ]
‘ — "-.“‘.‘
)// \‘\\
/ ~
/ .
/
/ N
! \
! \
| \
\ \
\\ '-.‘
\ L A
\\ B.fo\/ r%J'
\L =+ W) +V), 2TW)
~ /
> \ /
\“‘“s___ '_//
— A . %

0

A (% Yy %)

Fig. 1.29
Consider a deformation body in equilibrium as shown in Fig. 1.29 subjected to
external loads and deformed to a new equilibrium position indicated by the dashed line. The

coordinate of point 4 on an undeformed is (x, y, z ) and, after the deformation, the point A4

is moved to the point B having the new coordinate of (x*, y, z*). Noting that
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X =x+u
*

y =y+v
*

z =z+Ww

Therefore, in Lagrangian coordinate method, we can write down the relationship between the

coordinate x*, y*, z" and x, y, z in the form of
x =x(x,,2)
Y =y (x,9,2)
2 =z2"(x,,2)

The functions need to be continuous and differentiable with respect to the independent

variables. Discontinuity implies rupture of the body.

The total differential equation of the coordinate x , y°, z can be written as

dx" = Ox dx + Ox dy + Ox dz
Ox oy 0z

dy' =L e+ Y gy Yy
ox oy 0z

dz" = 8idx+aidy +6idz
ox oy 0z
1.7 Strain Theory: Principal Strains

Let us define the engineering strain ¢, of the line element ds that is transformed to

the line element ds” as

B ds* —ds
£ ds

and the quantity M or magnification factor as

1 dS* ’ 1 2 _ 1 2
M—[(—] 1}5[(1%15) —l]—85+585

2|1\ ds

In general, since we have infinite number of particles neighboring to point A4, let us
consider a particle at the neighboring of point A4 as defined by the line vector dr, from point
A to the particle as shown in Fig. 1.30 and

dr. = dx,i +dy, ] +dz,k

The magnitude of the line vector d7; is infinitesimal and equal to

dr, = \/ dx! +dy! +dz!
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Fig. 1.30

By the deformation, the line vector d7, is moved to be the line vector d7; as shown in

Fig. 1.30. The vector linked between these two vectors is

u +a—uabc1 +a—uafy1 +8—Mafz1 =
Ox oy Oz
P+ 2+ 2 v or L+ Ly, + L)
O oy Oz Ox oy 0z
+(w+8—wabcl +6—Wdy1 +@dzl)]€
ox oy z

Thus, from Fig. 1.30, we can determine the line vector d7, from the relationship

ﬁ+d;71*:df+(ﬁ+a—udxl+a—udyl+a—udzl)
Oox oy Oz
Then,
dr| = a’7+(ﬁ+a—ua’x1 +a—udy1 +a—udz1)—ﬁ
Ox oy 0z

. ou ou ou A ov ov ov A
dr. =(dx, +—dx, + —dy, +—dz,)i +(dy, + —dx, +—dy, +—dz,)j
n (dx, ox X oy Yy o z,)i +(dy, o X oy 'V o z)J

+(dz, +a—wdx1 +‘3—Wary1 +a—wdzl)l€
Ox oy 0z

Similarly, let consider another particle point having an infinitesimal small distance
from point 4 as defined by the line vector dr, from point A4 to the particle as shown in Fig.

1.30 and

dr, = dx,i +dy, ] +dz,k
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dr, = \/dxz2 +dy; +dz;

By the deformation, the line vector d7, is moved to be the vector dF, .

. ou ou ou A ov ov ov A
dr, =(dx, +—dx, +—dy, +—dz,)i +(dy, + —dx, +—dy, +—dz,)]
, = (dx, PV oy 'Y oz z,)i + (dy, o oy A oz z,)J
+(dz, +8_wdx2 +8—Waly2 +a—wdzz)l€
Ox oy 0z
Now, let —u:u,x, a—u:u, , a—u:u,z, @:v,x, @:v, , ...,and a—W:w,z. Then,
ox oy 7 0z ox o 7 Oz

in the form of the magnification factor M, we consider the change in the vector

multiplication (dot product) of the line vector d7" and dF, , and the line vector d7, and dr,

with respect to the line vector dr, times dr, .

dr dr, — dr, dr,
dr, dr,

=[(dx, +u,, dx, +u,, dy, +u,, dz)dx, +u, dx, +u,, dy, +u, dz,)+

(dy, +v,, dx, +v,, dy, +v, dz))dy, +v, dx, +v, dy, + v, dz,) +
(dzy +w, dx, +w,, dy, +w, dz))dz, +w, dx, +w, dy, +w, dz,)—
(dx,dx, +dy,dy, +dz,dz,))/(dx,dx, + dy,dy, + dz,dz,)

Expanding all terms of the equation, for example,

(dx, +u, dx, +u,, dy +u,, dz))dx, +u, dx, +u, dy, +u, dz,)=

dx,dx, +u,, dxdx, +u,, dx,dy, +u,_ dxdz, +

u, dx,dx, +u,’ dx,dx, +u, u, dxdy, +u, u,, dx,dz, +

7})

u,, dydx, +u, u,, dydx, + u,i dy,dy, +u,, u, dydz, +

u,, dzdx, +u, u, dzdx, +u, u, dzdy, + u,’ dz,dz,
(dyl +V7x dxl +V,y dyl +V,Z le)(dyZ +V,x de +V7y dyz +V,Z dzz) =
dy,dy, +v,, dydx, +v,, dydy, +v, dydz, +

v, dx,dy, +v,] dx,dx, +v,, v,, dxdy, +v, v, dxdz, +

v, dy,dy, +v, v, dydx, + v,i dy,dy, + vy, Vs, dy,dz, +

Then, consider only the numerator of the equation, we have
dr; dr, —dr,.dr, =

2 2
[(u, Au, Au, +v, o+ )dxyde, + (u, +u, u, v, 4y, v, +..)dxdy, +
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(u, +u, u, +v, v, +..)dxdz, +
(u,,+u, u, +v, +v,, v, +...)dy,dx, + (u,i+v,y+v,y+v,i+...)dy1dy2 +

(u,, u,, v, +v, v, +..)dydz, +
(u,, +u, u, +v, v, +..)dzdx, +(u,, u, +v, +v, v, +...)dz,dy, +

w,, +w,_+

w,2+...)dz,dz,
Rearranging,
dr dr, —dr,.dr = 2& dx,dx, + Y wdxdy, +y .dxdz, +
j/yxdyld‘xz + 28})dyldy2 + ]/yzdyleZ +
Y .dz\dx, +y dzdy, +2¢.dz dz,

or in another form, we have

17, o 1 1

E[da dF, — dF, dF, | = & dx,dx, + 27 pdrdy, 2y dvdz, +
1 1
Ej/yxdylde + gydyldyZ +57/yzdyld22 +

%nxdzldxz + %;/Zy dz,dy, +¢.dz,dz,

=)2)-)
— |+ = +
ox ox
B 2 2 2
ov 1 u ov ow
£, =—+— +— | +|—
-0y 2 oy oy

where

xza

QD
22

SE

ow 1 (Gujz (8\/)2 (ijz
e, =—+—||—| +| =—| +| =—

oz 2|\@ 0z Oz
1 1 8u 6u ou Ovov ow 8w
_yx - x A A ~— vttt
2 T T o ay ax oy Oxody Ox ay
1 1 1[ow ou ouodu oOvov owow]
_7/xz :_7zx =\ = vttt Tt
2 2 2|0x 0z Ox0z Ox0Oz Ox Oz |
1 1 I[ow ov ouou ovov owow]
Ve =FY s s At ottt
2°% 277 20y 0z Oyoz Oyoz Oy 82

which are called the finite strain-displacement relations.

For a special case when the line vector dr; and dr, are identical (dx,

dy, =dy, =dy, dz, =dz,

= dz ), we have the dot product of the vectors

=dx, =dx,



1-39

Advanced Mechanics of Materials by Dr. Sittichai Seangatith
S _ 2
dr,.dr, = dx,dx, +dy,dy, +dz,dz, = ds
ds® =dx* +dy* +dz’

ds = \/dx2 +dy’ +dz’

By the definition of the direction cosine and let the identical vector dr, and dr, have

Q=m,and%=n,wehave

the direction cosine of @ =1,
ds ds ds

1 7 .dr, - dr,.dr, d* 1 dxdy 1 dxdz
A — =&, P + _]/xy 2 + TV 2
2 dr, dr, ds” 2 ds~ 27 ds

1 dydx dy’ 1 dydz
Yt G ey ot
2 g T e T e e

1 dzdx N 1 dzdy v e diz
2 T e T g
Thus,
N 2 % _*_ — —
M :l (ds ) . ds =ldr1 .dri _drl'drz =el’+y Im+y_nl+em’ +y _mn+en
2 ds 2 dr, dr, Y : : ’
or,

1 2 2 2 2
Ept—ep =&l +y Im+y nl+em” +y mn+¢en

Final Direction of Vector 7,
As a result of the deformation, vector 7, deforms into the vector 7 . Let the direction

. — —
cosines of vector 7; and 7, are

A,
dr, dr, dr,
dx* _r dy* —m’ . and dz* _
dr, dr, n
Alternatively, we may write
dx’ drl* _ dy” drl* :m*’anddi*drl* _
dr, dr, dr, dr, dr, dr,
By using the previously obtained relations, x" =x+u, y =y+v, z =z+w, and
d = e s g i =Y e+ Yy Y g and det = e+ oy
ox oy 0z ox oy oz ox oy

kS

% 42 we find
Oz
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dx’ ( auj ou ou
—=|1+—|+—m+—n
dr, ox oy Oz

dL:@l+(1+a—y]m+@n
oy

dr, 0Ox 0z
dz” ow, ow ( 6Wj
—=—I/+—m+|1+—|n
dr, ox 0Oy Oz

By using the engineering strain equation dr, /dr, =1/(1+¢,) with the above two
equations, we obtain the final direction cosines of vector 7 when it passes into the vector 7,
under the deformation in the form of

(I+e) :(1+8—ujl+a—um+a—un
ox oy 0z

(+&,)m" =@1+ 1+ m+@n
ox oy 4

(I+e.)n :8_w1+8_wm+(1+8_w)n
ox oy oz

Definition of Shear Strain
If originally the vectors dr, and dr, having the direction cosine /,, m,, n, and /,, m,,

n, , respectively, are normal to each other, by the definition of scalar product of vectors
T
cos; =1l, +mm, +nn, =0

If the angle between the vectors d7, and d7, having the direction cosine I, m,, n;

and Z; , m;, n; , respectively, is equal to 0" after the deformation, by the definition of scalar
product of vectors
cos@ =1L, +mm; +nn,
Then, the angle change can be determined from
dr, dr, —dr,.dr, = dr, dr, cos@ —0=dr dr, cos@”
By using the definition of the magnification factor where dr /dr, =1+¢&,, and
dr /dr, =1+ &, , we have the engineering shearing strain y,, in the form of

* *
B dr, dr,

= c0s0" =(1+&,)(1+ eI +mm} +n'n]
1 2

Using the equation of the final direction of vector 7 when it passes into the vector 7

and the finite strain-displacement relation, we have the engineering shearing strain between
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the vector 7, and 7, as they are deformed into the vector 7 and 7, as shown in Fig. 1.30 in
the form of
Vo = 2800 Ay hmy y mly + y Lmy w28 mmy +y mny + y ol +y mong + 28, mn,

If the strain ¢,, and ¢,, are small and the angle change are small,

s .
V12 zE—H

and the engineering shearing strain becomes approximately equal to the change in angle
between the vector7, and 7, .

Strain transformation

The strain tensor,

gx gxy gxz gx ;/ry /2 ;/rz /2
;= 6n &, €. ||V /2 €, 7y /2
gzx 8zy 82 j/zr /2 7/zy /2 82

The strain tensor obeys the tensor law of transformation when the coordinates are
changed as the stress tensor.

The transformation of the strain components from the (x, y) coordinates to the (x',

!

y", z") coordinates,

gx gx'y' x'z ll m, n, gx gxy gxz ll m, n
x'y y' y'z' = 12 m, n, Xy gy vz 12 m, n,
gvz gy'z gz l3 m3 n3 Xz gyz gz 13 m3 1’13

Performing the matrix operations, we have
Ep = gxllz +8yn/ll2 +82n12 +m1nlyyz +nlll7/xz +llml7/xy
g, =&l +&,my +e.n, +mynyy Ly +lLmyy,
&= gxl32 +gym§ +82n32 +m3n37/yz +n3l3}/xz +l3m37/xy
Yop!2=¢01,+& mm,+ée.nn, +
(mny +myn)y [ 2+(ml, +nyl)y 2+ (my +1,m)y,, /2
Ver!2=¢ L1 +& mm;+ée.nn; +
(m,ny + myn, )yyz 12+ (nly +n5l))y . 12+ (my + l3m1)yxy /2
Vo l2=¢ L1 +& mm; +&nyn, +
(myny + myn, )}/yz 12+ (n,l; +m5l,)y 12+ (l,my +1,m, )7/xy /2
Similar to the stress transformation, the transformation of the strain components from

the (x, y) coordinates to the (x’, y") coordinates in two dimension can be performed as
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&y Egy Eu cos¢ sin0 O|le &, &.[|cosd —sinf 0
Epy €y & |=|—sin@ cosf 0||le, €, ¢&,.||sinfd cosfd O
v Eypn E 0 0 1le. €. e 0 0 1

Since ¢.=¢_=¢, =0 in state of plane strains, and y ., =2¢,., and y, =2¢ , then,

the stress components in the (x’, y") coordinates is

£y m>  n mn ||&,
g, =| n m mn |S€,
2 2
Y ey 2mn 2mn m- —n Vs
where m = cos@ and n=sind.
E +s, & —¢ Voo
£, =——>+———"¢0s20 +—sin 20
2 2 2
E +¢&. &.—¢. |
£, = T Y cos260 - "—Lsin 20
2 2 2
T, & —&., y
= = = Zsin20+—Xcos 20
2 2 2

It should be noted that since the equations of plane strain transformation are
mathematically similar to the equations of plane stress transformation, Mohr’s circle can also
be used to solve problems involving the transformation of strain.

Principal strains

Through any point in an undeformed member, there are three mutually perpendicular
line elements that remain perpendicular under the deformation. The strains of these line
elements are called the principal strains at the point. The maximum and minimum strain can
be determined by using the 2" method of calculus of variation.

If we need to determine the maximum and minimum of the function F = F(x,y,z)
with the condition G(x,y,z) =0, we assume a function F =F -G and the maximum and
minimum values of A can be determined by solving the simultaneous equations

2—?20, 2—1;=0, 88—520, G(x,y,z)=0
for 4 unknowns which are x, y, z, and 4. In this case, we have F =& [” + Yolm+y nl+
gymz +y,.mn+ e.n’ and G=1>+m’ +n”-1=0. Then,
F=¢l+ Ylm+y nl+ gymz +y,.mn+ en’-A (> +m’ +n*-1)
The maximum and minimum values of A4 can be determined by solving the

simultaneous equations
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86—1;20; 20, -Ml+y m+y n=0
oF
%:O; yxyl+2(gy_ﬂ‘)m+7/yzn20
Z_F=0; Vel tym+2e -n=0
n

I +m*+n’=1

For these linear homogenous equations, we may rewrite the first three equations in the
determinant form as

(e, —4) Y /2 .12
Yol2 (e,-4) 7,./2|=0
Y2 y.12 (6.-4)

For nontrivial solution, we have

A =J X +J,A-J,=0

where

Jy=¢,+¢e, +e,
J = 1, 2 2
2 _gxgy +8ygz +gzgx _Z(yxy +7/yz +7/xz)

& Vyl2 y./2
J3:7/xy/2 & yyZ/Z

y

}/ Xz / 2 7/ yz / 2 82
Solving for the values of principal strains A,, A,, and A,. Then, substituting A. back

into the simultaneous equations, we obtain the direction cosine of the principal plane /,, m,,

and n,, respectively.
If (x, y, z) are the principal axes, then,
J =€ te, té&
J, =¢¢&, 6,6 +E 8,
J, =¢&8,8,

In two-dimensions, the principal strains and principal planes can be obtained easily as

2 2
6 = £, te, s £, —¢, N Y
2 2 2 2




Advanced Mechanics of Materials by Dr. Sittichai Seangatith 1-44

In addition, the maximum in-plane shear strain can be determined from

(j/x' ')max 2 2
g in-plane _ gx - gy + ;/i
2 2 2
—(&,.—¢
tan 26, = “Ens)

}/xy
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Example 1-3

Given a state of strains at a point with respect to a convenient coordinate system (x,
y, z) be ¢, =-3000 ue, &, =2000 ue, &, =-2000 ue, y, =-5830 ue, y,. =—-670 ue,
and y , =-3000 s .

a.) Determine the principal normal strains and the direction cosine of the principal

normal strains
b.) Determine the principal shear strains.

The principal normal strains

The strain invariants,

Jl = gx + é‘y + 82
J, = (=3000+ 2000 - 2000)10~° = ~3(10")

1 2 2 2
J,=¢€.6,+E,6, &€, —Z(yxy +7 . +72)

J, = [(—3000)2000 +2000(=2000) + (~3000)(—2000) — % [58302 + (=670)? + (=3000)2 ]}10-12

= —14.8595(10°)

X

J3:7/xy/2 g j/yz/2

y

& }/xy/2 V.2

}/)cz/2 }/yz/2 gz

J, =2.77607(107)
For nontrivial solutions, we have
A +3(107)A* —14.8595(10°°)1 - 2.77607(10°*) =0
Thus, the principal strains are
g =4,=0.00350

g, =4, =-0.00162

&, = A, =—0.00488
The direction cosine of the principal normal strains

Substituting 4, =0.00350 and ¢, ¢,, &., 7,,, 7,., and y_ into the equations

y
206, -Vl+y m+y.n=0 and y [+2(¢,—A)m+y, n=0. After rearranging the

equations, we have

- 0.1301—1 +0.00583™ —0.003 =0

n n,
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/
0.00583 L + —0.003 - — 0.00067 = 0

n, n,
Solving the simultaneous equations, we obtain

b 5576 and ™ = _5.008
n, n

Since I +m; +n] =1, then,
n, =0.1691
and m, =-0.884 and /, =-0.4356

By using the same calculation procedures, we have the direction cosines of the

principal normal stress A, and A, are
[, =-0.328 m,=0355 n,=0.991
[, =0.849 my; =-0.341 n, =0.403

The principal shear strains
By using the same principal used to find the principal shear stresses, the principal

shear strains can be determine as following.

T A =4
2 2
7, = 0.00838
Y2 _ A, =4,
2 2
7, =0.00512
Vs _ A =2,
2 2

7, =0.00326
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1.8 Strain Rosettes

Fig. 1.31

The normal strain at a point of a general testing specimen are usually obtained by
using a cluster of three electrical-resistance strain gauges, arranged in a specified pattern

called strain rosette as shown in Fig. 1.31 and Fig. 1.32.

45° strain rosette

(b}

60° strain rosette

©

Fig. 1.32

In general, if we know the angles 6, 6,, and 6. of the strain rosette with respect to
an axis as shown in Fig. 1.32a and the measured strains ¢,, &,, and &_, we can determine the
straing _, £, and Y from the strain-transformation.

_ 2 ) .
E,=¢€,c08"0,+¢&,sin" 0, +y, sind, cosd,
2 s 2 :

g, =€,008" 0, +& sin" 0, +y,,sinb, cosb,

_ 2 .2 .
g, =¢&.c08°0, +¢&,sin" 0, +y, sinb, coso,
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For the 45° strain rosette as shown in Fig. 1.32b,
E. =€,
£, =&,
7/xy :Zgb _(ga +gc)
For the 60° strain rosette as shown in Fig. 1.32c,

E. =&

£, =%(28b +2¢,—-¢,)

Yy \/g(gb_gc)
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Example 1-4

The state of strains at point 4 on the bracket as shown in Fig. Ex 1-4 is measured
using the stain rosette as shown. Due to the loadings, the readings from the gauge give

g, =60 ue, &, =135 ue, and &, =264 ue . Determine the in-plane principal strains at the

point and the directions in which they act.

Fig. Ex 1-4

Setting the + x axis as shown and measuring the angles counterclockwise from the

+ x axis to the center-lines of each gauge. We have
6,=0°,0,=60°,and 6, =120°
Therefore, we obtain
60(10°) = &, cos’ 0° +&,sin” 0° +y, sin0” cos 0
g, =60(107)
135(10°) = &, cos” 60° + & sin” 60° +y, sin 60° cos 60°
0.25¢, +0.75¢, +0.433y = 135(107%)
264(10°) = £, cos*120° + &, sin* 120° + y, sin120° cos120°
0.25¢, +0.75¢, - 0433y = 264(107%)

Solving the simultaneous equations, we obtain
g, =60(107), £, = 246(10°°), and Vi = ~149(107°)

The in-plane principal strains and their directions

The in-plane principal strains and their directions can be determined by the equations

2 2
E + €& E.—&
81 — X yi X y + }/xy
2 2 2 2

tan 2(91, =

or by using the Mohr's circle as shown below.
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:—:u{} 6y
Hence, the in-plane principal strains and their directions are
g =272(107%)

£, =33.8(10°°)

20 , =tan”' TS 38.7°
’ 153-60
0,,=19.3°

The state of the in-plane principal strains is shown in the figure above. The dashed line

shows the deformed configuration of the element.
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1.9 Small-Displacement Theory
The derivation of the strains in the previous sections is purely based on the
geometrical consideration and the obtained equations are exact. However, they are highly
nonlinear partial differential equations that are difficult to solve. In practice, the
displacements are usually small compared with the dimensions of the body, thus, the squares
and the products of the strains and their first derivatives are infinitesimal small quantities. By
using this fact, we can simplify the analysis of the deformable body significantly.
If the displacements and their derivatives are small,
1. The strains of fibers in one plane are not influenced by the out-of-plane
displacements.
2. The undeformed geometry of the body can be used when writing the equilibrium
equations
3. The stress-strain relations are reduced to linear relations.

Consider the displacement and deformation in the x — y plane moving from point 1, 0,

and 2 to the locations 1, 0', and 2', respectively, as shown in Fig. 1.33.

Hy
e WU Y e
o B3
v+u,,dy
Tr_ y 1
dy

u—)—1 —a Ut U, AT E—

dar —=
Fig. 1.33
By the definition of normal strain,
_ Ly, =L, _ [dx+u+u, dx)—ul—dx o =6_u
* Ly, dx T ox
Similarly,
g =Y
S
For small displacement analysis, the engineering shear strain
}/xy:ﬁl+ﬂ2:(u+u,ydy)—u+(v+v,xdx)—v: ou ov

Ay, = —
dy dx Y oy ox
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Similarly, if we consider the displacement and deformation in the y—z and x—z

plane, we have

ow

£ =—
0z
_ou ow
Ve =0 Ton
_ov_ ow
=%

In this form of strain.displacement relations, the physical interpretation of the strain

components can be seen clearly. For example, the normal strain ¢ is the rate of change of the
displacement u with respect to x. The shearing strain y  represents the changes in the

original right angles between the line elements 0-1, and 0-2 to the 0'-1" and 0'-2" due to the
deformation.
Strain compatibility Relations
Just as stresses must satisfy the equations of equilibrium, the strains must satisfy the
strain compatibility equations in order to describe a physically possible displacement field.
The displacement field must be single-valued, continuous, and has continuous derivatives.
Thus, the material does not overlap itself and no crack appears.
By eliminating the displacement components from the strains equations, we have
o', . o, _ 0’7,
ox* oy’ oxoy

0’c, 0, 0Oy,

+ =
ox? 0z° Ox0z

d’e, 0%, B %y,

y

+ =
oz oy’ 0y0z

o’c. 107, 197, 130%,
+— =— +—
oxoy 2 0z° 2 0zox 2 0yoz

628}’ +1827/xz 2162}/)‘}’ +lazyyz
ox0z 2 oy 2 0yoz 2 oxoy

628): +1827/)’Z _lazyxz +1627/Xy
oyoz 2 ox’ 2 Ox0y 2 OxOz
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Example 1-5
The parallelepiped as shown in Fig. Ex 1-5 is deformed into the shape indicated by the

dashed straight line (small displacements). The displacements are given by the following
relations: u = C\xyz, v=C,xyz, and w=C,xyz.
a.) Determine the state of strain at point £ when the coordinate of point E~ for the

deformed body are (1.504, 1.002, 1.996).

b.) Check if the state of strain as point E is in accordance with the strain

compatibility relations.

Fig. Ex 1-5
The state of strain as point £
The displacements of point £ are u =1.504-1.5=0.004 m, v=1.002-1=0.002m,
and w=1.996 -2 =-0.004 m . Thus, the displacement relations are in the form of

u _ 0.004 0.004
Yoxz 152 3

0.004
u= 3 xyz
In the same manner, we have
_ 0.002 2z
3
0.004
w=— 3 Xyz.

Thus, the strains at point £ are
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p U 0004 0004 oo
ox 3
g = 0002 0002 515 _6.00200
Yoy 3
g = 0004 o 6.00200
oz
y ou v 0002 0004 o 0.00s33
Yooy ox 3
y —ou ow_ 0004 0004, 0.00067
0z Ox 3 3

_ v ow 0002 0.004

=—+ Xy xz =-0.00300
0z Oy 3 3

Yy

Substituting the strain equations into the strain compatibility relations, we can see that

the state of strain as point £ is in accordance with the strain compatibility relations.
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Chapter 2

Stress and Strain Relations
2.1 Concept of Engineering Stress-Strain and True Stress-Strain
Engineering stress-strain behavior is usually determined from monotonic tension test.
Fig. 2.1 shows the free body diagram of the test specimen. Originally, the specimen has the

cross-sectional area of A, and the length of / . Under the action of the axial tensile load P,

the test specimen has the cross-sectional area of 4 and the length of /.

Original Shape ; Final Shape

Fig. 2.1

. . P
Engineering stress o= A_

. . . -1, o
Engineering strain &= Z = l_
True stress G = L

A
el !
True strain g = j—dl =In—
l l

The use of the true stress and true strain changes the appearance of the monotonic
tension stress-strain curve as shown in Fig. 2.2.

From the engineering stress-strain diagram, the material behavior can be classified
into 4 different ways depending on how the material behave.
Elastic behavior (1* region)

The specimen is called to response elastically if it returns to its original shape or
length after the load acting on it is removed.

In this region, the stress is proportional to the strain from the origin to the proportional
limit (stress has a linear relationship with strain).

If the stress is slightly over to the proportional limit, the material may still respond
elastically. If the stress is increased gradually, the slope of the curve tends to get smaller and

smaller until it reaches the elastic limit.
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Yielding (2" region)

This region is started when the yielding stress is reached. The yielding stress is the
stress which the material starts to deform permanently. After this point, the specimen will
continue to elongate without any increase in load, perfectly plastic.

Stress
l lrue fracture siress

True stress-sirain curve

—— ultimate
N S slress i
[ - fracture
o ci Liad s : g . slress
_~ proportional limit - _~Engineering stress-starin curve
- elastic limit
| - yield stress
|
i
- L Sirain
Elsi.\_.tir. yielding slrain necking
region hardening
elastic plastic behavior
hehavior
Fig. 2.2

Strain Hardening (3™ region)

When the yielding has ended, a further load increase can be applied to the specimen,
resulting in a curve that rise continuously but becomes flatter until it reaches the ultimate
stress. The rise in the curve is called strain hardening.

Necking (4™ region)

At the ultimate stress, the cross-sectional area begins to decrease in a localized region
of the specimen, necking. This phenomenon is caused by slip planes of randomly oriented
crystals formed within the material. As the cross-sectional area is continually decreased, the
load is also gradually decreased, resulting in the stress strain diagram tends to curve
downward until the specimen breaks at the fracture stress.

If a specimen made of ductile material, such as steel and brass, is loaded pass the yield
point A to the plastic region at point A" and then unloaded, elastic strain is recovered to
point O' as the material return to its equilibrium as shown in Fig. 2.3. But, the plastic strain

remains. As a result, the material is subjected to a permanent set.
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a a
clastic plastic elastic plastic
region region region region
| - )
| /'/ /A
/A / |
load |
; EJ
? / — mechanical hysteresis
J 1 .
0 permanent 0’ elastic 0 ¢
PRl S P e ]
set recovery |
Fig. 2.3

In general, some heat and energy may be lost as the specimen is unloaded from A4’ to

O' and loaded again from O' to A4'. As a result, the unloaded and loaded curves will have

the shape as shown. The colored area between these curves represents the energy lost and

called hysteresis loop.

True stress-Strain Curve

The true stress is always larger than the corresponding engineering stress, and the

difference may be of a factor of two or more near the end of a tensile test on a ductile

material. True strain based on a length measurement is somewhat smaller than the

corresponding engineering strain. However, once the necking starts, true strain based on an

area measurement are larger.

The total true strain in a tension test can be separated into two components.

1. Linearly elastic strain £, that can be recovered upon unloading.

2. Nonlinearly plastic strain £, that can not be recovered upon unloading.

Consider the true stress-strain curve of a metal in the region well beyond yielding,

where most strain is plastic strain. A logarithmic plot of true stress versus true strain in this

region gives a straight line as shown in Example 2-1 and the true stress-true strain relationship

is in the form of

Etotal = K(Ep )”

where 7 = strain hardening coefficient

K = strength coefficient

True fracture strength,
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P,
G, = -
4,
True fracture ductility
[
g, =InL
/ I
Volume of the material of the specimen is /,4, =/, 4, . Then,
4, 1
A, 1
- Y|
&, =In—>
!

A —A
Let RA =area reduction of the specimen = —~— . Hence,

1 A4, _lf
1-RA Af [,
- 1
& =In
1—-RA

Since 6 = K(e,)", at failure,

&’f — K(E[.)ﬁlilure)n — K(E’f)n

~ n
(€;)
~ _ ~ failure ~ failure _ 7 failure
where &, =g, +e, " e
. ~ ~ ~ o\
Since 6 =K(€))", ¢ :(—] . Then,
P p K
n
1
A L P A o
P ~ T = f
Gf O-f
~ n
(€/)

If n, £,,and 6, are known, £, ata given & can be determined. Also,

~ ~ 0 |0 |"<
8e+€p—E+ 5— Ef
f
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Plastic strain at necking

Plastic strain at necking is equal to the magnitude of strain hardening coefficient for a

given material.

~ necking

n=g,
Proof

Since the elastic strain is small compared to the plastic strain, we can neglect the

elastic strain.

~ P P4 A4,
oO=—=—— =0
A4 A, A
I-1
&= °=L—1
[

o

Since L =
/

o

A A
,thus, £ =—2—1 and —% =1+ ¢. The true stress is
A A
oc=o0(l+¢)

Since the nonlinearly elastic strain can be determined from &, = lnli =In(1+¢).

o

Substituting the true stress & = o(1+¢) and £, into the equation & = K(¢,)", we have
K
o=——I[In(1+¢)]"
I+¢

At the necking point, the slope of the engineering stress-strain curve is equal to zero.

do

de

necking =

K PP
necking _m[ln(l—i_‘g)] |: l+h’1(1+8):|

Since the 1" and 2™ term can not be zero, thus, the 3" term must be zero.

~ necking
g g

n= h’l(l + {-,‘) necking P

Bridgeman correction for hoop stress

A complication exists in interpreting tensile results near the end of a test where there
is a large amount of necking. Bridgeman in 1944 pointed out that large amounts of necking
result in a tensile hoop stress being generated around the circumference in the necked region.
Thus, the state of stress is no longer uniaxial as assumed, and the behavior of the material is
affected. In particular, the axial stress is increased above what it would otherwise be. The
corrected value of true stress can be calculated from

o, =Boc

where

B=0.83-0.186log & (0.15< & <3)
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Example 2-1

A tension test was conducted on a specimen of AISI 1020 hot-rolled steel having an
initial diameter of 9.11 mm. The test data is given in Table Ex 2-1 where the length changes
over a 50 mm gage length have been converted to engineering strain & in the first column.
Loads at corresponding times are given in the second column. Also, diameters for the large
strain portion of the test, measured in the neck when the necking once started, are given in the

third column. After fracture, the gage length had stretched to 68.5 mm.

Table Ex 2-1
Test Data Calculated Values
Engr. Engineering True Raw True Corrected
Strain Load Diameter Stress Strain® Stress” True Stress

£ P d o B & Gy
kN mim MPa MPa MPa
0 0 9.11 0 0 0 0
0.0015' 19.13 — 203 0.00150 293 —
0.0033* 1721 - 264 0.00329 265 -
0.0050 17.53 — 269 (.00499 270 e

0.0070 17.44 — 268 0.00698 269
0.010 17.21 — 264 0.00995 267 -
0.049 20.77 8.89 319 0.0489 335 335
0.218 25.71 8.26 394 0.196 480 461
0.2347 2575 — 395 0.210 488 466
0.306 25.04 7.62 384 0.357 549 501
0.330 2349 699 360 0.530 612 539
0.348 21.35 6.35 328 0.722 674 577
0.360 1890 5.72 290 0.931 735 615
0.366* 17.39 5.28% 267 1.091 794 654

Notes: 'Upper yield. ’Lower vield and 0.2% offset yield. *Ultimate. “Fracture.
SCalculated from (1 + &) where d not measured. ®Measured from the broken specimen.

a.) Plot the engineering stress-strain diagram.

b.) Determine the yielding strength, ultimate tensile strength, percent elongation,
percent reduction of area, and the modulus of toughness.

c.) Plot the true stress-strain diagram.

d.) Determine the true stress-true strain relationship in the plastic region.

The engineering stress-strain diagram can be plotted by finding the engineering stress

from the equation o = Ai as shown in the forth column of the table. From the data of the

engineering stress and engineering strain, we can plot the engineering stress-strain curve as
shown in Fig Ex 2-1a.

The load for the 0.2% percent offset yield, corresponding to the lower yield point, is
17.21 kN. Thus, the yielding strength is

17210

o, = —— =264 MPa
7(0.00911) / 4
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120
800 Hot-rolled AISI 1020 steel
© true (G vs. E)
= 600}
- 180
w
w -
@ w
= o
0 6
5 400 engineering (o vs. &) P
o )
=
40
200
o o test data
e = fracture
' ' 0
0 0.4 0.8 1.20
£ or g, Strain
Fig Ex 2-1a
The highest load reached was 25.75 kN. Thus, the ultimate tensile strength is

25750

o, = =395 MPa
7(0.00911)* /4

The percent elongation for 50 mm gage length is

L -L 68.5—50

100 L =100———— =37%
50

The final diameter was 5.28 mm. Thus, the percent reduction of area is
d*—d? 2 2
100747 _ 10021 =328 _ 6 4oy

K 9.11°

The modulus of toughness of AISI 1020 hot-rolled steel can be estimated by the

equation

o +to
o e [T 0] e 264 395]_ o MY
2 2 m

Since we do not have the data of the length and diameter of the specimen up to the
engineering strain 0.010. Therefore, the true stress-strain diagram in this portion must be

plotted by finding the true stress and true strain from the equation

After that the true stress-strain diagram can be plotted by finding the true stress and true strain

from the equation

o)
Il
| N
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o

A

£=In

From the data of the true stress and true strain, we can plot the true stress-strain curve
as shown in Fig Ex 2-1a.

The true stress-true strain relationship in the plastic region is in the form of
c=K(,)"
or
logo =nlogé, +logK
which gives a straight line for the log-log true stress and true strain plot as shown in Fig Ex 2-

1b. It should be noted that the true stress used in this plot is the true stress corrected by using

the Bridgeman correction factor B.

2000 ]
200
@ 1000
o
= — - 100
g - H = 626 MPa -
2 500 ¥
g 0 50 1€
2 —]
= i n=0.206
© 200t
AlSI 1020 steel, HR 420
100 I ' '
0.02 0.05 01 0.2 05 1 2 5

§, True Strain
Fig Ex 2-1b
The equation is in a form of a straight line on an x — y plot
y=mx+b
From the plot, we can see that the straight line will have a slope of n and intercept at
g , =1 of 6 = K. By using a graphical or least square method, we obtain
m=n=0.206
b=2.7967
Since b =logK , thus, K = 10° = 626 MPa and the true stress-true strain relationship
in the plastic region is in the form of

& = 626(2, )"

It should be noted that n ~ & ;“’“"g =0.210.
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2.2 First Law of Thermodynamics. Internal Energy Density. Complementary Internal

Energy Density
The stress-strain relations can be proved theoretically by using the first law of

thermodynamics where we can show that the relations are symmetry. However, the elastic

coefficients or stiffness coefficients of these relations are obtained experimentally.
The wvariations of the strain components resulting from the variations of the

displacement ou , v, and ow are
5z, = 00 5o~ L, _1[a@n o
ox T2t 2] ox Oy
s 20O L 1[a0n o)
g oy o2t 2 oy oz |
b 000 oL 1faw) o
0z T2 21 ox 0z

First Law of Thermodynamics
Consider the free body diagram of the body. The body has a volume of ¥~ and the

body forces B,, B,, and B, per unit volume as shown in Fig. 2.4. Under the action of the

surface forces and during the displacement variations ou, 6v, and ow, the body is in static

equilibrium.
For a condition which no net heat flow into the volume V", the first law of

thermodynamic states that during the displacement variations ou , 6v, and ow, the variation
in work of the external forces oW, is equal to the variation of the internal energy oU .
oW, =oU
W + W, =oU

where oW, = the work of the surface forces and oW, = the work of the body forces.

Concentrated force
wdealization

surface
force

Linear distributed
load idealization

Fig. 2.4
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From the previous chapter, the components of the stress vector
Gp=0pl+0 Pyj' +0 le€ acting on the plane P having the normal vector 7 = Ii + mj + nk as
shown in Fig. 2.5 can be written as
Op, =01+ T m+7T.n

Op

, =T +o m+7 . n

Op, =T l+7, m+o.n

y

T
T X

Fig. 2.5

The force components due the stress vector components acting on the area dS = dA4 ,,.
are
dfF =0,dS dF, =op,dS dF, =0,dS
The work W can be written as

W = [[ou(c,,dS) + [[6v(,,dS) + [ (o ,.dS)

oW, = ”[le +r,m+ T _n)ou + (rxyl +to,m+ ryzn)c?v +(r [+ T,.m+ o, n)owldS
o

The work W, can be written as

W, = [[[(B.ou+B,5v+B.ow)dV
!

The variation in work of the external forces oW, is

oW, = H[O'xl +7,m+ T_n)ou + (rxyl +o,m+ Tyzn)&/ +(r 1+ T,.m+ o_n)owldsS +
"

m (B,du+B,6v+B.Sw)dV
!
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Gauss’s theorem

Let the vector on the surface dS having the total volume dV is S i+S j+S k. The

surface dS has the normal vector 7 = li +mj + nk . By using the gauss’s theorem, we have

m{ $ 2 }dV j [as, +mS, +nS.)ds

y

Rewriting the equation of the work W, into the form of “ (IS, +mS, +nS.)dS, we

have
= IJ.[(axéu tr otz owl+(r ,0uto ov+r, owm+(r ou+17, 0v+o . own]
o

Let S, =cbu+tzr,ovtr. ow, S, =r,0u+to,ov+r, 6w, and S, =7 _du+7,_6v+o.ow

then, we have the work oW in the form of

x4 dV = —(0' ou+rt, 5v+r 5W)+—(T 5M+O' 5V+T _OW)
| a;c aay oS,

+ 8_(sz5” +7,.6v+ azéw)}dV
4

The variation in work of the external forces 0/, can be rewritten in the form of

W, = jjj[—(a B+ 7,00+ 7,.0w) +— (z' Su+0c,6v+1, 6w)

+§(rm§u +7,,0v+0.0w)+ B .du+ B,6v+ Bzéw}dV
4

Note that the partial derivatives,

O sbu=0" 1557 — 5 s + %
ox * ox ox Ox
0
irxyé' = xy@+5v =
X Oox ox
i XZ&‘}_ XZ@ &/‘}arxz
Ox Oox Oox
0
iz—x&’l_rx @4_&4 Tx‘
a oy y
i0' 5v:0'.@+5v Ty =0 0 +6v Ty
ay y Yy ay ay y Yy ay
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o sw=0.2% 4 5wl% _ 5 55+ 6w

Oz Oz Oz Oz

oo,

Rearranging the terms, we have

SW, = j j j (0.0, +0 0, +0.5¢, +2t, e, +2t, e, +2t 5 )V +
!

or.. 0 oo, Ort,
m 9o, L +8T“ + B, |6u + Lo OO 0 +B, |ov
pe ox 0 0z } ox oy 0z

y
T 82
[a z yz aO'Z Zj;

Ox oy 0z

Since the components in the second integral is the differential equilibrium equation of

deformable body which is equal to zero, then,

5We - jII(O'X&E‘X + G}’58J’ + 02682 + 2Txy58xy + 2Tyz5gyz +2Tx258xz)dV
p

or,

W, = [[[(c.0, + 0,06, +0.06. + 7,5y, +7,.5y,. +7,.5y . )dV
P

The internal energy U of the volume ¥~ of the body can be expressed in terms of the

internal-energy density U, as

U:_[VJ:IUUdV

The variation of the internal energy oU is

5U=jy[j5UodV

Since the first law of thermodynamic states that

W, =5U = [[[(0,5¢, + 0,56, + 0.6, + 2,06, +27,.06,. +27,.56,.)dV
P

The variation of the internal-energy density oU, is
oU,=o0.0¢, +0,0¢,+0.0¢, +2t,,0¢,, +21 O¢, +21 0¢,
In the index notation, we have
oU, =0,0s,
i=1,2,3,4,5,6
Elasticity and internal energy density

For linearly elastic material, the total internal energy in a loaded body is equal to the

total potential energy of the internal forces or elastic strain energy.



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 2-13

Since the strain-energy density U, generally depends on the strain components, the
coordinates (for inhomogeneous material), and the temperature. Thus, mathematically,
U, =U,(£,,6,,6.,6,,€,.,E ., %, ,2,T)

If the displacements u, v, and w have a variation du, ov, and ow, respectively, the

strain components will take the variations J¢_, 5gy , 0¢_, 0¢_,, 0¢ _, and o¢ . Therefore,

xy 2 yz?

the variation of the strain-energy density 6U, can be written as

oU, = o, 55x+aU" og,+ ou, o, + ou, 55xy+aU" 5gyz+6U" o€
£, oe, os, o¢,, o¢,, os .

Xz

Comparing this equation with the one previously obtained oU, = o d¢, + 0 J¢, +

0.0¢, +2t, 06, +21, 0¢,. +27 _0¢, , we have

oU, oU, oU,
o, = o, = o, =
O¢ b o, 0¢.
_1eU, 8U, 18U, oU, 10U, ouU,

Txy = Tyz - T -
28% nyy 288yz 87/yz 20, Oy,

In the matrix notation,

o, =— i=1,2,3,4,5,6

Elasticity and complementary internal energy density
For structural members subjected to one component of stress such as in the simple

tension test along the axis of the test specimen, the longitudinal stress o, can be written in

oU . o . .
the form of o = a—" Thus, the strain-energy density in the specimen is
£

X

U, = Iaxdgx

{a, Q)

(0, 0) {0, €) £

Fig. 2.6
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This equation represents the area under the o — & diagram as shown in Fig. 2.6. In
addition, the total rectangular area is equal to
oe. =U,+C,
where C, is called the complementary internal energy density or complementary strain

energy density. The C, is represented by the area above the o — ¢ curve. Hence,

C,=|sdo,
dc,
&, =
do

In general, the strain components are expressed as functions of the stress components.

gx :fi(o-x’ay’o-z’rxjﬂryz’rxz

8}; :fZ(Gx’Gy’O-z’Txy’Tyz’sz)

gz :fS(O-);vO-y:O-ZaTxysTyZ:sz)
1
gxy :nyy :f4(ax’o-y’az’rxy’ryz’rxz)
1

gyz :Eyyz :fS(O-x’O-y’O-z’Txy’Tyz’sz)

1
gxz :nyz :f6(o-x’o-y’o-z’rxy’ryz’z-xz)

Thus, in analogous with the previous discussion, we have

C,=-U,+ o +o,¢,+0.6 +2t ¢, ,+27 ¢, +21 ¢

yz%yz xz % xz

Differentiating the equation with respect to o, and using the chain rule, we have

ou,  oC, oo, o, oo, o, 0o, Oc.
=— : =+ |e to,—= |+|&. +o. +
oo, do, oo, oo, Yoo, oo, oo, oo,
ot o, or,, oeg,, 0 0
20, ——+71, — [+2| e, ——+7,—= |+2 gxz—rxz+rxz F
Yoo, Voo, oo, Voo, do, oo,
ou, oC, o€, O, Oc. de,,
=- +l e, to, — |+ — |+ |0, +2| 7 +
oo, 0o, ’ oo, Yoo, ol Y oo,
. 0
2|7, — |+2| 7, b
oo, f

Since U, =U,(¢,,¢,,¢.,¢,,,¢,.,¢,.) and ¢, = f/(o,,0,0,,7,,7,.,7.), thus, by

using the chain rule, we have
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oUu, adU, oe, N ou, oe, N oU, oe, N ou, 0¢,, N ou, 0¢,, N ou, os.
oo, o¢, 0o, O¢, do, O¢, 0o, O¢, 0o, O¢, 0o, O0¢, 00,

X

o€ o€ o¢
ou, os, v os v 2r, &0 e os

=0, + 0o Z + 27, + 27,
oo oo glo oo oo ¥ oo oo

X X X X X X

XZ

Therefore, the terms in ZU" will cancel some terms of the left-handed side of the
o

X

previous equation, we have

oC,
&, =
oo,
Similarly, for differentiating the equation with respect to o,,0.,7,,,7,., and 7_, we
obtain
oC, oC, 10C, 10C, 1 oC,
g, = g, = &, =— g, =— E,=—

* oo, ol Y207, 7 201, 207,

For a linear elastic behavior, C, = U, as shown in Fig. 2.7.

[9)

Ep!’

Fig. 2.7
2.3 Stress-Strain Relations and Strain-Stress Relations
The generalized Hooke’s law relates stresses to strains. Each of the stress components

is a linear function of the strain components.

o g
x Cl 1 Cl 2 C13 C114 Cl 5 C~’16 x
o g
y 21 22 23 24 25 26 y
o g

w
@D
[
=
)
[
w
=N
(8]

[
pY)
[
=
9
<
[
=)

i

)
a Gﬁ@ a0
A Qgﬁ a 0O
a Gﬁ@ a0
A Qtﬁ a 0O
A Qﬁﬁ a 0O
a Qg@ a 0O
.
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In the index notation, we have

or,
0, C, C, C, C, Cy Cglla
0, Cy Cn Cy Gy G Cylle,
O3 _ Cy Gy Gy Gy G Cylles
T4 Cy Cp Cu Cyp Cu Cyllr,
s Cy Cy Cy Cy G Cillys
Ts _C61 Co, Cy Co Cgs Cg 1e

The stiffness coefficients C; have 36 components. However, less than 36 of the

coefficients can be shown actually independent for elastic material when the strain energy is

considered. Using the relations between the stress components and the strain energy density,

we have
ou,
%x = oe =Che, +Cpe, +Cpe. +Cyy,. +Cisy.. +Ci7,,
ou,
T e Coe, +Cpe, +Che. + Coyy, + Cosy o + Coey
y
ou,
O'Z :g = C318X +C32‘9y +C33gz + C347/yz + C357/xz +C367/xy
_lan _ou

T, = =—>=C,¢, +Cpe +Cpe +C +C +C
yz Zﬁgyz 8]/)}2 41%x 2%y 43¢z 447/yz 457/xz 46}/):)1

10U, 0oU,
Te = 5 oe.. = sz =C56, + Cszgy +Cg€, + C547yz +Csy,. + CS()}/xy

1oU, 0oU,
Ty = 5 P = y =Cg &, + Cezgy +Cgé. + Ce47yz +Cqs¥ . t+ C()é}/xy
xy

xy

Hence, we can show that the stiffness coefficients are symmetry, C;, = C;, by using

appropriate differentiation.

o°U
2 ao = Clz = C21
£,0¢8,
o’U,
= C13 = C31
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o’U
——=C, =C
65x67/xy

o’U
———=C5=Cg
a}/xzaj/yz

With the foregoing reduction from 36 to 21 components, the stress-strain relations are

O Cll Clz C13 C14 C15 C16 | &y
Oy C, Cp Gy Gy G Cyflé
o, _ Cy Cy Gy Gy G5 Gy e,
Ty Cy Cu Cy Cp Ci Cull7y
z Cs C G5 G G5 Cylfly,.
Ty (G Cx G Cu Cs Coolly W

These relations are referred to as characterizing anisotropic or triclinic materials since
there are no plane of symmetry for the material properties. Fig. 2.8 is a composite lamina in

which the fiber direction 1 -2 has an angle with the loading or principal direction x — y . This

composite material is an example of the anisotropic material.

Fiber ) _/_,/W/
- <
y _ i e R

e o e e
. i P
Matrix - _,/'/ __'4)'"/ .,/"/ /__/'
B ./_'.' - < ’/"
‘\% /@ Y
).~ ).~
Fig. 2.8
If there is one plane of material property symmetry, the stress-strain relations reduce
to
Ox _Cn Clz C13 0 C16_ &y
O-y C12 C22 C23 O C26 8y
O _ Cy Cy Gy 0 Gy ||é:
T 0 0 C, C45 0 |7 vz
xz 0 0 () Cs Yz
Ty _C16 Cze C36 0 0 C()()_ Y
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where the plane of symmetry is z = 0. Such a material is termed monoclinic materials having
13 independent stiffness coefficients.

If there are two orthogonal planes of material property symmetry for a material,

symmetry will exist relative to a third mutually orthogonal plane. Then, the stress-strain

relations reduce to

o.| [¢, ¢, C; 0 0 0 ]&
Oy Ch Cp Gy 0 0 0 ||
o, Cy; Cy Gy 0 0 0 ||e.
(1o o o ¢, 0o o0l
xz 0 0 0 0 Cs 0 |y,
ro] LO 0 0 0 0 Cglly,

These stress-strain relations define orthotropic materials. There are 9 independent
stiffness coefficients for an orthotropic material. Fig. 2.8 is a composite if the fiber direction

1-2 coincides with the loading or principal direction x — y, this composite material is an
example of the orthotropic material.
If there is one plane in the material in which the mechanical properties are equal in all

direction, the material is called transversely isotropic. If the plane x—y is the plane of

isotropy, then, the subscript 1 and 2 of the stiffness coefficients are interchangeable. The

stress-strain relations of the material will have 5 independent stiffness coefficients and are

o, ¢, C, C; 0 0 0 &y
o, ¢, C, C5; 0 0 0 €,
O, Cy; Gy Gy 0 0 0 ¢,
[ o o o ¢, o 0 7,
xz 6 0 0 0 C, 0 Y
] LO 0 0 0 0 (C-Cy/2]y,

If the material is isotropic in which the mechanical properties of the material are
symmetric on an infinite number of plane, there are only 2 independent stiffness coefficients

and the stress-strain relations are

o.| [c, C, C, 0 0 0 118x
gy CIZ Cll C12 0 0 0 gy
o.| _|Cn Ch C 0 0 0 o
.l 0o 0 0 (C,-Cy/2 0 0 Ve
= 0 0 0 0 (C,, —C,,)/2 0 V.
| LO 0 0 0 0 (Ci=Cp)/2]7,
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Deformation characteristic

Let us consider Fig. 2.9. The deformation of the isotropic material is directional
independent. Application of the normal stress causes extension in the direction of the applied
stress and contraction in the perpendicular direction. In addition, shear stress causes only
shearing deformation.

The deformation of the anisotropic is directional dependent. Application of the normal
stress leads not only to extension in the direction of the stress and contraction perpendicular to
it, but to shearing deformation as well. Conversely, shearing stress causes extension and
contraction in addition to the distortion of shearing deformation.

The deformation of the orthotropic material subjected to the normal stress in the
principal material direction is similar to one of the isotropic material. However, due to the
different properties in the two principal directions, the contraction can be either more or less
than the contraction of a similarly loaded isotropic material with the same modulus of
elasticity in the direction of load. In addition, shearing stress causes shearing deformation, but
the magnitude of the deformation is independent of the various modulus of elasticity and

Poisson’s ratios.

NORMAL SHEAR
STRESS STRESS
rn=———=—-N
I |
: || ISOTROPIC
1 |
[ I —
R

r——="1
1| |F ORTHOTROPIC
1 | WITH NORMAL STRESS IN THE
[ | PRINCIPAL MATERIAL
- DIRECTION

ANISOTROPIC

H
|

! OR ORTHOTROPIC MATERIAL
| WITH NORMAL STRESS NOT
| IN THE PRINCIPAL

" MATERIAL DIRECTION

r————1

Fig. 2.9
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The followings are the strain-stress relations corresponding to the stress-strain
relations of the anisotropic material, monoclinic material, orthotropic material, transversely

isotropic material, and isotropic material. Note that the term S;» 1,7=1,2,3,4,5,6 is called

the compliance coefficients.
Anisotropic material

The strain-stress relations of the anisotropic material have 21 independent compliance

coefficients
€y _Sll Sp Sz S Sis Slé_ O
&y Sp Sy Sy Sy Sy Sy |9
€. _ Sy Sy Sy Sy Sy Sy )0
Yy S Sy Sy Sy S Su [T
Yz Sis Sy Sis S Sss Sse =
Yy [Si6 S S Sis Sse Ses Ty

Monoclinic material
The strain-stress relations of the monoclinic material have 13 independent compliance

coefficients. For symmetry about the axis z=0,

€y Sy S S 0 0 S|l
&y S Syp Sy 0 0 Sy ||
g, S, Sy S5 0 0 Si|lo.
u Sis 0|7
s Sss 0|7
Y S Sx S 0 0 S66_ T

o o
o o
o o
Ly ”n

Orthotropic material

The strain-stress relations of the orthotropic material have 9 independent compliance

coefficients.
e[S, S, S 0 0 01
&y Sp S» 8y 0 0 0 |9,
€. S 8» S 0 0 0 jjo.
y.[1o 0o o s, 0 o]z,
Y xz 0 0 0 0 S5 0 xz
Vs 0 0 0 0 0 Se T,

Transversely isotropic material
The strain-stress relations of the transversely isotropic material have 5 independent

compliance coefficients. For symmetry about the plane x—y,
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&y S, S, S; 0 0 0 O,
€y Sp Sy S 0 0 0 T
1 _|S: S Sy 00 0 -
y.[ {0 0 o0 S, 0 0 7,
Yz o o0 0 0 S, 0 xz
Yol LO 0 0 0 0 (5,-5, )/ 2] T,

Isotropic material

The strain-stress relations of the isotropic material have 2 independent compliance

coefficients.
e[S, S, S, 0 0 0 110
&y S, Su S, 0 0 0 gy
€. S S Sy 0 0 0 o,
yo[ 1o 0 0 (8,-5,)/2 0 0 r,
y. | 10 0 0 0 (S, —5S,)/2 0
Vo) LO 0 0 0 0 (51, =8,)/2]|z,,
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2.4 Strain Energy of an Infinitesimal Small Element
Anisotropic materials
Consider the state of stresses of an infinitesimal small element cut from a body

subjected to external loads as shown in Fig. 2.10.

¥

ﬁ‘q

/2 "ny

'CYa
> T
Txp=
N b3
qé P "_)"'“-"' -_—

A

-———

Fig. 2.10

By integrating the strain energy density equation (dU, = o d¢, +0 de, + o.de,
tr,dy,, +7.dy,. +7.dy.), from the initial to the final state of strain of a body, the strain

energy density of the anisotropic material will be obtained.
Let k is a constant used to indicate the state of strain of a body. It has a value from 0

at the initial state to 1 at the final state. At a given point, the stress components are ko,

ko , ko

y?

kt kt

zo

,»and kr . If the incremental strain components at that point are

(dk)e,, (dk)e,, (dk)e., (dk)y,,, (dk)y,., and (dk)y ... Hence,

xy 2

1 1
J-Uo (dk) = (Cllgx + CIZgy +Cl3gz +Cl4}/yz + Clsy/xz + C16;/xy)gx J.kdk+
0 0
1
(CIng + CZZgy + C2382 + C247/yz + C257/xz + CZﬁyxy)gy J-kdk+
0
1
(Cl3gx + CZSgy + C3382 + C34]/yz + C357/xz + C36}/xy)gz J.kdk+
0
1
(Cue, + C24‘9y +Cye, + C447/yz +Cyy . + C467xy)7/yz J.kdk+
0
1
(C158x + C258y + C3582 + C457/yz + C557/xz + C567/xy)7/xz jkdk+
0

1
(C168x + C26gy + C36gz + C467/yz + C567/xz + C667/xy)7/xy jkdk
0
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U, = %(Cngf +Che.e, +Chee. +Cuey,. +Cuey,. +Cey, )t
% (Che,e, + szg,i +Cp8,6. +Ch8, 7, + 08,7 . +Coe8, 7 )t
% (Cot.e, +Co.e, +Coys’ + Coyey, +Costy . +Cogy ) )
% (Cia? .6, +Coy 6, +Cyy 6, + Coy i + Cus? 7 o + Cag? ¥ 0 )
% (Cst o+ Cosy 8, + Cusy 6. + Cusy 7, + Oy L+ Cogy 7 O+

1
E (Cléyxygx + CZ()}/xygy + C367/xygz + C467/xy7/yz + CS()]/xy]/xz + C()()]/)?y)
In the index notation, we have

U :lC g€

o 2 7jei%j

Isotropic and homogenous materials

As previously mentioned, a material is isotropic when the mechanical properties of the
material are symmetric on an infinite number of plane. In other words, its mechanical
properties are invariant under any rotation of coordinates. A material is homogenous when the
mechanical properties of the material are identical for every point in a body. In other words,
its mechanical properties are invariant under any translation of coordinates. Thus, if the
material of an elastic body is isotropic, the strain energy density depends only on the principal

strains ¢, &,, and ¢&,, which are invariant under arbitrary rotation.

1 1 1
U, = EC“gf +§C128182 +5C13£183 +

1 1 1
ECuglgz +EC22822 +§C238283 +

1 1 1
5 C 6,8, + 5 C,,6,6, + 5 C,el

Since the mechanical properties of the isotropic material are symmetric for all planes,
the naming of the principal axes is arbitrary. Thus, the isotropic material has only two distinct
coefficients.

C11 :sz = C33 = Cl

U, = %Clé‘lz + %Cl&z + %Cl‘gf + G668, + G185 + G656,

o
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o

C
U, = 71(812 +er+el)+ Cy(e,6, +E,8 + £,65)
Rewriting the term C, (¢,¢, + &,&; + &,&;) and noting that
(a+b+c)* =a’ +2ab+b* +2ac+2bc +c’
1 2 2 2 2
(ab+ac+bc):E[(a+b+c) —(@®+b* +c?)]
Hence,
C C
C,(&&, +&,65 + 6,8,) :72(51 +&, +6,) _72(512 +&; +é&7)
Then, the strain energy density can be rewritten as

C C C
U, = ?1(812 +el+ e+ 72(81 +te,+&) —72(512 +el+é&7)

o

C -C . . .
Let 1=C, and G = % are elastic constants called Lame’s elastic coefficients.

Thus,

o

1
U, = 5/1(31 +e,+&,) +G(g] + &) + &)

In terms of the strain invariants, J, =¢,+¢&,+&;, and J, =¢g¢&, + 6,6, +&§,&;.
Rewriting the second term of the strain energy density equation, we have
G(el + &+ &) =Glg +&, +&,) —2G(g,8, +&,8, + £,&;)

Then,

1
U,=—-AJ]+GJ} -2GJ,
2
1
In general, J, =¢ +¢&, +¢, and J, =&, +¢,6, +¢&.¢, —Z(}/fy +;/}2,Z +72), then,
1 2 2
U, = 5/1 (&, +e, +¢,) +G (s, +e, +¢.)
1 2 2 2
_2G (ngy +8ygz +gzgx _Z(j/xy +}/yz +7/xz))
1
U, = El (6,+&,+6.) +G(e) + &, + 1) +2G(e,6, +£,6, + €,£.,)
1 2 2 2
_2G (ngy +8ygz +gzgx _Z(j/xy +}/yz +7/xz))

o

1 1
U, = 5/1 (6, +¢&,+6.) +G( &l + e + 822+§(7/fy +7 7))
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) ou, ou, ou, 10U, 0oU, 10U, 0oU,
Slnce O-x: , O :—, O-z:_’ TX = — = 9 TZ:_ = B}
o, " o, o, 7 20e, oy, " 20s. 0y,
10U, 0oU,
T, =——202= , consequently,
20e, Oy,
o .1 2 2 2 2 1, 2 2
O-ng[_ﬂ (€X+8y+82) +G(8x+gy+8z+5(}/x}’+7/yz+7/)‘z))]
0, =4 (s, +5,+2,) +2Ge, = e +2Gz,
0 1/1 2L G( & 2 2, Lo 2 2
o, = —[oA (e +e,+8) +G(el+ &) +al+_(r +7 +70)]
y
o,=4 (e, +te,+e.) +2Ge, = le +2Ge,
0. =LA (0, 6, 0+ e+ 8 S )]
O-z:/’L(gx—i_gy-i-gz)+2ng:/1€+2GgZ
0o 1 2 2 2 > 1, 2 2
T)/z:y[aﬂ (8x+gy+gz) +G( gx+gy+gz +5(7/xy+}/yz+7/xz))]
yz
ryZ:Gj/yZ
o 1 2 2 2 2, 1 2 2
sz:y[al (8x+8y+gz) +G( 8x+8y+8z +E(7xy+7/yz+7/xz))]
7.=Gy,.
o .1 2 2 2 2, 1, 2 2
Txyzy[zl (8x+gy+€z) +G( 8x+gy+gz +E(7/X,V+}/J’Z+7/xz))]
X

r, =Gy,

where e = J,| is the classical small-displacement cubical strain. The stress invariants can be

related with the strain invariants by

I,=0,+0,+0.=2e+2Ge, + le +2G¢, + de +2Ge,
I, =3e+2G(e, +¢&,+¢.)
I, =(31+2G)J,
I, =A(BA+4G)J] +4G*J,
I, =2 (A+2G)J; +41G*J,J, +8G’J,

Inverting the stress equations, we obtain

Y,. =2¢, = G
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T

—2¢ =x
Vi xz G
Tx
7/xy:28xy_ G):

o, =A(e, +¢&,+¢.) +2Ge, =(A+20G)e, + Ae + Ae,
o,=4 (e, +te,+¢) +2Ge, = e, +(A+20G)¢, + de,
o.=A(e, +¢,+¢,) +2Ge, = Ae, + Ag, + (A +2G)¢,

In matrix notation, we have

o, (A1+2G) A A &,

o,r=| A (A+26) A fe,

o ! A (A+20)] e,
e | [(A+26) 4 A 1o,
e t=| 2 (A+26) A o,
¢ A A (A+20)] |o

This matrix inversion can be performed by hand or by computer program such as

Mathematica, and we obtain.

g, = %[O'x —v(ay +0'Z)]
)

£, = %[O'y -v(o, +0'Z)]

g, :%[O'Z -v(o, +c7y)]

GBA+2G)  _ 4

where E = , V= ,and G = . In matrix notation,
A+G 2(L+G) 2(1+v)
LA
E E E
JIE R KRRl s
&y 1% 1% 1 0 0 0 T
&\_| E E E O
g 0 0 0 é 0 o0]F
]/xz 1 Xz
0 0 0 0 — 0
7xy G TXY
0 0 0O 0 O 1
L G
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The strain energy density of isotropic material can be found by substituting the strains
into the equation U, = lﬂ (6. +&, +&. ) +G(el+¢&’+ &’ +l(y2 +72 +72)) and
0T 5 «TE,TE, 2 T ETE Ty T e T e
rearranging the terms.
Yy = i(o-f + 0'; + 0'22) —%(O‘XO'y +0,0,+ 0.0.) +%(rfy + Tiz + rfz)
or,

1
Uo =5[O-x5x +O_ygy +O'Z€Z +Txy7/xy +T)/Z;/yz +TXZ7/XZ]

2.5 Stress-Strain Relations for Isotropic Material: Physical Derivation

Consider a cubic volume element subjected to a state of triaxial normal stress o, o,,
o.and associated normal strains &, &, and &, are developed in the material. Since the

material is isotropic, the cubic volume element will deform to a rectangular block, no shear
strains is produced in the material. By using the principle of superposition, the deformation of

the cubic volume element subjected to each normal stress can be draw as shown in Fig. 2.11.

(a) (b) (©) (d)

Fig. 2.11
First, consider the normal strain of the element in the x direction, caused by separate

application of each normal stress o, o, and o,. Under o, the cubic volume element

elongates in the x direction and the associated strain in this direction is

When o is applied, the cubic volume element contracts in the x direction due to the

Poisson’s effects and the associated strain in this direction is

.

) E
Similarly, when o is applied, the cubic volume element contracts in the x direction

due to the Poisson’s effects and the associated strain in this direction is
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Superimposing these three normal strains, we have the total normal stress o of the

state of stress equals to
1
£, = E[O'x - V(O'y +0, )]

Likewise, the normal strain in the y and z direction can be determined as

g, :%[O'y -v(o, +0'Z)]
g, = %[O'Z -v(o, +0'y)]

In the test, application of the shear stress 7, to the cubic volume element of the
isotropic material only produces the shear strain y, in the element as shown in Fig. 2.12a.
Likewise, the shear stresses 7, and 7. only produce the shear strain y . and y_. on the

cubic volume element. Hence,

1
yxy _Erxy
1
7yz =_z-yz
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Example 2-2

The thin-walled cylindrical pressure vessel 10 m long as shown in Fig. Ex2-2 has
closed ends, a wall thickness of 5 mm, and an inner diameter of 3 m. If the vessel is filled
with air to a pressure of 2MPa, how much do the length, diameter, and wall thickness

change, and in each case is the change an increase or a decrease? The vessel is made of steel

having £ =200GPa, and v =0.30.

Fig. Ex2-2

Let the x -axis is along the longitudinal axis of the vessel and the z -axis is normal to

the surface. Thus, the y -axis is in the tangential direction.

Since the ratio of the radius to the thickness, /¢, is small, thus,

o =P 20D 3000Mp,
2t 2(0.005)
Yt (0.005)

The value of o varies from — p on the inside wall to zero on the outside wall, thus,
o, =0 and we have

1

g, =————[300-0.3(600 +0)] = 0.00060
200(10%)

1

& =—[600-0.3(300 + 0)|=0.00255
Y 200(103)[ ( )

£, = ;3[0 —0.3(300 + 600)] = —0.00135
200(10°)
Since & :£, & :A(—”d):A_d,and €. ZE’
L 7 d t

AL =0.00060(10)10° = +6 mm
Ad =0.00255(3)10° = +7.65 mm
At =-0.00135(5) = —6.75(10) mm

Thus, there are small increases in length and diameter, and a tiny decrease in the wall

thickness.
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Example 2-3

A sample of material subjected to a compressive stress o is confined so that it can
not deformed in the y -direction, but deformation is permitted in the x -direction, as shown in
Fig. Ex 2-3. Assuming that the material is isotropic and exhibits linear-elastic behavior.
Determine the following in term of o, and the elastic constants of the material:

a.) The stress that develops in the y -direction.

b.) The strain in the z -direction.

c.) The strain in the x -direction.

d.) The stiffness £’ =o_ /¢, in the z -direction. Is this apparent modulus equal to the

elastic modulus £ from the uniaxial test on the material? Why or why not?

2 Oz
v

material —y

rigid die

P
e
X

Fig. Ex 2-3

Since the sample can not deformed in the y-direction, &, =0, and since the

deformation is permitted in the x -direction, o, =0.

The stress that develops in the y -direction is

&, = %[O'y -v(o, + GZ)]

0=%[0'y —v(0+62)]

o, =Vvo,

The strain in the z -direction is

£, =%[0'Z -v(o, +(7y)]

g, = %[0'2 —-v(0+ vaz)]
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The strain in the x -direction is
1

e, = E[ax —v(ay +O'Z)]

E. = %[0 -v(vo, + O'z)]

:_v(l+v)0

X E z

The stiffness E'=oc_ /¢, is

Thus, the apparent stiffness differs from the elastic modulus £ from the uniaxial test. This is
due to the fact that the apparent stiffness is determined by behavior according to the three-

dimensional form of Hooke's law.
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Chapter 3
Elements of Theory of Elasticity

3.1 Introduction

In the analysis of a body or structure, the geometry of the structure and the loads are
given. A solution may be obtained by analytical, numerical, and experimental methods. In the
analytical methods, the derivation of the load-stress relations depends on the following
conditions:

1. The equilibrium equations.

2. The compatibility equations.

3. The stress-strain relations.

4. The material responses.

Two different analytical methods used to satisfy the first and second condition are the
method of mechanics of materials and the theory of elasticity method.

The mechanics of materials involve the following steps.

1. The simplified assumptions related to the geometry of the deformation of the

structure are established by using the compatibility equations.

2. Analyze the geometry of the deformation to determine the strain distributions over
a cross section of the structure.

3. Relate the applied loads to the internal stress by using the equilibrium equations.

4. Use the stress-strain relations and the material responses to determine the relations
between the assumed strain distribution and stress distribution over a cross section
of the structure.

5. Relate the applied loads to the displacement of the structure.

The obtained results may be exact, or good approximations, or rough estimate,

depending largely on the accuracy of the assumptions made in the first step.

In the theory of elasticity, the states of stresses and displacements for every point in
the structure are determined by simultaneously satisfy the requirements of equilibrium at
every point, compatibility of all displacements and boundary conditions on stress and
displacement. This method involves no initial assumptions or approximation about the
geometry of the deformation. Thus, the method is more difficult than the mechanics of
materials. However, it is usually used to solve the problems in which the geometry of the
deformation can not be reliably anticipated such as determining the stress concentration
occurred at a hole in a plate.

Often, a practical problem is solves by using both methods simultaneously.
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Limitations
In this chapter, we are considering that the material is homogeneous, isotropic, and

linearly elastic, and that the displacements are small.
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Example 3-1: One dimensional problem
Determine the states of stresses and the axial displacement for every point in the bar

shown in Fig. Ex 3-1a.

g=q(x)=gx Before g applied: After g applied:
— — e e | A B A B
i 1 1 T 1
b e | H [ i
X, it i f— dx Bhey I
- L S —— fe—- i —»—‘
| L I |
f~——— u+du —
(a)
(b)
gx dx
Ada, % Ao, +do,)
A a
(c)
Fig. Ex 3-1

To determine the states of stresses for every point in the bar shown in Fig. Ex 3-1a, we
are assuming that the bar is in a state of uniaxial stress. This idealization is not exact since
the state of stress at the fixed end of the bar is in three dimensions due to the Poisson’s
effects. However, according to Saint-Venant’s principle, the effects are localized.

1. By using the equilibrium of forces in the longitudinal axis of the differential
element shown in Fig. Ex 3-1c, we have

—Ao +A(c, +do )+ q(x)dx =0
% + 900 _ 0
This equation is a differential equation of equilibrium, which must be satistied for

every point in the bar from x =0 to x=L. Let ¢ = gx and the bar is prismatic, the states of
stresses can be determined by integrating the previously obtained equation.

2

17 1
o, =—|gx dx=—
o

The integration constant C, can be found by using the boundary condition of stress: at

2
x=0, o, =0. Hence, C, _ 9t and
24

2 2
o =94l _ 4 2 _p
24 24 24
2. To determine the axial displacement, we need first consider how the differential

element deformed under the load ¢ = gx and, then, obtain the strain-displacement relation.
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_(w+du)—u _du
o dx dx
The uniaxial stress-strain relation, o = E¢ .
du

o, =F—
dx

Substituting o into the differential equation of equilibrium, we have

2
d ?+@=0
dx A

Performing the first integration with respect to x and using the displacement

E

boundary condition: at x = L, % =0, we obtain
X

Eﬂ:—lj‘qx dx:—ﬂ—i-C2
dx Ay 24

_aL

C, =
> 24

ENM 4 22
dx 24

Performing the second integration with respect to x and using the displacement

boundary condition: at x =0, u =0, we obtain

3
X

Eu=-L{(-x)dv="L| ’x-"|+C,
241 24 3

C, =0

Therefore, the displacement equation is

2
w=—Lp -
24E 3
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3.2 Two-Dimensional Problems of Theory of Elasticity
Consider a plate structure subjected to the external load parallel to the plate as shown
in Fig. 3-1. If the plate is very thin compared to the dimension of the plate, we can proved that

the stresses o,, 7., and 7  on an infinitesimal small element far away from the loading

points are approximately equal to zero. This kind of state of stresses on the infinitesimal small

element is called the plane stress. The strain-stress relations of the plane stress are

Q Q9

N\ O O O

g, | 1 -v 0 o,
g, :E -v 1 0 o,
- 0 0 2(01+v) T,
g, =-—(0,+0,)
_E
2(1+v)

and the stress-strain relations of the plane stress are
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o, . 1 v 0 £,

o, = v 1 0 £,
l-v

T 0 0 (I-v)/2 -

xy
The strain-displacement relations of the plane stress are
Y T
toox ooy Y9y ox
The strain compatibility relation of the plane stress is

o’e, %, 0,

bl

> T 2
ox oy Ox0y

The differential equations of equilibrium of the plane stress are

ao'x ot w
+
ox oy

+B,.=0

ot oo
Y +—+B =
ox oy ’
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Example 3-2
Given that the body force is negligible. Investigate if the following displacement field

can be a solution of a static plane stress problem
u=a,(x>-y*)—a,y+a, and v=_2axy+a,
where the a, are constants.

The strain-displacement relations are

€x=a—u:2a1x g):@:Zalx
ox Yoy
ou Ov
}/xy =5+§=(_2a1y_a2)+2a1y=_a2

The strain compatibility relation is satisfied since

628y 0’e, 627/)@,

2 2 =0
ox oy Ox0y

The stress-strain relations of the plane stress are

o, E 1 v 0 2a,x
o, =17 v 1 0 2a,x
0| U0 0 a-wi2l-g
2Fa,x
I-v
_|2Eax
I-v
B a,E
2(1+v)

The differential equations of equilibrium of the plane stress are

0
do, 1l
ox oy
or,, +80'y o
ox oy

Thus, the displacement field is not a possible solution.
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Boundary condition

Boundary condition is the prescribed condition of displacements and forces at the

boundaries of a structure. Consider a body as shown in Fig. 3.2.

Fig. 3.2
1. Geometric or displacement boundary condition pertains to the compatibility

conditions and required that the displacement (including rotation) at the structural

boundary must be satisfied.

Along the boundary AB which is the fixed support, the displacements u# and v are

Zero.
2. Natural or force boundary condition pertains to the equilibrium conditions and
required that the forces (including moment) at the structural boundary must be
satisfied.
From chapter 1, the stress vector &, on an arbitrary plane in three-dimension is
Op = O'Pxf + O'Py]' + O'PZl€
where

Op, =0 l+7, m+7_n
Op, =T l+o,m+7,.n
Op, =T l+7, m+o.n
From Fig. 3.2, the direction cosine along the boundary BC and AC is [ =cos¢,
m=sin¢g,and n=0. Thus,
Op =0,C08¢+7, sing

Op, =7, C08¢p+0, sing

. . dF dar, dr,
Defining surface traction as ® =—=—, ® = ,and @ = where F_, F,
dA 7 dA dA 7

and F, are the components of a force vector F acting on the surface having a boundary area

dA . Hence,
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o :_(pdA)cos¢ _

x D950 poos
dF’ (pdA)sin ¢ .
O =—"=- = —psin
7 dA poing

The force boundary conditions along the boundary BC are

op =D ; —pcosg =0, cosg+7, sing
Op, =D ; —psing =1, cosg+o, sing
At ¢9=0, o,=-p
r,=0
T
At ¢ = 5 P Jy = _p
T, = 0
The force boundary conditions along the boundary BC are
Atp=rm, o, =0
r,=0
o,=0

y
The elasticity solutions of this example must satisfy the above displacement and force

boundary conditions.
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Example 3-3
The cantilevered beam as shown in Fig. Ex 3-3 has unit thickness. Neglecting the

body forces, determine
a.) The flexural stress o, due to the applied load by using the mechanics of material

method of analysis.

b.) The stresses o, and y , by using the obtained the flexural stress o, .

c.) If the obtained state of stresses is possible for the theory of elasticity method of

analysis?
¢ (force per unit length)
EEREEEEEEEEEER
1c
. I .
Fig. Ex 3-3

By the mechanics of material method of analysis, we have

2
Ly
_My_(ZJ _3q

(e = X
* I 2¢3 4¢° Y
3

To find 7, , we use the differential equation of equilibrium of the plane stress where

the body forces is neglected. Thus,

do, or,, o
ox oy
ot
3—q3xy +—2=0
2¢ oy
3q
T, = —j?xydy+ C,
3q
T, = —Exy2 +C,

Stress boundary condition, at y =+c, 7,, =0.
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To find o, we use the differential equation of equilibrium of the plane stress where

the body forces is neglected. Thus,

érxy 66}) o
ox oy -
q , 2 2 y
c + =0
4c° ( ) 0

39 > 2
o, == (& =y +C,

3 oo Y
BTG

Stress boundary condition, at y =+c, o, =—¢q.

3
c
—q=——=(c —?)+C2

3
3
o =42
2| 2c¢ 2c
To determine if the obtained state of stresses is possible, we use the strain

compatibility equation,

628)’ —+ azgx — azyxy
ox* oy’ oxoy

But, we need to find the strains from the stresses first. For the plane stress problem,

3g »
4c3xy
. | I —v 0 T
g, t=—|-v 1 0o P24
’ E 2| 2¢ 2c
7 0 0 2(1+v)
i 3q 2 2
7?5(0 -y)

Then, substituting the obtained strains into the strain compatibility equation, we get

azey N 6zgx L 627@
ox> oy’ Oxoy

Therefore, the state of stresses is impossible for the theory of elasticity method of analysis.
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3.3 Stress Field Solution for Plane Stress Problem
To solve problems in either plane stress and plane strain, one may begin by finding

stresses that satisfy the equation of equilibrium.

or,,
oo, +—=+B_ =0
ox oy
or oo
~+——+B =0
ox oy ’

The above two equations have three unknowns stresses. Hence, an infinite number of
stress solutions can be obtained. Let the body forces per unit volume are defined as
derivatives of a potential function V =V (x,y) where

B ar oV
* ox ! oy
In addition, let F' = F(x,y) be an arbitrary function and let

’F ’F ’F
=82+V av=82+V rxyz—a
oy T Ox Ox0y

o

X

These functions are satisfied the equations of equilibrium.

O'F ov|_ oF o _,
oxoy®  ox | oxoy®  ox

O°F O°F oV | oV
oA T A T

Ox“0y |oOx“0y Oy
Therefore, as far as the equations of equilibrium are concerned, the assumed stress functions
constitute a general solution. The problem is reduced to finding a function F' = F(x,y) that
satisfies the compatibility conditions and the boundary conditions.

The strain-stress relations of the plane stress problems are

2
a1;:+V
oy

£, | 1 -v 0 0
& ==|-v 1 0 —+V
E Ox
Y 0 0 2(01+v) O F

Ox0y

The strain compatibility relation of the plane stress is

o’c, 1|o'F o'F oV
2 T aa Vs TV —
oy E| oy ox~0y oy
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’s, 1 o'F_ o'F F
2 Vo2 +(1-
Ox E ox*oy’

0’7y 2(+v) O'F

Ox0y E  ox’oy’

The only compatibility equation not identically satisfied is

4 4
81:7_'_2 82F o'F (1_)81/ 812/ _0
ox ox*oy: oyt oy

VIF+VV =0
Now, the problem is reduced to the solution of boundary-value problem associated
with biharmonic differential operator V*F and harmonic differential operator V*V which
can be solved by using theory of functions of a complex variable.

If the body forces are absent,
VF=0
The function F' = F(x,y) is called the Airy stress function which is discovered by Sir
George Biddell Airy in 1863.
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Example 3-4
A rectangular block having the mass density p stands on a rigid horizontal support

and is loaded by its own weight as shown in Fig. Ex 3-4a. As a proposed solution of this

problem, investigate the equation

3 2
Fz—pg(y—+ ; ]and V = pgy

6

Determine the displacement u = u(x, y) and v =v(x, y) of the block due to its own weight.

¥

Fig. Ex 3-4a
From the Airy stress function, we obtain

O°F
P +V=-pgy+pgy=0

O

0°F
o, = P +V =—pgL+ pgy=pg(y—L)
0°F
Tx = — =
! Ox0y

The results satisfy the free-surface boundary conditions of the top and the vertical

edges of the block where, for the top edge,

c,=0
o, =pe(L-L)=0
7,=0
, for the vertical edge,
o, =0
o, =pg(y-L)
7.,=0

, and for the bottom edge,
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o, =0
o,=pg(0-L)=-pgL
7,=0
Determine the displacement u = u(x,y) and v =v(x,y).

From the stress-strain relations,

£, . 1 -v 0 0
G 0 [pe(y-1L)
Ve 0 0 201+w)||0
ou 1%
e =—=—-pg—(-L
S ng(y )
o _pg
g, =—=—(y—-L
"o E(y )
Vs _ g
Y0y oOx

Thus, by integration, the displacement functions are in the form of

14
u=-pg(y=L)x+J,

S SE

E 2
o ) ou oOv
Substituting ¥ = u(x,y) and v=v(x,y) into y_ =—+—=0
Y0y Ox
d
—pgix—i—i + % =0
E dy dx

Grouping the terms,

P AL
{ 'OgE +dx}{dy}_0

Each expression in the parentheses must be a constant. If not, we could vary x alone

(or y alone) and violate the equality. Thus,

v df,
-pg—x+——=a
ng dx !
d
4,
dy

2

1% VX
and =|la, +pg—x|dx=a,x+pe——+a
/e _[[ 1 ng j 1 ng 5 2
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fy :_Ialdy =—a,y+a;

Rewriting the displacement functions, we get

1%
u= —ng(y—L)x—aly+ a;

2
vzﬁ(y _rg

2 2
VX y v o,
—-Ly)tax+pg——+a ——=Ly+—x" |+ax+a
Ezy)lngzzE{zyz}lz

By using the boundary conditions of the block and the symmetry, at x =0 and y =0,
u=0 and v=0, we obtain
a,=0and a; =0

At x =0 and y:O,@=O,
ox

@:&xjtal =0

Oox

Hence, we get the displacement functions in the form of

14
u= —ng(y —L-D)x

2
y=PE y——Ly+Kx2 —w
E| 2 2

Fig. Ex 3-4b
The deformed shape of the block is shown in Fig. Ex 3-4b. It should be noted that
1.) The block shortens vertically and become wider toward the base due to Poisson's
effect.

2.) All right angles are preserved since 7, =0.

3.) The deflection at the base is incompatible with the rigid horizontal support

4.) According to the Saint-Venant's principle, the solution should be exact for y > 2c.
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3.4 Solution by Polynomials

For the plane problems with long rectangular strip and the body forces are absent, the
solutions of the biharmonic differential operator V*F =0 in the form of polynomial are of
interest. By considering polynomials with various degrees and suitably adjusting their
coefficients, a number of practical problems can be solved.

A quadratic polynomial is the lowest order polynomials that yield nonzero stresses

from an Airy stress function. Consider the function

a c
F=-2x"+bxy+-2y°
> 2 XY 2y

where a,, b,, and ¢, are constants. This Airy stress function is satisfied the equation

V*F =0 and the stress components in this case are

0*F
O'x = 8y2 :C2
Ty = ox’ B
0*F

T = — =
Y Oxoy ?
These stress boundary conditions are constant throughout the body. Thus, the stress

: a c o . .
function F =72x2 erznyr?2 y® represents a combination of uniform tensions or

compressions in two perpendicular directions and a uniform shear as shown in Fig. 3.3.

Yy
|

R O O

fte

- "“i‘j‘i"‘J
o

_'*_"l_*tr_f'l_’l_‘l*l_'v |
& -6y c2
Fig3.3

Let consider a stress function in the form of a cubic function.

_ % 3+b—3x2y+c—3xy2+d3 3
3(2) 2 2 3(2)

where a;, b,, c;, and d, are constants. This Airy stress function is satisfied the equation

V*F =0 and the stress components in this case are
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0°F
o :a—2=c3x+d3y

X

0°F
o,= " =a;x+byy
0*F
T, = _8x8y =-b,x—c,y

If all coefficients except d, are zero and d, = 6a, = a constant,
o, =6ay o,=0 7,=0

The meaning and the usefulness of the obtained stress boundary condition depend on

the region that we are choosing to consider. Let us consider Fig. 3-4.

b

v 6(11(
: 6ac y\
’-<—.-— 12a1c 12a4¢ —1-‘—5-| I . Normal

—

r—— bac ba;c «T—-| - *
¥ e
0 ][ - {o 0 1 _ 0457\ Shear
¥¢ 5\ x
IZHTC 2c ""l
{a) (b) c)
Fig. 3.4

1. If we choose the region as shown in Fig. 3.4a, the stress boundary condition
represents a state of the normal stresses due to a pure bending applied at the ends
of the beam.

2. If we choose the region as shown in Fig. 3.4b, the stress boundary condition
represents a state of the normal stresses due to bending plus axial load applied to
the ends of the beam.

3. If we choose the region as shown in Fig. 3.4c, the solution has no practical
interest.

In taking the stress function in the form of quadratic and cubic polynomial equations,

we are completely free in choosing the magnitudes of the coefficients, since the equation

V*F =0 is always satisfied whatever values they may have. In the case of polynomials of
higher degrees, the equation V*F =0 is satisfied only if certain relations between the
coefficients are satisfied.

If all coefficients except b, are zero,

0'F 0'F
= = b3y Txy = — =
Ox0y

c.=0 o ~byx

x e

The stress boundary conditions in this case are shown in Fig. 3-5.
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Fig 3.5

Let us consider the stress function in the form of a polynomial of the fourth degree,

a, O b, x3y+c—4x2y2+ d, xy3+ €, y4
4(3) 3(2 2 3(2) 4(3)

We can find that the function is satisfied the equation V*F =0 only if
e, =—(2c, +a,)

The stress components in this case are

2
F
o, :aa 5 =c,x’ +d,xy—(Q2c, +a,)y’
2
F
o, :(272514962+b4xy+c4y2
°F b

d
T =- =——2x*=2c,xy——2y°
Y oxoy 2 T

If all coefficients except d, are zero and d, = 6¢, = a constant,
o, =6¢,xy c,=0 T, = —3¢4y2
y

—— e e e

L 1
~

Q

«
-S
S
|

»
3

YA = _Jpq
f——— . L [

$,Lc 6¢,Lc

L
L“'l
1
=l

F= @41}'3 F= ¢4(4"J'3 _ 3:‘:21}’;!
(a) (b)

Fig. 3.6
Fig. 3.6a shows the stress boundary condition associated with the solution on the
chosen region. The solution appears to lack practical interest.

Now, let us remove the shear stress on y = +¢ by superimposing the stress function

F =-3¢,c’xy on the previous stress function.
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F=¢,(xy’ =3c’xy)

This stress function is satisfied the equation V*F =0 and the stress components are

O*F
= = 6¢4xy

o =
x ay 2

0°F
= — = 3 2 — 2
Fo Ox0y Pae” =)

Fig.3.6b shows the stress boundary condition associated with the solution on the
chosen region. They appear to be the stress distribution corresponds to a cantilever beam

having fixed support at x = L and is subjected to both a parabolic distribution of 7, and pure

bending at x = 0. Note that, according to the Saint-Venant’s principle, the obtained elasticity
solution must be considered as approximate near the fixed support and loading point

(2¢ < x < L—2c) due to the Poisson’s effect and stress concentration.

P—j. v =34, 26 -2 | _ag,c
- 7’-xyy_ ¢4 c 3 —¢4C

My  (Px)y

o, =
I 12¢)° /12

= 6¢,xy

3.5 End Effects
In some problems in which the structure is subjected to loads producing stress
concentrations in the area of loading point, we need to use the Saint-Venant’s principle to

simplify the problems by replacing the loads with a statically equivalent load.

y.v ¥, v
Ll f -F'[ ‘l" =
P
Y |
" G
c X, Tn" o xou
r 4
P :r‘ Tyy dy
(a) (b) (c)
Fig 3.7

Consider a cantilever beam having a unit width as shown in Fig. 3.7a. The
concentrated load P makes the problem difficult to solve since it is difficult to satisfy the
force boundary conditions at the loading point. Hence, the load P is replaced by a quadratic

distribution of surface traction @, =—z  that is zero at y =+c¢ and maximum at y =0 as
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shown in Fig. 3.7b. According to the Saint-Venant’s principle, these two different loading
patterns practically produce no different effect to the beam at a distance of 2¢ or more.

In addition, the displacement boundary condition at the fixed end of the beam is u =0
and v=0 for —c < y <c. This condition makes the elasticity solution difficult to obtain. To
make the problem easier, we assume the initial vertical line at x to warp into the shapes as

shown in Fig. 3.7¢. This deformation is due to the shear stress 7, . Due to the fixed support at

x =L, we may

1. Set ? =0 at y =0 to make the beam axis horizontal at x = L.
X

2. Set Z—M =0 at y =0 to make the beam vertical line vertical at x = L.
y

3.6 Determination of Displacements from Stresses
If the stress functions are known, we can determine the displacement by integration of

the strain-displacement relations as shown in the following example.
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Example 3-5: Bending of a cantilevered beam loaded at the end

Determine the displacements of a cantilevered beam having a unit width and loaded at
the end as shown in Fig. 3.7a.

Consider the cantilevered beam having a unit width as shown in Fig. 3.8a. The upper
and lower edges are free from load. As discussed before, the load P is replaced by a

quadratic distribution of surface traction @, =—7  that is zero at y =+c¢ and maximum at
v =0. This condition can be satisfied by using the stress components found by using the Airy
stress function in the form of
o, =064,xy og,=0 Txy:3¢4(cz_y2)
The constant ¢, can be found by using the force boundary condition: sum of the
shearing force distribution over the end of the beam must be equal to the load P .

c 3
P=r,dy= 3¢{2c3 - 2%} = 4¢,c°

. o . ) s . 2¢’
Since the moment of inertial of the cross section having a unit thickness is = the

stress components equations can be written as

0'—3Px _ Pxy

* 203y 1
3.y P,

7. =—(N-—=)=—(c" -

o 46( cz) 2[( )

These stresses can also be obtained directly by using the method of mechanics of

material where

M
GY=—yandrx =Q
| i

Now, let determine the displacement corresponding to the stresses. Using Hooke’s law

for plane stress, we have

£, 1VE —-v/E 0 |[Pxy/l Pxy /(ET)
e, (=|-v/IE 1/E 0 KO =3—VvPxy /(EI)
v L0 0 UG lPe-yyien| | PE -y iere)

The strain-displacement relations of the plane stress are

ou Pxy ov VPxy ou ov P,
gx=—=— E =—=—— }/x =——|——=—(C —y)
ox EI T oy EI Yooy ox 21G
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Integrating ¢, and g,,we have

Px’y VvPxy®
u= + v=-— +
2EI /s 2EI S

where [, and f, are unknown functions of y only and x only, respectively. They may not

be a constant since we are dealing with partial derivative. Substituting the values of u and v
into the shear strain-displacement relation,

_ B B,
v 2B dy 2l dx 26 )

2 2 d 2 2
[Px +%}{ vPy +L+PL}_PC

_ b A, vpyt df P

2EI  dx | | 2B dv 2IG| 2IG

*d
In this equation, we can see that F(x) = {Px + %} are functions of x only, G(y) =
X

2

+ are functions of y only, and K = Pe
2E dy 2IG 21

{_ vPy? N af, Py’

is independent of x and y.

Fx)+ G(y)=K
This equation means that F'(x) must be some constant 4 and G(y)) must be some
constant B . If not, F'(x) and G(y) would vary with x and y, respectively. In addition, by
varying x alone or y alone, the equality would be violated. Hence,
B Pc’
2IG
daf, _ 4 Px’

dx  2EI

A+ B

%_B_i_vpy2 _Py2

dy 2EI  2IG

. d d
Integrating /, and A,we have
dx dy

vPy' Py’
MY B ByeD
Jv=6er e Y

Substituting into the expressions of u and v, we have

Y- Px’y N vPy’ 3 Py’
2EI  6EI 6IG

+By+D
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_ vPxy? B Py’
2EI  6EI

+Ax+C

Assuming that the centroid of the cross section is fixed. Then, the expressions of u
and v are zeroat x=L and y=0.
D=0

_pr

C = _
6EI

The deflection curve of the beam at y =0 is

pPx* PL?
Vo =— + —A(L—x
=0 6EI 6EI ( )

From the discussion about the end effects, due to the fixed support at x = L, we may

1. Set ol =0 at y =0 to make the beam axis horizontal at x = L.

ox
2. Set Z—u =0 at y =0 to make the beam vertical line vertical at x = L.
Y
ov
For the first case 8_:() at y=0and x=1L,
X
2
o = - PL +4=0
ox 2EI
2
A= PL
2FET
. Pc?
Then, from the equation 4+ B = ,
2IG
B Pc*  PL
2IG  2EI
2 2 2 3 3
Substituting all constants A4 = PL , B= Pe” _PL , C= PL_ L= _PE , D=0
2EI 2IG 2EI 6EI 3EI

into the expressions of # and v, we have

Px*y vPy' Py’ Pc*  PL’
u= + — + - y
2EI  6EI 6IG |2IG 2EI

_vPy' Px’ PLx PL
2EI  6EI 2EI 3EI

The deflection curve of the beam at y =0 can be rewritten as

Px* PI*’x PI
Vi =— + -
6EI 2EI 3EI
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At x =0, the deflection of the beam at y =0 is
Pl
14 = -
=0
o 3EI

which is identical to the one obtained by using the mechanics of materials method.
To show the warping of the beam cross section produced by the shearing stress, let us
consider the horizontal displacement u at the support x = L.
vPy® Py’ Pc’y
u_, = - +
6EI 6IG 2IG

ou VvPy* 3 Py’ N Pc?
oy., 2E 2IG 2IG

ou B Pc? 3P

vt 20G 4G

= 3P and having the

This rotation of the cross section is due to the shearing stress 7
c

clockwise direction.

Consider the second case where Z—u =0 at y=0 to make the beam vertical line
Y

vertical at x = L, we have

Px? Py* Py’
8u:£ ry Ay y+By+D =0

oy oy| 2EI  GEI 6IG

2

P 2 2
X vPy”~ Py L B=0
2EI  2EI 2IG

2 2 2
Bo_ Px™  vPy N Py
2EI  2EI 2IG

At y=0andx=1L,

_ PP
2EI
. Pc?
Then, from the equation 4+ B = ,
2IG
_Pc? N PL’
2IG  2EI
3 2 3
Substituting into the expressions of v at y =0 with C = L =— Pl —i,
6E] 2IG  3EI

we have
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Px* Pc*’x PL’x Pc’L PL
Vi == + + — —
6El 2IG 2FEI 2IG  3EI
Px’ Pc*x PI’x PI’
Vo =— - (L-x)+ -
6ElI 2IG 2EI 3EI
Comparing this equation with the equation v __Px3 + PL'x - PL reviousl
paring q a = =6l 2B 3EI ¥ Y

obtained, we have the deflection of the cantilevered beam increased by

Pc*x 3P
L—-x)=——(L—-x
21G( ) 4cG( )

This term is an estimate of the effect of shearing force on the deflection of the beam.

In reality, the cross-section near the fixed support is not free to rotate. Thus, the distribution

of stresses is different from the obtained results. However, if the beam is long compared to the
depth, the results are satisfactory.
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3.7 Plane Stress Problems in Polar Coordinate
The polar coordinate as shown in Fig. 3.8 is useful in the stress analysis of the
structures such as curved beams, circular rings and disks, pressurized cylinder.

)

Fig. 3.8

Equilibrium Equations in Polar Coordinate

ey

Tro _r'ilﬂ 0
\““\_ r
der ’ J - . :
Tor 20 Y dr w}\\ /
EI
Fi“
ff
r
T 1y \ .
T Y 9=0Iline

- - —

Fig. 3.9
Consider an infinitesimal small element subjected to the state of stresses in the polar
coordinate as shown in Fig. 3.9. If this element is in equilibrium, we have the summations of

the forces in the radial direction and circumferential direction are equal to zero.

DY F, =0

-o0,(rd0)-r,,(dr)— o, sin d749 (dr)+ |:O'r +

e+ 9% 40 ar | o, + 2% 40 |sin 92 (ar) + B rdrd6 = 0
00 00 2

aard{kr+dﬂd9+
or
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ZFH =0;

8;“’ dr}(r +dr)do +

-7,,(rd0)—oc,(dr)—1,,sin %(dr) + {z—m +
-

o +2% 40 ar | 7., + 2% a0 |sin %% (ar) + B, rdrd6 = 0
00 00 2

Expanding the above two equations, setting sind—ze = d_29 , and neglecting the higher-

order terms, we have the equilibrium equations in the polar coordinate.

do, 107, L9, =0,

+
or r 06 r

+B, =0

199, +—ar"9 +2Tﬂ+Bg =0
r 00 or r

Airy Stress Function

To solve the plane problems in polar coordinate, we begin by finding stresses that
satisfy the equations of equilibrium. However, the two equilibrium equations have three
unknowns stresses. Hence, The number of the possible stress solutions is infinite.

By using coordinate transformation from the Cartesian coordinates (x, ) to the polar

coordinates (7, ), we have

2 2
o, m n 2mn ||o,
2 2
o, =| n m —2mn o,
2 2
T —-mn mn m-—-n||r

By taking the inverse of the matrix, we have

2 2
o, m n —-2mn ||o,
| o2 2
o, r=|n m 2mn o,
2 2
r mn —mn m-—-n"||7,

xy

The relations between the Cartesian coordinates (x, y) to the polar coordinates (r,

0) are
rP=x>+y’
0= arctanl
X

The derivatives of the relation with respect to x and y are

@—E:cose @:Z:sinﬁ
ox r oy r
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o0y sin@ eld i_cos@
ox P’ r 6y r’ r

Thus, for any function f(x,y) that can be written in the polar coordinate as
f(rcos@,rsinf), we have the first partial derivative of the function f(x,y) as

o _dor Fo0_ Lo 0y
ox oOrox 00 ox or r 00

Also, the second partial derivative of the function f(x,)) can be written as

2 . .
0 f=(Cosgi_sm&ij{coseél_smﬁij

Oox or r 00 or r 00
2 .

o =cos’ O —= f —sinfcosfd — ( afj ﬁi(cosﬁg]
ox? or? or\r o6 r 00 or
+ sze i(sin@zj
r- 06 00

Rearranging the expressions,

2 2
% =cos’ 9% —sin@cos@i(lzj —sianosHi(lgj +Sin9cosgizg+
ox or or\r o0 o0\ r or 0
sin’ @ 1@4_%8
r or 0

-
Since the term %izli(ij—i(lij and i(l@):l 0 (afj thus,
r- 068 ror\o6) or\roé 00\ r or r or\ 06

we have

2 2
0 {zcoszé?a S —2sinfcosf— [ 8fj sin? lg Lz /:
ox or? or\r 00 ror r-o00

Similarly, we find

2
0 f—sm 0 f+2sm000s9 a(11j+cos l L f
oy’ or’ or\r o6 r or r2 06°

2 2 2
_of =sinfcosb| — Ly i%—% —(cos® @ —sin 9)_(_1j
Ox0Oy ror r-068° or or\r 00

To transform the Airy stress function in the Cartesian coordinates F' = F(x,y) to the
Airy stress function in the polar coordinates F' = F(r,0), we replace the function f(x,y) by
the Airy stress function in the Cartesian coordinates F' = F'(x, y). Neglecting the body forces,
we have
0°F 0°F 0°F

o, = o, = T =-—
oy’ Yoo’ Y Oxoy
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2 2
o, =sin26’a Ij +2sinﬁcosﬁi(la—gj +c0s26?[la—F+L2a Fj

or or\r ror r* oo’
2 2
o =cos249a f —2sin¢9005¢9£[16—Fj n’éo 1oF LZ@ }27
g or or\r o0 ror r®of
2 2
» = sindcosd 18_F+L28_1;“_6_§' —(cos” @ —sin”® g)i[la_Fj
ror r°o0 or or\r o060

Substituting o, , o, and 7 into the coordinate transformation matrix,

X

2 2
o, m n 2mn ||o,
_ 2 2
O, r=| n m°  —2mn |yo,
2 2
T -mn mn m-—n"||r

, and rearranging the terms, we have
_1oF 1 0°F
—_ + —_
ror r>of’
_O°F
or’

. __ﬁ(la_Fj
Y or\r oo

Substituting the obtained functions of the stresses into the equilibrium equations,

Oy

do, 107, o0,-0,

=0 an la&-‘r 0T wote =0, and neglecting the body forces,
or r 00 r r 060 8r r

we can see that the stress functions are satisfied the equations of equilibrium. Thus, the

assumed stress functions constitute a general solution.
Now, the problem is reduced to finding a function F = F(r,6) that satisfies the
compatibility conditions and the boundary conditions.

Next, we will transform the compatibility equation in the Cartesian coordinates,

VT{@“F o‘'F  0'F

o+ s—+—5|=0, to the polar coordinates. Consider the harmonic
ox ox~ 0y oy

operator of any function f(x,y) that can be written in the polar coordinate as

f(rcos@,rsinf).

2 2 2
(a—+a—Jf=coszez—{—ZSinecoseai(l%j 29[1@ + L0 f}
v r\r

ox® oy’ ror r’ o0’

+sin’ @ f+2sm000s98(11j+cos o0 l Lz ]:
or? or\r oo ror r° 00
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62+82 f_ 82+12+L82 f
ox® oy’ or* ror r*of’

This expression tells us that the harmonic operator on the left-handed side, which is in

Thus,

the Cartesian coordinates, is equivalent to the operator on the right-handed side, which is in
the polar coordinates.

The strain compatibility relation of the plane stress which is in the Cartesian
coordinates is

0%e azgx B 62yxy

y

> T 2
ox oy Ox0y

Substituting the strain-stress relations which are

_20+v)

1 1
F :E(ax—vay) & =E(ay—v0x) Vo Z o

X y

into the strain compatibility relation, we have

O (0, v+ Lo, —vo) =201y
— (0, -vo )+— (o, —-vo,)=2(1+v
ot R, g OxOy
. L e . oo Ty .
Differentiating the equilibrium equations 3 =~ + 5 — =0 with respect to x and
X y
or, oo i )
—~ +—> =0 with respect to y, and adding them, we find
ox oy

2 2 2
_8 ax_a o, arxy

o’ oy® 0x0y

Then, substituting it into the strain compatibility relation, we have

2 2
(8 +§—2j((7x+6y)=0
y

o’
By adding the stress transformation o, and o, from the transformation matrix

2 2

o, m n -2mn ||o,
2 2
o,r=|n m 2mn |Jo, r,we have
2 2
T mn —mn m-—-n" ||,

o, to,=0,t0o,
Consequently, the polar coordinate form of the compatibility equation in term of stress when
the body forces are absent is

Vi(o,+0,)=0
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0’ 0°
(ax—z'i‘ay—zj(o_, +O-H):0

2 2 2 2
Since (;_2+a_2jf:(a_+l£+ Lo ]f,wehave
X

3-32

or’ ror r_zy

i+i (o, +0,)= i+l£+i & (o, +0,)
x> o) " Y et ror r2o0) " °

Thus, the transformation of the harmonic differential operator V*> to the polar

coordinate gives

o> 10 1 &
V2 :—2+——+—2—2
or- ror r-o0

2
v ;i(,i}L 0
ror\ or r? 06°?

Since V*F = V*(V?*F), therefore, we have

or

2 2 2 2
V“F=(—+li+1 0 J(6F+18—F+Lza FJ—O

or*  ror r_28492 o’ ror r*oe?

Strain Components in Polar Coordinates

Y
‘ --.---f. -
P —
0 10 x

Fig. 3.10
Let u=u(r,0) and v=v(r,0) are the radial and tangential (circumferential)

components of the displacement in the polar coordinates as shown in the Fig. 3.10. If the

radial displacement of the side ad is u, and of the side bcis u + a—udr ,
v

o
" or

The strain in the tangential direction depends not only on the tangential displacement

&

v but on the radial direction as well. Assuming that the points ¢ and d have only the
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displacement u , the new length of the arc ad is (r +u)d@, then, the tangential strain due to

only the displacement u is

(r+u)dd—rd6 _u
rd@ r

The difference in the tangential displacement of the sides ab and cd is S—Zdﬁ. The

tangential strain due to only the displacement v is
gL _Lov
00 rd0 r o6
The total tangential strain is

u,lov

r roo

Ey =
To determine the shearing strain y,,, let the element abcd deforms to the position

a'b'c'd’. The angle between ad and a'd’ is
w1 _lou
00 rdd r o6

!

is @ This angle must be subtracted by the rigid

The angle between ab and a'b p
r

body rotation Y about the axis passing through point O. This rigid body rotation does not
r

contribute to the shearing strain y,,. Thus, the total shearing strain y, is
l1ou ov v
Voo = r 00 i or r
Stress-strain Relations
Since the stress-strain relations are derived based on the internal energy in the
rectangular coordinate system, they also valid for other orthogonal coordinate systems such
as cylindrical or spherical coordinates. Thus, the stress-strain relations in the polar coordinate

can be written by changing the subscript x to » (radial) and y to € (circumferential).

g, IVE —-v/E 0 |[|o,
& r=|-Vv/E 1/E 0 |Jo,
;/VH 0 O I/G T}’H

3.8 Stress Distribution Symmetrical about an Axis: Pressurized Cylinder

Consider a circular plate subjected to the internal and external pressure as shown in
Fig. 3.11. The plate may be a slice of a long thick-walled cylinder structure. It has an internal
radius of a and external radius of b. Due to the symmetry of the plate and the loading

condition, the stress components occurred in the small plate element within the radius a and
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b depend on the distance from the center of the plate » only. Let the center of the plate is the

origin of the polar coordinates (7, ). Thus, the compatibility equation becomes

Fig. 3.11

0 10 \0°F 10F
—t—— +—1=0
o ror)\ ort ror
By expanding the equation, we find
d*F 2d°F 1 d’F 1 dF
+= +— +——=
art  rdr’ ot dar* P odr

This is ordinary differential equation. It can be reduced to a linear differential equation

0

with constant coefficients by introducing a new variable 7 such as r =e¢'. Then, the general
solution of the equation is in the form of
F = Alogr+ Br’logr+Cr* + D
This solution has four unknowns constants of integration which can be found by using
the boundary conditions. The correctness of the equation can be verified by substituting back
into the compatibility equation.

The corresponding stress components are

5 _LOF 1 0°F _10F _ A4

—+— =—— + B(1+2logr)+2C
ror r’o0*> ror r’ ( gr)
2
ngaf:—iz+3(3+2logr)+2C
or r
LT
or\r o6

If the plate has no hole at the origin of the coordinates (7 =0), the constant 4 and B

must be zero. This is due to the fact that when r — 0, the stresses o, >« and 0, >«
which are physically impossible. Then, we have o, = o, = 2C =constant and the plate is in a

condition of uniform tension or uniform compression.
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If the plate has the hole at the origin, we need to set the constants B to be zero (see

Theory of Elasticity, Timoshenko, p.78) in order to find the condition of stresses in the plate.

A
o, =—2+2C
r
agz—i2+2c
r

These expressions represent the stress distribution in a hollow cylinder subjected to
uniform pressure on the inner and outer surfaces. From the Fig. 3-11, let the uniform inner

and uniform outer pressures are p, and p,. Then, the boundary conditions are

A
(O-r)r:a =_2+2C:_pi
a

A
(O-r)r=b :b_2+2C:_p0

Solving the simultaneous for 4 and 2C, we have
@B (P, =)
b -4’
2 2
-a

Therefore, the stress components are

_ 1 &b (p,—p)  pa’ —pb’

2 2 2 2 2
"o b* —a b* —a

o =_ia2b2(po _pi)+pia2 _pob2
0 72 b? —a? b? —a?

Rearranging the equations, we obtain

a’ b? b? a’
TP l_r_z TP l_r_2

These stress components are occurred in thick-walled cylinder subjected to the
uniform inner pressure p, and uniform outer pressures p, . The distribution of the stress
components across the thickness of the cylinder is shown in Fig. 3.12a and 3-12b for the case
of internal pressure only and external pressure only, respectively.

Thick-walled Cylinder without External Pressure

If the external pressure p, =0, the cylinder is subjected to internal pressure only.
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a’ b?
o) L

a’ b’
%:ﬂﬁfyﬁ*ﬁJ

It can be seen that the circumferential stress is always larger than the radial stress at

the same value of 7.

Internal pressure: External pressure:

Po
b
b -
a
]
—Po o, -
o2 a + b
Pobz—a'zm —pobz_az
(a) (b)
Fig. 3.12

If the cylinder as shown in Fig. 3.13 has end cap, the axial stress o_ presents in the
cylinder. The force acting on the end cap due to the internal pressure p, is p,za’. The

reaction force on the wall of the cylinder is _z(h”> —a’) . Thus,

2
a

O-z :pi b2 _az
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The maximum shear stress in this case is occurred at » = a. The radial stress is the

minimum principal stress, o, =—p, =0, and the circumferential stress is the maximum

_ a’+b’ . .
principal stress, o, = p, ——— = o, . Therefore, the maximum shear stress is
b* -a’
2
_o0,-0; _ pb
oo =TT T

Then, we can determine the radial and circumferential strains by using the strain-stress

relation.

g, =—[o, —v(c, +0.)]

”

by [ —

&y = [0'9 -v(o, +o0, )]

by [ —

82 = %[Jz _V(O-r +69)]

Finally, we can determine the displacements by using the strain-displacement

relations.
o
"or
u,lov
r rob

_lou N ov v
7= 00 o r

&

Eg =

Thin-walled Cylinder without External Pressure

For thin-walled cylinder having the ratio of a/(b—a)=a/t>>20 and a/b=1, we

have
o, =0
a
o, = D;
t
p;a
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Example 3-6

A steel cylinder with end caps is to have the inner radius @ =10 mm and outer radius
of 5=31.3mm. Under the working pressure of 140 MPa, what is the radius expansion at

r=aand r=b7? Use £ =204 GPa and v =0.29.

At working pressure p, =140 MPa , we have the state of stresses at » =a =10 mm as

a’ b? b? a’
TP l_r_z TP l_r_2

o, =—-140 MPa

Jz :pi b2 _az

o, =16 MPa

Circumferential strain at » = a =10 mm 1is

]
£, = 172 —0.29(16 — 140)] = 0.00102
e 204000[ ( )
Thus,
0.00102 =% 4 Lo
r roé

Since the rate of change of v with respect to @ is zero due to the symmetry, the radius

expansion at » =a =10 mm is
u, =0.00102(10) = 0.0102 mm

In the similar fashion, the radius expansion at » =5 =31.3mm with o, =31.8 MPa

is

u, =be, =(31.3) [31.8-0.29(16 + 0)] = 0.0042 mm

204000
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3.9 Effect of Circular Holes on Stress Distributions in Plates

Y
-— f",’ """\‘\\ — =
/ \ T,
- f r \ —
— I 6 \ -
Fo [ C e I
\ | =& /
- . ! .
\\ - b Ny
- \'\.‘_‘ '-r’f —
Fig. 3.14

Consider the plate having unit thickness and a small circular hole of radius a at the
center of the plate as shown in Fig. 3.14. It is subjected to a uniformly distributed axial tensile

stress o, in the x —direction.

The stress distribution in the area neighboring the hole will be different from the stress
distribution in the plate without the hole. However, from the Saint-Venant’s principle, the
change is negligible at distances which are large compared with the radius of the hole, a.

Let the radius b is large in comparison to the radius a of the hole so that the stresses
at the b are the same as in the plate without the hole. By using the stress transformation

equation from the Cartesian coordinates (x, y ) to the polar coordinates (7, 8),

2 2
o, m n 2mn ||oO,
. 2 2
o, =| n m —2mn (o,
2 2
T,y -mn mn m-—n"||r

xy

and since o, =0,, 6, =0,and 7,, =0, thus,

(0,),., =0, c0s" 0 = %(l + c0s 20)

(T,9),p =— O;’ sin 20

It can be seen that the stresses can be considered separately into two parts. The first

. o
part is due to the constant components of —=

. The solution of this part is obtained in previous

section as
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where p, =0 and p, :—%.

- . o .
The remaining part consists of the normal stress 2" cos26 and the shearing stress

O-O

sin 26 . The solution of this part can be determined by using the Airy stress function of

the form
F = f(r)cos260

Substituting the function into the compatibility condition,

(az 10 1 & J(azF 1 0F 152F]
— -t +——t— =0

ol ror 1200  \ort ror 200

Hence, we can find the following differential equation to determine f(r).

(a“ +1i_iJ[d2f+iﬂ_ﬂjzo

dar* rdr r*\Ndr* rdr r?

This is an ordinary differential equation. The general solution of the equation is in the
form of
1
fr)y=Ar’ +Br*+C—+D
r

Thus, the stress function is

F =(Ar2 + Brt +C%+chos26’
r

The corresponding stress components are

2
r r

2
o, =18—F+L2a ]j:_ 2A+$+£jcos2€
ror r- o0

2
o, = 0 Ij =(2A+123r4 +$j00529
or

r
T, = _ﬁila_Fj — (2A+6Br2 —g—z—?jsin20
or\r 00 r r

By using the boundary conditions, we can determine the constants of integration. At

the outer boundary where » =b, the remaining stress that produce the stress components

% sin 26.
2

o .
(0,),., and (z,,),_, are the normal stress 2" cos26 and the shearing stress —

%o in20.
2

. o
Thus, the remaining stresses are (o,),_, = 7"005 20 and (7,,),., =—
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% cos20 = —(2/1 + g + 4—?) cos20
2 b b

2A+$+4—?=—O—"
b* b 2
%o in2g =[ 24+ 686> - 2 - 22 \sin 20
2 b* b
24+68p> - 2D __ 9
b* b’ 2

At the edge of the hole where » = a, the stress components must be zero since there is

free from external force.

0= —(2A+$+4—?jcos26
a a

2A+£+4—D:

4 2

0

Solving these four simultaneous equations and assuming that the plate is infinitely

large, a/b =0, we get

4=-20
4
B=0
4
C=—a—0'0
4
2
Dza—ao
2

Substituting the constants of integration into the stress component equation and plus

O-O

the stresses component due to the uniform tension stress

2 4 2
o. = % (l—a—2J+a" (1+3L—4a ]cos2t9
r 2 2 4 2

found in the previous section.

r r r

2 4
O, = 62" [1+a—2j— 62" [1+3L4]cos219
r r
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The plots of the normal stress distribution along the transverse and centerline of the
infinitely large plate is shown in Fig. 3.15.

It can be seen that the normal stress occurred on the edge of the hole where » = a and

0= i% has the positive value of

(09) max =30,
For 6 =0 and 6 = r, the normal stress on the edge of the hole where » = @ has the negative
value of o,. Thus, o, attains a maximum tensile value of three times the uniformly
distributed stress o, . This value is the largest stress occurs in the plate. Hence the stress

concentration factor at the hole, which is the ratio of the maximum normal stress at the hole

divided by the averaged normal stress at the same point in the absence of the hole, is 3

m | —r, (compressive)
P
w
i ]

| b | oe T

- - |

Fig. 3.15

From Fig. 3.15, it can be seen that the stress o, approaches the average values of o,

at a small distance from the hole. Thus, the high stress gradient or stress concentration is quite
localized in effect according to the Saint-Venant’s principle.

The state of stresses for a circular hole in a plate under other states of plane stress can
be determined by using the principle of superposition. For example, if the previously obtained

the state of stresses is combined with another state of stresses in which everything is rotated
by 90, we obtain the state of stresses in equal biaxial tension. Or, if the direction of o, is
reversed in one of these two solutions, we obtain results for the pure shear.

It should be noted that the obtained stress equations can only be used in the case when

the plate has the diameter that is small compared to the width of the plate. When the diameter
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of the hole is comparable to the width of the plate, researches have shown that the maximum
normal stress should be calculated by using the equation

3k —1
O-max =
xk+0.3

G}‘l

where x 1is the ratio of the width of the plate to the diameter of the hole, and o, is the

averaged stress over the cross-sectional area at the hole.
3.10 Concentrated Force at a Point of a Straight Boundary

Consider a concentrated vertical force P acting on horizontal straight boundary of an
infinitely large plate as shown in Fig. 3.16a. The concentrated force P is considered as a
uniformly distributed force along the thickness-direction line. The thickness of the plate is
taken as unity. Thus, P has the unit of force per unit thickness.

Force on a Straight Edge

dF = o df

Note: in equations,
compressive a; is negative

(b)
Fig. 3.16
The resulting stresses due to the concentrated force P can be determined by using the
Airy stress function of the form
F=arfsinf

The corresponding stresses can be determined as

16F 1 0°F cosé
o, =——+—5 5 =2q
ror r-o00 r
o°F
O, = o7 =0
(L
or\r o0

The actual stress distribution of o, is shown in Fig 3.16b. The constant a, can be

determined by using the summation of the vertical forces to be zero.

/2
- j(cose)a,rde —P=0

-z /2
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Thus, the state of stresses is

B 2Pcos@
7

O =

r

c,=0and 7, =0.
This distribution of stress is called a simple radial distribution, every polar coordinate
element at a distance » from the point of application of P, being in simple compression in
the radial direction. The stress o, becomes very large as » becomes small and is undefined

for » =0 (the stress is said to be singular). For all real materials, yielding will occur in the
neighborhood of the load, resulting in a plastic zone.
If it is assumed that the plastic zone is sufficiently small so that the presence of the
yielding material does not significantly change the elastic solution,
r 2P

=——=d = constant
cos rmo,

Thus, under the load, there is a circular plastic zone of diameter d )
In general, there exists a family of circles of diameter d =r/cos@ as shown by the
dashed line in Fig. 3.16a that o, is constant. This circle line is called circle of constant stress

(o2

r*
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Chapter 4

Applications of Energy Method
4.1 Degree of Freedom
Degree of freedom is the independent quantities used to define a configuration of a
system that violates neither compatibility conditions nor constraints.

Finite degree of freedom system

; m‘llf’.:i‘I ya(e# — .
N . P
~,:%T\’H‘SN/“ )ﬁ?
P
54—
— v o .
\\\ ‘—”%’
B T"‘ ~ e
L ) L ‘ L
| l
L
Fig. 4.1

Consider the beam having three rigid elements connected with hinges and elastic
springs as shown in Fig. 4.1. In this case, the configuration of the beam can be described by
using two of the independent quantities x, and 6, where i # j such as x, and x, or x, and
0, . Thus, the beam has 2 degree of freedom.

Infinite degree of freedom system

Fig. 4.2

Consider the bar subjected to arbitrary axial load as shown in Fig. 4.2. It requires an
infinite number of degree of freedom to describe its axial displacement since the displacement
varies along the length of the bar.

) ,_do
_A(x) Cdx
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P dS
A(x)_de

_ P(x) dx

do = A(x) E

P
"o AX) E

dx

However, the displacement can be idealized or approximated as
S=u=ax+a,x +-+a,x"
which describe the axial displacement of the bar with n degree of freedom and a, is usually

called generalized coordinate.
4.2 Work and Energy

In every type of system, forces are present to which may be associated a capacity to
displace and, thus, capacity to perform work. It is indicative of the energy possessed by the
system. Thus, energy is the capacity to do work.

Force in a system may perform work, but the system possesses energy. In order to
evaluate the amount of work done in a physical process, we need to know only the change in
energy. Thus, the reference or datum with respect to which we measure is completely
arbitrary. Consider, for example, the work done by the force f in bringing a particle from

point A to point B as shown in Fig 4.3.

it

- | |- (i
| B
A |B
[ rrnlTE
Fig. 4.3

dW = f cos f(du)

W=chosﬁdu

If the angle £ is —% <p< %, the force f performs positive work. If the angle £ is

3 : .
7 < p< 77[ , the force f performs negative work. The fsin # does no work. If the system

2
is conservative, the work done is independent of the path from point 4 to point B. Then, if

the integral is independent of the path, the quantity (f cos f)du is an exact differential of

some function V' . Thus, for conservative system,
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B B
W= fcos pdu=[dV =V, -V, =-AV
A A

where AV is the change in V' from point 4 to point B.

The function V' is called potential function, or, in this discussion, the potential energy
of the system. Physically, the potential energy is the capacity of a conservative system to
perform work by virtue of its configuration with respect to an arbitrary datum. Also, the

change in potential energy is a negative of the work done. For example, if we lift a weigh mg
to a height of / from a reference plane, the work done we perform is
W =—-mgh
The negative sign indicates the opposite directions of the weight (gravitational force) and the
vertical movement. According to the law of conservation of energy, the potential energy of
the mass m is increased by an amount of mgh .
V =mgh

Potential energy in structural system,

For the conservative of force, the work to move a mass does not depend upon the
route of moving, but does depend upon the starting point and terminating point. A
conservative system has a total potential energy. We can express the energy content of the
system in terms of its configuration, without reference to whatever deformation history may
have led to that configuration.

The total potential energy includes:

1. the potential of the external forces to do work, Q

2. the internal strain energy of elastic distortion, U

V=Q+U

Fig. 4.4

Consider a three-dimensional deformable body as shown in Fig. 4.4a which is in a
state of undeformed configuration and the external forces have zero potential energy. As the

body slowly deforms, external forces move through true displacements and perform external
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work until the final configuration is reached as shown in Fig. 4.4b. Again, let us assume that
the work done by the external forces in deforming the body is independent of the path from

Fig. 4.4a to Fig. 4.4b. Hence, if W, is the total work done by the external forces, dW, is the

exact differential of a potential function QQ which is the potential of the external forces to do

work. The change in Q from the configuration in Fig. 4.4a to Fig. 4.4b is —W,. Therefore,

from the definition of work,

o=—[ff T(Bxdu + Bya’v+Bza’w)}dV—”ﬁ (X.du+Y.dv+Z.dw)ldS

S, La
where integral inside the bracket are carried from the initial state to the final deformed state as
shown in Fig. 4.4a to Fig. 4.4b, respectively. The S, is the portion of the total body surface
area subjected to the surface forces. Since the external forces are independent of the
displacements,

Q=—([[(Bu+By+BwdV - [[(Xu+Yy+ZW)ds
v s,

If the body forces are negligible and the surface forces are represented by a system of

concentrated forces and moments P, P,, ..., P

n

with the corresponding displacement of A,

Ay, .., A,

Q=—(PA, +PA, +...+PA))

The internal forces developed in a deformable body also posses a capacity to perform
work. Under the action of external forces, the body is deformed and the stresses are developed
which results in the internal forces. The internal forces perform work while the body are
deformed. If the strained body is allowed to slowly return to its unstrained state, it will return
the work done by the external forces. This capacity of internal forces to perform work as the
body returns to the unstrained state is called strain energy.

For linearly elastic and isotropic material, the strain energy density was derived as
U, = l[axgx to,+to e, +T, 7, +T. Y, + szﬂ/xz]
2
The total strain energy U of the body is

UzjiondV

4.3 Principle of Stationary Potential Energy
Consider an element of unit volume in a one-dimensional body subjected only to the

stress and strain components o, and & . By the definition of virtual work, the internal virtual

work due to a virtual strain is
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oU =0, 0¢,
From calculus, the differential change in the strain energy in the body due to an

increment de_ of the strain is

dU = a—Udgx =0 de,
os

We can see that the symbol ¢ is not just only the symbol for the virtual quantity. In
fact, it behaves as a variational operator which obeys the rules of operation similar to those
of the first differential operator d . In analogy, if we refer & as first variation, we can see that
the internal virtual work can be interpreted as the first variation in the strain energy due to
variations in the components of strains.

Similarly, if W, is the work done by external forces in a conservative system

Q=-Ww,
=W,

From the principle of virtual displacements oW, = oU ,

oU =-0Q
oU+d2=0
oU+0)=0
oV =0

A deformable body is in equilibrium if the first variation in the potential energy of the
system is zero for every virtual displacement consistent with the constraints

Consider a system having two degrees of freedoms x, and x, as shown in Fig. 4.6. In
this case, the total potential energy of the system can be expressed as a function of x, and x,,
so that are the rate of change of V' with respect to x, and x,. Thus, for the structure in

equilibrium, if first x, is given a variation ox, and then x, a variation dx,,

ov

oV =—=0ox =0
ox,

W:a—V&cz =0
ox,

Since the magnitude of the virtual displacement Ox, and ox, are arbitrary,

v _v_

= 0
ox, Ox,

which mean for equilibrium to exist,
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dV = a—de1 +8—Va’x2 =0
Oox, ox,
Recall from calculus, the total differential of a function vanishes at the critical points
of the function at which the function is a relative maximum or maximum or they may be
saddle points at which the function is minimax. At such point, the function is said to assume a

. . V Vv . .
stationary value. Since the equation dV:a—a’xl+a—abc2 =0 is valid only at the

Oox, ox,
equilibrium, thus, the principle of stationary potential energy can be stated that
If a structure is in static equilibrium, the total potential energy of the system has a

stationary value.

The equation dV = 8_de1 +8—de2 =0 can be interpreted another way. Let V' is a

Ox, ox,
continuous function displacement, which is consistent with the boundary conditions. dV is
zero only if the displacements are corresponding to the equilibrium configurations. Thus, the
principle of stationary potential energy can be restated that
Of all the possible displacements which satisfy the boundary conditions of a structural
system, those corresponding to the equilibrium configurations make the total potential energy

assume a stationary value.
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Example 4-1
Determine the equilibrium configurations of a system of three bars subjected to the

point load P as shown in Fig. Ex 4-1a. The bars are supported by pins and are joined with

internal hinge and springs having the stiffness of £ = % .

?
,I;a_g
— v . -
~_ \? _%1_/,,,—»9,
L 1L L ! L
L
Fig. Ex 4-1a

The system as shown in Fig. Ex 4-1a has two degrees of freedoms x, and x, .

The potential energy of the external force P is equal to the amount of work done by

the force P referred to the reference at support.
Q=-P [z xl}
3

(Negative value of the work done by external force = the external potential energy)

The work done due to the couple moment M, using to move the spring from 0 to ¢

as shown in Fig. Ex 4-1b or the strain energy stored in the spring is equal to

¢ ¢ 1
[M,d0=[kodo= 5k¢2 .
0 0

NN N
/r

Fig. Ex 4-1b

For small displacement and rotation, the angle
0 ~sinf =~ tand .

Then, from Fig. Ex 4-1c,
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| 2 | l 1L L ;l
T 1 ?E,L
g;‘m. e I{,;lﬂf ;7
x~ =T
L
ARy=Re
L
Fig. Ex 4-1c

Therefore, the strain energy stored in the springs on the beam is

g LE(2x x) VEI(2v xY
21 / / 21 / /

2 2
y——p| 2y | LEL(20 ) 1EIf2x, X
3 211 ) 211 )

For the stable equilibrium system, the total potential energy must be minimum.

or 0
axl
Y _y
ox,

. . . Sx
Solving the simultaneous equation, we have x, = T2 Then,

10 Pl3
X =

27 EI

8 PI’
X, =———

27 EI

4-8
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Example 4-2

The three bars plane truss has the configuration as shown in Fig. Ex 4-2. If the bars

have the same EA, determine the stress in each bar.

vn

Fig. Ex 4-2

Let u, and v, are the degree of freedom at joint D . By considering the deformation
of each bar, we can find the relationships of the change in length of each bar o, and the

degree of freedom u,, and v,, in the form of

3 4
51 :guD —gVD
0, =-V,
4 3
0, =—guD——vD

L

2
Strain energy in a uniform bar is U, = J. ;ﬁdx. From the Hooke's law, P = AE¢.

Thus,
L 2
AE AEL
u,= j £ dv= g’
) 2 2
The total strain energy is
3 AE L, AE| < AE
U=> — 2’ Lel = 5 {ZLI.EI?} =T[L1812 +L,&; +L3g32]
i=l1 i=l

The external potential energy is equal to negative of the external work.
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Q= Pu,

Thus, the total potential energy of the system is

AE
V= T[nglz +L,&; +L3£32]+ Pu,,

V—ﬂ S Eu —Ev 2+£+i —Eu —iv 2 + Pu
2 (4L|25 " 25°° L 3L 257 25° P

From the principle of stationary potential energy

Wy
ou
o
ov,,

Solving the simultaneous equations for u,, and v, .
Substituting u,, and v,, into the strain equations, we get the axial strain in each bar.

Finally, the stress in each bar can be determined by using the Hooke's law.
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4.4 Principle of Minimum Potential Energy

An equilibrium configuration is stable if the system return to its original configuration
after being given a small disturbance.

Consider pendulum of weight W in Fig. 4.5. The position 4 and B are both
equilibrium configurations since there is a balance of forces. The configuration A4 is one of
unstable equilibrium since during a small angular displacement, positive work is done, the
potential energy decreases and the kinetic energy increase significantly. The configuration B
is one of stable equilibrium since during a small angular displacement, negative work is done,

the potential energy increases and create only an infinitesimal change in kinetic.

Fig. 4.5
If small displacement cause no change in potential energy, the system is said to be in
neutral equilibrium, which is also the unstable equilibrium.
Consider the motion of a rigid marble having a weight of # along a smooth contour
in Fig 4.6. The rigid marble has no strain energy.
U=0

Fig 4.6

If x -axis is the reference line, the total potential of a given marble is
V =Q =Wh(x)
Generalized coordinate is the least number of real independent variables required to
specify the configuration of a system. The rigid bars as shown in Fig. Ex 4-1 require two

generalized coordinates to define their configuration. The virtual displacements in a system,
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which are consistent with the constraints, can be expressed as a function of the variations in
the generalized coordinates

A single marble in Fig. 4.6 can be specified by the generalized coordinate x. Thus, a
virtual displacement following the rigid contour of a marble and having the generalized
coordinate x is a small variation ox . The variation dx produces a variation in ¥ . Since each
marble is in equilibrium,

oV = Wdh5x 0

dx

which is valid when % =0 atpoints 4, B, C, D, and E. Thus, these points are possible
X

equilibrium configurations.

From the previous discussion, it may be concluded that

1. The marbles at 4 and D are in stable equilibrium.

2. The marble at C is in unstable equilibrium.

3. The marble at £ is in neutral equilibrium.

The potential energy of the marble at point B is either increased or decreased
depending on the direction of the virtual displacement. Thus, the marble at B is in unstable
equilibrium.

If V(x) corresponds to an equilibrium configuration, V' (x + dx) is the potential energy
of a configuration in the neighborhood of V(x) if ox is sufficiently small. By using Taylor’s

series, we have

dV(x) - 1 d*V(x)

X

Vix+ox)=V(x)+———=

(&%) +—

ldV(x)
3 dx’ premiCOlR

For equilibrium, C;—V = 0. Thus, the change in V' due to ox is V(x+ dx)-V(x),

X
2
AV:lifgh&y+ldV”%5)+
2 dx 3
For the system in Fig. 4.6,
AV =W|— ! d h ld—?(éx) +
3 dx

Thus, the first order variation in the displacements at an equilibrium configuration causes a

change in potential energy of order (dx)°.

2
If the term

o of AV is not zero, the sign of AV is independent of the sign of the
X

virtual displacement & since (&x)>. Then, V is either a relative maximum or relative
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2

minimum. For the system in Fig. 4.6, the term —-, representing the curvature of the rigid

curve, is positive at 4 and D and negative at C. Thus, V' is a relative minimum at 4 and

D and a relative maximum at C. Clearly, the marbles at 4 and D are in stable equilibrium

d*h
=0 due to flat contour at the

and the marble at C is in unstable equilibrium. At B, —-=
X

3

point. However, if % # 0, the sign of AV depends on the sign of the virtual displacement
X

& due to the term (dx)’. At this point, ¥ is a minimax and the marble is in unstable

equilibrium. At £, all derivative of V' vanish and AV is zero for small virtual displacement.
Thus, The marble at £ is in neutral equilibrium.

From these observations, we conclude that
1. If 5°V >0, the system is in stable equilibrium.
2. If §°V <0, the system is in unstable equilibrium.

3. If §*V =0, the system is in neutral equilibrium.
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Example 4-3
Check the stability of the system of rigid bar subjected to axial load P as shown in
Fig. Ex 4-3.
P
\‘ — e
\
Vo ,
\ k
\
\
|.\‘ .--:-:E
N ,

Fig. Ex 4-3
Consider a system of rigid bar subjected to axial load P as shown in Fig. Ex 4-3. All
configurations of the system can be described by specifying one independent variable, the
angular coordinate €. Thus, @ is the generalized coordinate.
The external potential energy Q of the system is zero for reaction forces plus minus
2Ph(1-cos @) due to axial force P
Q=-2Ph(1—-cosf)

The internal potential energy or strain energy U of the system is zero for rigid bar

plus %k(h sin 9)2 in the spring.

U= lk(h sin@)’
2
The total potential energy of the system is
V()= %k(h sin@)* —2Ph(1—cosH)

The total potential energy of the system due to variations 66 is

1@ +60)=1 @)+ LD s LV gy , LV

0 PTE (00)° +...

(60)* +
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The change in the total potential energy of the system due to a rotation variation 60 is
1d°V
3d6’°

2
AV =V(0+50)-1 @)=L s+ 14 Z
o 2do

(560) + (560)° +...

AV = [kh” sin @ cos @ — 2Phsin 0}50 + % [kh? cos 26 — 2Phcos 0} 50)° + ...
For equilibrium configurations, 6V =0.

‘2—V — sinO[kh” cos @ — 2Ph]=0
X

This equation is satisfied when sin@ =0 or kh* cos@ —2Ph=0.
If sinf =0,
6=0" or 8=180°.
If kh* cos@ —2Ph=0,

cosf = 2—P
kh

This means that & can be any values in the first or fourth quadrants of the reference

coordinate. This solution is trivial.
For stable equilibrium configurations, 5°V > 0.

If & =0°, the term

d*v
= kh* cos26 —2Phcos@ = kh* —2Ph

=

dx
which mean that, for 8 =0°, the system will be in stable equilibrium only if k2 >2P.
Then, the critical load can be determined by setting kh =2P.

p, =
2

It should be noted that, for small rotation &, this critical load can also be found by
using the mechanics of material by using the equilibrium of the moment about the pinned

support.
P, (2h0)—kh*6 =0

p, =%
2

If 8 =180, the term
kh? cos20 —2Phcos® = kh* +2Ph

which is always larger than zero. Thus, the system is always in stable equilibrium when

60 =180°.
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) ) 1, .
It should be noted that in this case, we can not assume cosé =1 —59 in the small

displacement analysis.

V= %k(h@)z —2Ph[1 - —%92)} = %khzaz — Pho*?

AV = [kh29—2Ph0]59+%[kh2 —2Ph)(56)" +...

For equilibrium, 6V =0, we have
AV _ ofkn> ~2pPh]=0
do
which provides only one solution that is & =0°. Thus, for stability analysis, we have to

consider the potential energy of the system to the cubic terms.
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4.5 Second Variation in the Total Potential Energy

The change in the potential energy of a system can be expressed as

AV =6V + %521/ + terms of higher order

where 67V is the second variation in ¥ in analogy with the first variation oV
_dwv
d 2

Since in equilibrium conditions oV is zero, the sign of AV is often determined by the

a4 (ox)*

sign of §°V . Thus, the second variation often plays an important role in the study of the
stability of the structural systems.

The second variation term is quadratic in dx since it is a function of (&x)>. Thus, if V'
is a function of two generalized coordinates x and y and if the point (a, b ) correspond to an

equilibrium configuration, by using Taylor’s series expansion, we have
AV =V(a+ox,b+0v)—V(a,b)

3 8V(a,b) 6V(a b)éj/Jr 0%V (a,b)
ox oy 2 o’

Nk V(a b) 8> V(a b)

()" + 2=y +—— ()’ }

+ terms of higher order
For equilibrium,

oV (a,b) o OV(a,b)

oV = =0
ox oy ¥
For stable equilibrium,
0V (a,b) 82V(a b) 0V (a,b)
S =2 T2 XY+ ———2 ()’
o (@ 2T ey - (@)

=a,, (%) +a, X + a,, xS + a, (%)’
This equation is a quadratic form in ox and Jy. It should be noted that a,, =a,,.
Clearly, the sign of AV depends on the sign of the coefficients «,,, a,,, a,,, and a,, which

are the functions of the applied loads. In general, there are five types of quadratic forms:
1. Positive definite.
2. Positive semidefinite.
3. Negative definite.
4. Negative semidefinite.
5. Indefinite.

If 5V is a positive definite quadratic form, it can be shown that AV is positive.

Thus, V is a relative minimum. If §°V is negative definite, negative semidefinite, or
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indefinite, AV is negative and the equilibrium is unstable. If 5V is positive semidefinite or
zero, higher variation must be considered.

In the stability analysis of linearly elastic system with small displacements systems, V'
can be expressed as a quadratic function. When such systems are stable, §°V is positive

definite and the determinant

If the applied loads are increased, D decreases. When a critical load is reached, &V
is not a positive definite and the system becomes unstable and buckles. Thus, the stability

criterion is

oWV =D=0
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Example 4-4: Stability analysis of simple structures
Determine the stability configurations of the system of rigid bars subjected to

concentrically axial load P as shown in Fig. Ex 4-4a.

P

Y |

(=]
e

@ COs
! Ry rkﬂ. ky
H .”B@EE M ) S
T a cﬁs o .
L }
(a) ()
Fig. Ex 4-4

The system of rigid bars as shown in Fig. Ex 4-4a has two degree of freedoms. All
configurations of the system can be described by specifying two independent variables, the

angular coordinate € and y . Thus, @ and y are the generalized coordinates.
For positive values of @ and y, the applied load P is displaced a distance A.
A=2a—-acos@ —acosy

Thus, the potential energy of the external force P is
Q=-PA

For small values of generalized coordinates € and y and since we are interested to
find only the critical load, thus, we let cos@ =1 —%92. The potential energy of the external
force P is

Q=240 1y

Since the internal forces and moments are developed in the springs, the system posses

strain energy.

U= 2jk1xdx+ Tkaada
0 0
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2 2
U 2(ka } k,a

2 2

where x is the change in length of the linear spring and « is the angle of rotation of the
rotational spring.
From the geometry of Fig. Ex 4-4b, we find

x=asinf = al

a=y—0
Thus,
U=ka0’ + %ka (v —0)*
The total potential energy of the system is
VQ,y)= %(ka +2k,a’ — Pa)0’® —k, Oy + %(ka — Pa)y’
=c,0” +c,0p +c,p’
where

o =%(ka +2k,a’ — Pa)

¢, =—k

c, = %(ka — Pa)

The total potential energy of the system due to variations 66 and oy is

V(O+80,p+0w)=c,0” +c,0y+c,p’
+[(2¢,0 + c,w)50 + (¢,0 + 2¢,w)Sy |
+]ey (50)7 +¢,500y + ¢, (5y)?]
The change in total potential energy of the system is
AV =[(2¢,0 + )30 + (c,0 + 2¢,p)dw |+ ¢, (560)* +¢,605y + ¢, (Sw)* ]

For equilibrium configurations, oV is zero.

oV
520220094‘6‘1(//
8—V=0=c16'+2czl,//
oy

Clearly, @ =w =0 is an equilibrium configuration.

For stable equilibrium configurations, §°V is greater than zero.
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and

oV 4 4
= 00)* +2 000w + 2
8492( ) 260y 7 0w’ (o)

=2|e, (50)* +¢,600y + ¢, (5y)?]

oV

When the system is stable, the determinant

¢, ¢ /2

D= >0

/2 ¢,

When P reaches the critical load, D = 0 and the system becomes unstable. Thus,
1
CoCy — Zcf =0
o 1 2 1
Substituting ¢, = E(k“ +2ka” —Pa), ¢, =—k,,and c, = E(k“ — Pa), we have

(k, — Pa) (k, +2k,a* — Pa) —k>=0

Solving this polynomial equation for P, we have

P, =l[ka +ka® — k. +k12a4]
a

P, = l[ka +ka® +\k’ +k12a4]
a

Let k, = k,a’ =k, then,

P, =0586~
a
P, =3414%
a

Thus, P, = 0.586£ is the critical load for the system. Substituting P =0.586k/a into the

a

equations 2¢,0 +c, =0 or c,0 +2c,y =0, we find

v =2.4140

The buckled shape for this case is shown in Fig. Ex 4-4c(a).

find

Substituting P, =3.414k/a into the equations 2¢,0 +c,w =0 or c,0 +2c,py =0, we

W =-04140

The buckled shape for this case is shown in Fig. Ex 4-4c(b). These two possible buckled

shapes are called the buckling modes of the system.
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(a) ()
Fig. Ex 4-4c
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Lagrange multipliers

In many cases when it is not convenient to express V' in terms of the least number of
independent variables. Then, the problems become one of minimizing a function whose
variables are constrained by some side relationships. These kinds of problems can be solved
by using the Lagrange multipliers.

In general, when the variables x,, x,, ..., x, of a function G(x,,x,,...,x,) to be
minimized and must be satisfied m additional conditions of the form
g, (x,xy,...,x,)=0

g,(x,x,,...,x,)=0

g, (x,x,,...,x,)=0
A new function G is formed, where

G=G+Ag +Ag, +..4+1,8,

G=G+) Ag
i=l
The constants 4,, 4,, ..., 4, are the Lagrange multipliers. When G has a stationary
value, G must be such that
%G _y
ox,
%G _y
ox,
%G _y
ox,
These n conditions plus m conditions g, =g,=...=g, =0 provide m+n
independent equations from which the m +n unknowns x,, x,, ..., x, and 4,, 4,, ..., 4,

can be determined.

From the previous example, if we do not introduce the equation x =aé into the

2
a

equation U = k,x” + , we have the total potential energy of the system of the form

V(0,,x) = %(ka —Pa)0® —k,Op +kx* + %(ka — Pa)y’

with the additional condition
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x—afd =0
We form the new function

V =V(6,y,x)+ A(x—ab)

where A is the Lagrange multipliers. To be a minimum,  must satisfy the conditions

o
—=(k —Pa)0—-k w—al=0
Py: (k, )0 —k,w
a—V:—kaQ-i-(ka—Pa)W:O
oy

a—V=2k1)c+/1=0

Oox

From the last condition, we find that
A =-2kx=-2ka0
Substituting A into the rest of the equations and rearrange the terms, we have
2c,@+cy =0
c,0+2c,y=0

which are obtained before.
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Example 4-5: Stability analysis of beam-column
Find the critical load of the linearly elastic simply supported beam-column as shown
in Fig. Ex 4-5. The beam-column is subjected to axial force P and a sinusoidal distributed

load p(x).

. p(x)=p, sin"—;

P

I'a
< - 'L—'*'!
Y

Fig. Ex 4-5
For simplicity, neglecting the shear deformation and assuming that the normal stress is
given by
o N My
A 1

and other stresses are zero.

From Hooke’s law, o = E¢_. The strain energy in this system is

U= ”J%axgde

Vv
:LLMN Myj dA}d
2B 4T

L 2 2.2
- IIIN ZNMy+My il
2E4 |9\ 4 Al I’

Since [yd4 =0 and [y*dd=1,
A A

U:jig

Thus,

L( ar2 2
U= I N + M x
\2EA 2EI

If we are interested only the transverse displacement and the stability of the beam-

column, we need to consider only the energy due to changes in curvature. Thus,

M a’ v
= dx
2EI dx
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where v is the transverse displacement. Then, the total potential energy of the external forces

is
L
Q= —J.p(x)vdx —PA
0
where A is the displacement of P due to the changes in curvature of the beam-column.

L
A= [ (ds - dx)
0
1
275 2

Since the beam-column’s length ds = {1 + (ﬂj :l dx = {1 + %(ﬂ] }dx , thus,
L 2 L 2
I dx+l(ﬁ) dx —dx :lj(ﬁj dx
0 2\ dx 2\ dx

Q= —j{g[%} + p(x)v}dx

0

A

1

Hence,

The total potential energy of the beam-column is
L 2. \? 2
V:.[ E1 d_;’ _E(ﬂj — pv |dx
ol 2 \dx 2\ dx
Assuming that the elastic curve of the beam-column is in the for of
v=Csin2
L

where C is an unknown constant. This equation satisfies all the kinetic boundary conditions
of the beam-column. Since the magnitude of the displacement at any point depends on the
magnitude of C, thus, C is a generalized coordinate. Substituting v into the total potential

energy equation, we have

f Bl & © P(d ’
Vz_[ — —Z{Csinﬂ} ——(—{Csinﬂ}j —p{CsinE} dx
ol 2 \dx L 2\ dx L L

L| C*n*( EIx*
V:Z[ I (—Lz —PJ—ZpOC}

If the beam-column is in equilibrium,

2 2
av 5{2&; (EI;: —Pj—Zpo}O

ic 4| I | I
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_pl
7 (Eln* - PL?)

r X
Po sin—

Y=
7*(EIn*-PL*) L

If the beam-column is in stable equilibrium,

2 2 2
4V _r (B p).q
dCc” 2L\ L

When P has a value that §°V =0, the beam-column is no longer in stable
equilibrium. Thus, the critical load of the beam-column-column is

2
P =

which is the Euler buckling load of pinned-pinned column.
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4.6 Rayleigh-Ritz Method

A continuous distributed deformable body consists of infinitely many material points.
Thus, it has infinitely many degrees of freedom. The Rayleigh-Ritz method is approximation
method in which the continuous systems are reduced to systems with a finite number of
degrees of freedom. This method can be used to analyze deformations, stability, nonlinear
behavior, and vibrations.

In Rayleigh-Ritz method, the components of displacement u, v, and w of a system
are approximated by function containing a finite number of independent parameters. Then, we
determine these parameters so that the total potential energy of the system computed based on
the approximate displacements is minimum.

Let the components of displacement u, v, and w are of the form
u :a1¢1(xayaz)+a2¢2(xayaz)+'"+an¢n(xayaz)
v:bll/ll(xayaz)+b2(//2(xayaz)+"'+bnl//n(x’yaz)

w=cn(x,,z)+ce,n,(x,y,z)+...+¢c,n,(x,,2)

where q,, a,, ..., a,, b, b,, ..., b,,c,, ¢,, ..., ¢, are 3n unknowns linearly independent

n?o

parameters which may be called the generalized coordinates. ¢,, @,, ..., ¢, ¥, W5, ..., ¥, ,
., 1n,, ..., 17, are continuous functions of the coordinates x, y, and z which represent the

modes of deformation.

The functions of the modes of deformation ¢, ¢,, ..., @, ¥, Vs, ..., ¥, 1, 1,,
.., n, are chosen so that the components of displacement satisfy all of the kinematic

(displacement) boundary conditions for all values of the constant parameters a,, a,, ..., a,,

b, b,, .., b ,c,c,, .., c,, but, they do not necessarily satisfy the static (force) boundary

conditions. These kinds of function are usually called kinematically admissible functions.

Since the components of displacement u, v, and w are defined in terms of only 3n
independent parameters, these parameters behaves as generalized coordinates, thus, the
system has only 3n degrees of freedom.

From the components of displacement, we can determine the approximate strains and,
then, the total potential energy of the system.

Vu,v,wy=V(x,yza,,...,a,b,...b, c,,...c,)
The variation of the components of displacement can be written in the form of the

variations in the parameters a,, b,, and c,.

&
I

4,5,

1
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ov= i l//i%i
i=1

ow = Zn: n,oc,
i=1

Hence, the variation of the total potential energy of the system can be written as

W:Z a—V5ai+a—V§bi+a—V&’i
o\ 0q, ob, oc;

1

If the system is in equilibrium,

Z:QK&@+QK&Z+§K&;=0
o\ 0a, ob. oc;

1

for arbitrary values of the variations da;, ob,, and oc, . Then, we have

T Py . Py
oa, oa, oa,
7 Y o Y _p
ob, ob, ob,
Iy Y o LA
oc, oc, oc,

These equations are 3n linearly independent simultaneous equations which can be

solved for the unknowns parameters a,, b,, and c;.After solving for the unknowns parameters

a;, b,, and c,, we then obtain the approximate displacement functions.

In the case of stability analysis, the equations are homogeneous, we then determine the

buckling loads by setting the determinant of the coefficients to be zero.

Some important characteristics of the Rayleigh-Ritz method

1.

The accuracy of the assumed displacement is in general increased with an increase
in the number of parameters. However, the exact solutions are rarely obtained.
Since the differential equations of equilibrium do not enter the analysis, the
equilibrium is satisfied in an average sense through minimization of the total
potential energy. Thus, in general, the stresses computed do not satisfy the
equations of equilibrium.

Although the Rayleigh-Ritz method may provide fairly accurate results for the
displacements, the corresponding stresses may differ significantly from their exact
values since the stresses depend on the derivatives of the displacements.

Since the Rayleigh-Ritz method use a finite number of degree of freedom to

approximate the displacements of the system having infinitely many degree of
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freedom, the approximate system is less flexible than the actual system. In the
stability analysis, the Rayleigh-Ritz method always produce the buckling loads
that larger than the exact values.

5. The modes of deformation are often taken as polynomial or trigonometric
functions since they are easy to manipulate.

6. The approximate displacement functions should not omit terms of lower order

since it prevents the convergence of the solutions.
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Example 4-6
Find the maximum deflection and moment of the simply supported beam as shown in

Fig. Ex 4-6 by using the Rayleigh-Ritz method and compared with the results from mechanic

of material method of analysis.

L
‘ E ,U[I} __'p.n

Fig. Ex 4-6
Consider the simply supported beam as shown in Fig. Ex 4-6. The elastic curve of the

beam can be assumed as a sine function of

. T
V=asin—
L

where a is an unknown constants. Note that s1nT satisfy the boundary conditions at x =0

and x=1L.
If only the strain energy due to bending is considered, we have the total potential

energy of the beam is of the form

2
EIL(dzvj i
V=—"l||l—5| dx— p(x)va’x—Pv|L/2
2 lax? '([
4
V:EHZ a2—2po£a—Pa
4L V2

Now, we choose the constant a so as to minimize V .

vV Elz* L
8—: ﬂ; a-2p,——P=0
oa 2L T

_4p, L s 2PL 20 (2p, + 7P)
7°El  7©'El 7’ El

3
e 2L (2[570 +7rP)SinE
m’El L

Evaluating the deflection v of the beam at x=L/2, we have

4poL4+2PL3 _ pL . Pr’
7°El  7*El  765EI 48.7EI

Vg ,=a=

By using the mechanics of materials, we obtain
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p, L' Pl
VL2 = +
76.8E1 48EI

Thus, by using only one parameter, we obtain a maximum deflection, which is only 0.39% in
error in case of uniformly distributed load and 1.46% in error in case of concentrated load.
However, the approximate deflection curve gives a bending moment at x=L/2 of

d*>v 4p > 2PL pL* PL
= 5t =t
dx r 7> 175 493

M|, ,=—-EI

The first term has 3.15% in error and the second term has 23.37% in error. Note that
the normal stresses are proportion to the bending moment, thus, are in error by the same
percentages.

To obtain more accurate results, let us use two-parameter approximation elastic curve

of the beam as
. X . 3mx
v =asin— + bsin —
L L

Note that this function also satisfy the kinematic boundary conditions of the beam.

Performing the determination of the total potential energy of the beam as before, and then

from the conditions 8_V =0 and 8_V =0, we find that
oa ob
4p L' 2PL
a=—"—+—F—
m’El  7"El
4p,L* 2P

T2BEl 817°El
In this case, the maximum deflection at x=L/2 is
p, L' Pr’
Vg = +
76.8E] 48.1E1

which coincide with the exact solution. The bending moment at x=L/2 is
p,I’ PL
2= 505 *aaa
The first term has now only 0.63% in error and the second term has 11.00% in error.
We can further reduce the error by increasing the number of parameters in the approximate

displacement function.
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Example 4-7

Determine the buckling loads of the fixed end column as shown in Fig. Ex 4-7 by

using the Rayleigh-Ritz method.

P
Y
[T R X
L
A
¥
Fig. Ex 4-7

Consider the fixed end column as shown in Fig. Ex 4-7. The transverse deflection of
the column can be assumed to be of the form
v=a(x’=3xL* +20)+b(x—-L)’
where a and b are the unknown parameters. This function satisfy the boundary condition of

the column at x = L. If we consider only the strain energy of the bending moment, we have

2
_EI (d VJ 0
dx*

The potential energy of the external force P is

L 2
Qz—ﬁj‘(ﬂj dx
2 \dx

Thus, the total potential energy of the column is

g G EIE

2 5

V=6a’L’ (E1—§PL2)+abL2 (6E[—5PL2) +2b*L(EI - !

— P’
3 )
If the parameter @ and b are to correspond to a stationary value of V',

oV 2 5

— =12(EI -=PL*)a+ L*(6EI —=PL*)b=0
oa 5 2
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v _ L2(6E1—§PL2)a +4L(E1—1PL2)b =0
ob 2 3

A nontrivial solution to this column of homogeneous equations exists only if the

determinant of the coefficients vanishes. Then, we have

2
3p> —104 5 pyoaoED” g
L L

Solving the polynomial equation, we obtain

P :2.486%
P, =32.181%

2

Thus, the buckling load of the column is P, = 2.486% which is only 0.75% larger than the

7°El

r

exact value of
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4.7 Introduction to Finite Element Method

In the Rayleigh-Ritz method, each of the modes of deformation ¢,, ¢,, ..., ¢,, v,
Wyy oo W, 15 M, ..., 77, span the entire structure and the generalized coordinates «,, a,,
s a,,b,b,,....b ,c,c,, ..., c, areusually have no physical meaning.

In the finite element method, there are many approximate functions, each
comparatively simple and each spanning a limited region of the structure. In addition the
degree of freedom are the actual displacements of specific points instead of generalized
coordinates.

Beam Element Formulation

A 4
5»\ f =
\\\‘Lycx; =

—
A .
N
b
Fig. 4.7

Consider the simply supported prismatic beam having a constant stiffness EI/ as
shown in Fig. 4.7. First, consider the whole beam as an element in order to see the error that is
occurred due to a coarse element. Then, we will divide the beam into more segments and redo
the analysis.

Selecting an approximate displacement function that closes to the actual displacement
function of the beam in a form of polynomial function

y(x)=a, +a,x +ax’ +a,x’

This function must satisfy the geometrical (displacement) boundary conditions of the

beam.
At x=0, y(0)=0, a, =0
Atx=L, y(L)y=a,(L)+a,(L*)+a,(L’)=0,
a, =-a,L-a,l’
Thus,

y(x) =a,(x* = Lx) + o, (x* — L*x)

The external potential energy of the beam is

L 3 4

L L
Q=—|w,y dx:[a3—+a4—}wo
~(|]. 6 4
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The strain energy of the beam is

From the assumed shape function,

y(x) =a,(x* = Lx) + o, (x* — L*x)

Y _ a,(2x—L)+a,(3x* = L)
dx

d’y
T2 =2a, +6xa,
Thus, U =EIQ2a.L+6a,a,’ +6a,L’)

The total potential energy of the beam is

3 4

V=w, (a3 % +a, LT) +EIQa; L+ 6a,a, L’ +6a, L)

For the static equilibrium, the total potential energy of the beam must be minimum.

Lz
V. 2Ela, +3ElLa, = ——2
oa, 12

L2
I _y. 2Ela, +4ElLa, = ——2
oa, 12

w 2

Solving the simultaneous equations for «, and «,, we have o, = — 2; and o, =0

Since a, = —a,L—a,L’, thus

w L’

o

a, =
24E1

Substituting o, to «, into the assumed shape function, we have
— w 2.2 13
X)=—>—(-Lx"+Lx
yx) =5 )
Comparing the result with the solution by the mechanics of materials,

w 4 2.3 13
X)=—=>—=(x"-2L"x -Lx
y(x) . ( )
At the mid-span of the beam, we have the deflection by the approximated method and
the deflection by the classical method equal to

_(£)_LW0L4
796 I
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(L)_ 5 w,L'
M 7384 B

The error between these two methods is about 20%. However, we can improve the
solution by using a sine function as previously shown. It should be noted that if we use a
higher degree of the polynomial function, the solution is the same due to the nature of the
beam structure.

Compatibility
Another way to increase the accuracy of the solution is to break the beam down into

more pieces as an example shown in Fig. 4.8.

v ! I ] ,
;;5763/‘_‘@'@'@ —

¥ L/4 ¥ l/a L/
L
4
M
Fig. 4.8

If we choose to work this way, it is conceivable that each element will have a solution
function that is different from the others. If we are to assemble these elements in a
mathematical sense, there must be some compatibility requirements placed on the function of
the adjacent elements. This function is usually called the compatibility condition of the beam
elements.

The compatibility conditions of a structure require that

1. Within each region, the displacement varies smoothly with no discontinuity.

2. At the boundary between neighboring regions, the displacement matches each

other in a manner consistent with the problem under consideration.

3. At the boundary of the whole structure, the prescribed displacement boundary

conditions such as support conditions are satisfied.

The shape functions of the element i and i +1 of the beam in Fig. 4.9 are

V' =al +aix+aix’ +alx’
yi+l :a1i+l +a£’+1x+a;+1x2 +a‘i‘+1x3
Thus, the compatibility conditions of the junction between the element i and i+1 of the

beam are

V()=o)
n
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dli ~ dyi+1 |

dx ﬁ de °
cid a+\ u+2
20 " ‘) %’ 1+2-)
e M

v
x

@

Fig. 4.9

In general case, let consider the element i of a beam having the degree of freedom ¢,
to g, as shown in Fig. 4.10. The shape function of the element i of the beam can be
expressed as

y=q +a2§+a3§2 +a4§3

=a, +2a,&+3a,E’

Fig. 4.10
dy
At £=0, y=¢q, and — =g, . Thus,
dg
q, =&, +,(0)+a;(0) + a,(0)
9, =a,(0)+a, +a;(0) +,(0)
At &=L, y=gq, and ﬂ=q4.Thus,
dg
q, =a, +052L+053L2 +a,l’

q, =a,(0)+a, +2a,L +3a,’

In the matrix form,
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q, 1 0 0 0 |la
q, 01 0 0 |la
. |1 L e
q,] [0 1 2L 30||«,

This matrix expressing the relationship between the displacement g of the element i

and the generalized coordinate « of the shape function. It has a physical interpretation as

following:

1.
2.
3.

4.

When «, =1 and other « =0, ¢, =1, ¢, =0, g; =1,and ¢, =0
When «, =1 and other « =0, ¢, =0, ¢, =1, g, =L, and g, =1
When a, =1 and other 2 =0, ¢, =0, ¢, =0, ¢, =L, and ¢, = 2L

When a, =1 and other =0, ¢, =0, ¢, =0, ¢, =2L,and ¢q, =3’

These interpretations can be presented graphically as shown in Fig. 4.11.

~ AN

?l\
X [ |®
i \f2 s
|

/‘
F
pa

Fig. 4.11



Advanced Mechanics of Materials by Dr. Sittichai Seangatith

Shape Function of the Beam Element

4-40

If we inverse the relationship between the displacement g of the element i and the

generalized coordinate o of the shape function, we have

a, L 0 0 0 q,
a| 10 L' 0 0 |q
a,[ D=3 -2 3L -I*||q,
a, 2 L -2 L |94

or symbolically,

te}=[lq}

The shape function of the beam element can be written in the matrix form as

y:|_1 x x* X

Substitute {a}=[T'}{g} into the shape function, we have

r o 0 0 |[q
11 0 r 0 0 ||q9,
=31 —21* 3L -1*||q,
2 L -2 L ||q,4

yz\_l x x’ xSJ

q,

y:LNl N, N, N4J Zz
3

q4

or y=|NJq}=1q}" N}

where N, is called the shape functions or interpolation functions and

X ? X 3
vz of2)
L L
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If we plot the shape function N, with respect to the coordinate x, we obtain 4 curves

as shown in Fig. 4.12. Physically, each of the 4 shape functions represents the deflection
curve for the beam element produced by setting the corresponding degree of freedom to be

one and the others to be zero.

— — _f_
pral ~ Np=I

i
W ~<

/’#—"
Mﬂl —~—

Fig. 4.12
The first differentiation (slope) of the shape function of the beam element can be

obtained as

dx E

2|2

where

dN 6x 6x° 4x 3x> 6x 6x° 2x  3x7

— = + l-—+— —- -+ —

dx r r L r r r L I

The second differentiation (curvature) of the shape function of the beam element can

be obtained as

where

d*N 6 12x 4 6x 6 12x 2 6x
=l-=4+— ——F= ——— ——+—
dx? r L r r r LD

Let us consider the simply supported beam subjected to a uniformly distributed load as
shown in Fig. 4.13.

By using the finite element method, we divide the beam into four segments. The

positive degrees of freedom x; of each node of the beam are specified as shown. It should be
noted that in this case we use the notation of the degree of freedom x; replacing ¢, since g, is

the local degree of freedom of the beam element. However, when we consider the whole

beam, we need to use the global degree of freedom x; of the beam.

The total potential energy of a beam element i can be determined from the equation

yoO —y®»
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Fig. 4.13
Stiffness Equation of the Beam Element

The strain energy of the beam element can be written in the form of

U=—E1j( J dx

e
=—j{ }{ } V NJ{q}dx
)

Rearranging the equation,

1
= {q}" [kl{q}
where
(126 12 6]
L’ L L’ L
EI Soa 2
k1=—| 4 y
L 12 6 12 6
I’ L I’ L
6 5, _6
L L L ]

The [k] matrix is the called the stiffness matrix of the beam element.

The potential energy due to external load of the beam element can be determined from

the equation
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L
Q=—[w,ydy
0
where y = I_N J{q} = {q }T {N } . Therefore,

Q=-[ig)"w, {N}dv=~{g}" [w, (N}dx

Let jwo {N}dx ={Q}, then

Q=—{¢}" {0}
For the beam in this case, we have
x* 1x* b
2
1, 2x 1x*
e 27 3L 41
Of=w, [Njax=w4°  °
0 x _1x
rr 2r
1x* 1x*
___+__
3L 4r1° 0

Therefore, the total potential energy of a beam element i can be determined from
v ZE{q}T[k]{q}—{q}T{Q}

From the principle of stationary (minimum) potential energy, we can determine the value of

the degree of freedom of each node of the beam.

O]
zaV _izV(i) :0

oq; B aq,

Let us consider the element 2 of the beam, the strain energy stored in this element is

T

2 2 2 2
U® = x| |k ky ko ko)X
2 2 2 2
2|5 | ks ks kg ks ||Xs
Then, the partial derivative of the strain energy with respect to the degree of freedom x, to x,

can be determined as following
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ou? 1

Ox,4 2

N | —

| —

ou®
ox,

ou®
OXs

ou®
0Ox

IR S
O |k s
0 |k; ki,
0) [ksy ks
x)'To 0 0
x,] 10 0 O
x| |0 0 O
xs)] |0 0 0
x ) [k K
x| |k ks
Xs| |k ks
X6 _kjl ki
ke
ou? _ ke,
ax3 B k123
ke,
k221 ' X3
. kzzz Xy
) k223 Xs
k224 Xe
k2 (x,
_ k3, X4
) k323 Xs
k324 Xg
AN
_ k224 Xy
B Ry | |%s
ki | X6

The external potential energy of the element 2 is

0? - _

X3
Xy
Xs

Xg

T

0,
o
0O;
O

4-44
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Then, the partial derivative of the external potential energy with respect to the degree of

freedom x; to x, can be determined as following

80

Ox,4

T

0,
0|07
Os

oQ®
i

o o o =

Ox

aQ(Z)
=0

Thus, the partial derivative of the total potential energy with respect to the degree of

freedom x; to x, can be found as

ov®
Ox,4
orv®
ox,
or®
0x5
ov®
Ox¢

0,
0,
QS
O

Rewriting the strain energy and the external potential energy of the element 2 in the

global coordinate, we have

c

B

=
S O O O O O o o o o
S O O O O O o o o o

and

0 0 0 0
0 0 0 0
k122 klz_’y k124 0
ks, sy ks, 0
ks, sy ks, 0
ki ki ki 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

S O O O O O o o o o

S O O O O O o o o o

S O O O O O o o o o
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QO x, 0
g)(Z),x2 0
gz(Z)’x3 Q3
Q(Z),x4 Q4
{Q(Z),Xl}_ Q% x, __ 0Os
g)(Z)’x6 Q6
g)(Z),x7 0
0@ x, 0
Q(z),x9 0
Q(Z),Xm 0

In general, we have

{Um 2 Xi }lel = [k Tioxio {x}IOXI
{Q(i)’xi }IOXI = {Q}IOxl
and the total potential energy of all four elements of the beam is

V= i[U(” +Q"]

For equilibrium, the partial derivative of the total potential energy of the beam with

respect to the degree of freedom x; must be zero.

4
V,x, =Y, x +Q%,x1={0}

i=1

{V,x,-}=g[kf]{x}+g{g}={0}

4 4
where Z[ki] is the global stiffness matrix of the beam and Z{Q} is the load vector of the
i=1

i=1

4
beam. Symbolically, the global stiffness matrix Z[ki] is usually written by using [K ] In

i=l1
details, the partial derivative of the total potential energy of the beam with respect to the

degree of freedom x, can be written as shown in the next page. In this equation, since the
supports are pin and roller, the degrees of freedom x, and x, are known to be zero. It should

be noted that the obtained global stiffness matrix [K] is the same as one that we found by

using the matrix structural analysis.
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V,x,
V,x,
V,x,
V,x,
V,xs
V,xg
V,x,
V,xg
V,x,
V,x,

k 113
s
k3l3 + klzl
kys + ke,
ks,
ki

0

0
0
0

k 114
2
Jesy + Ky
ey + Ko
ks
ki
0

0
0
0

2 3
k33 + kll
2 3
k43 + k21

ks,
kay
0
0

2 3
k34 +k12

2 3
k44 + kzz

ks,
ki
0
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(1

2

1 2
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o + 0,
0% +0
0F +0P
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Let us redefine the degree of freedom of the beam from x, to x; as shown in the
figure. The degree of freedom x; is arranged so that the known degree of freedom

(displacement at the supports) are numbered first and followed by the unknown degree of
freedom. This kind of set-up will help us to partition the global stiffness matrix, which will

ease the matrix manipulation.

(N N Y N e

e 8 ~& =

| Lo v ool

X 7‘3 X’- X3 xq
x5 o Xa *q X

25 B i BV Bt e Wal

— - s & —

} b ¢ b v

N T

Fig. 4.14

From the Fig. 4.14, we can relate the degree of freedom x, with the degree of freedom

x; by the matrix

X, 100000000 0]
X, 00100000 0 0[x
X 10001 00000 0[x
X,/ |00 0010000 0|x
x| 000001 00 0 0fx
x| 000000100 0lx
x| [00000O0O0T1O0 O0|x
X, | 100000000 1 0|x
x| |[01.000000 0 0|x
xo| (00000000 0 1]x,

In the symbolic form,
=[]}
We usually call matrix [T'] as transformation matrix. Then, we can rewrite the total

potential energy of the beam based on the new global degree of freedom x; as
V= K - 710)

%&Vﬁrkﬁkﬂ—ﬁfﬁkﬁ

:%gﬁﬁKquﬁ—u%%Q%



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 4-49

where [K']=[T]' [K]7] and {0} =[T}0}
Taking the partial derivative of the total potential energy of the beam with respect to

the degree of freedom x| and setting the result to be zero, we have

{aV} = )= [k Y- P}

ox;

0

Partitioning the global stiffness matrix by separating the known displacements at the

supports from the unknown displacements, we have

PACY N

where A is the known support settlements, x' is the unknown displacements, P’ is the

s

known external loads acting on the supports, P’ is the known external loads, and R is the

unknown support reactions. It should be noted that [K '] is a symmetric matrix and

[K.,]=[K.. ] and vice versa. Thus, we can find the unknown displacements x' from the
equation
K5 fap+ K5 iy = P = {o)
=1k P - [KG Rl
Then, we can solve for the unknown support reactions from
Ko faf+ K Jh = {2+ {R} = {0}
{R}=—{K Jiaj =[G '} + {P}
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Chapter 5

Static Failure and Failure Criteria

5.1 Definition of Failure

Failure can be defined as any changes in the size, shape or material properties of a
structure or mechanical part the render it incapable of satisfactorily performing its intended
functions.

Failure can be caused by the following agents:

Forces: steady, dynamic, transient, cyclic, random

Time: very short, short, long time

Temperature: low, elevated, room, steady, random, cyclic, transient

Environment: Chemical, nuclear, rain, sand
5.2 Modes of Failure

When a structural member is subjected to loads, its response depends not only on the
type of material, but also on the types of loads and environment conditions. Thus, the modes
of failure can be classified as

Yielding failure — The plastic deformation in the structure under operational loads
that is large enough to interfere with the ability of the structure to satisfactorily performing its

intended functions as an example shown in Fig. 5.1.

Fig. 5.1
Force induced elastic deformation — The elastic deformation that is recoverable in a
structure under operational loads become large enough to interfere with the ability of the
structure to satisfactorily performing its intended functions such as stiffness loss as an

example shown in Fig. 5.2.
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Ductile failure — The plastic deformation in the structure that exhibits ductile
behavior and is carried to the extreme so that it separates into two or more pieces as an

example shown in Fig. 5.3.

Fig. 5.3
Brittle failure — The elastic deformation in the structure that exhibits ductile behavior

and is carried to the extreme so that it separates into two or more pieces as an example shown
in Fig. 5.4.

Fig. 5.4
Fatigue failure — The separation of a structure into two or more pieces or a certain
size of crack initiation as a result of fatigue load or deformation for a period of time.
Low cycle fatigue: fatigue life < 10° cycles
High cycle fatigue: fatigue life > 10° cycles
Thermal fatigue
Sonic fatigue
Buckling failure — The deflection of a structure suddenly increased greatly with only

a slight change in load. The buckled part is no longer capable of performing its intended

function as an example shown in Fig. 5.5.

Fig. 5.5
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Creep failure — The plastic deformation in a structure under the influence of stress or
temperature over a period of time and becoming so large enough to interfere with the ability
of the structure to satisfactorily performing its intended function.

5.3 Failure Criteria

The stress analysis itself can not be able to predict the failure of a structure. To know
about how high stress can a structure be sustained or how high the strength of the structure, a
failure criteria is needed.

The criteria discussed in this section will be focused on the failure due to static loads
such as force-induced failure, yielding, ductile, and brittle failure. Once the state of stresses
at a critical point on a structure is determined, the principal stresses can be computed,
and the failure criteria can be used.

5.3.1 Maximum principal normal stress fracture criterion

Experimental observations show that brittle isotropic materials such as cast iron tend
to fail suddenly by fracture without yielding.

Failure will occur when the maximum principal normal stress become equal to or
exceed the maximum normal stress in a simple tension (or compression) test using a specimen
of the same material.

Mathematically, if the material is subjected to plane stress the failure will occur when

where o,, o, are the principal normal stresses
o, = ultimate tensile (or compressive) strength obtained from the tension test
Thus, we have

+ 91 and + %20

(o3 (o3

ult ult

A plot of these equations is in the rectangular shape and is shown in Fig. 5.6.
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Any stress falling within the rectangular indicates that the material behave elastically.
Points on the hexagon indicate that the material is failing by separation or fracture.

5.3.2 Maximum shear stress yield criterion

Experimental evidence indicates that, in ductile isotropic material such as mild steel,
slip occurs during yielding along critical oriented planes. This suggests that the maximum
shearing stress play an important role in the failure of the ductile materials.

Failure will occur when the magnitude of the absolute maximum principal shear stress
becomes equal to or exceed the maximum shear stress in a simple tension test using a
specimen of the same material.

Mathematically, if the material is subjected to plane stress the failure will occur when

0, -0,
2

Tabs -
max

>
2Ir,|

where 7, = absolute maximum principal shear stress

max

. . . c,-0 o
7, = maximum shear strength obtained from the tension test = z = Ty
Thus, |0'l —0'2| > ‘O'y‘
o, o . o
L -—2]=1 if o, and o, have the opposite signs
o, ©
LV y
o
+| =1
O-y
- if o, and o, have the same signs
o
|2 |=1
L%y
92 |
Oyp

1 A1, 1)

B(1,-1) -1

Fig. 5.7
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A plot of these equations is in the hexagonal shape and is shown in Fig. 5.7. Any
stress falling within the hexagon indicates that the material behave elastically. Points on the
hexagon indicate that the material is yielding.

5.3.3 Maximum principal normal strain fracture criterion

Failure will occur when the maximum principal normal strain become equal to or
exceed the ultimate strain in a simple tension (or compression) test using a specimen of the
same material.

This criterion is an improvement over the maximum principal stress criterion, but it
does not reliably predict failure by yielding. In practice, this criterion is rarely used excepting
in the design of thick-walled cylinder. Mathematically, if the material is subjected to plane

stress the failure will occur when

1|2 e
or |£2| 2 |E
o . . o o o o)
where &,,&, are the principal strains which are ¢, =—-—-v—2 and &, =—>—-v—-.
E E E E
O : . . . . .
Ey = = maximum tensile (or compressive) strain obtained from the tension test

Thus, |i (0, -vo, )| =O0u
|i (o, —vo, )| =Ou

A plot of these equations is shown in Fig. 5.8.

Fig. 5.8
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5.3.4 Maximum distortion energy yield criterion

Failure will occur when the distortion energy density become equal to or exceed the
distortion energy density at failure in a simple tension test using a specimen of the same
material.

The total strain energy density U, can be divided into two parts:
1. Due to solely volume change or dilation, U, .
2. Due to solely change in shape or distortion, U, .

1 1 1
U =56181 +56282 +EJ383

Since the strain-stress relations in the form of principal strains and principal stresses
1 1 1
are & =— (o, —vo, —vo,), & =—(o,—0,-Vvo,),and & =— (o, —Vvo, —vo,), then, we
E E E
can write the total strain energy density as

1
v :E[Glz +0; +03 —2v(0,0,+0,0, +G301)]

o

Fig. 5.9

From chapter 1, we have the mean stress or hydrostatic stress acting on a stress

(o +O'2 +O'3
avg. 3 .

element which is the average of the principal stresses o The

corresponding hydrostatic strains can be determined as
gavg.

1
= E(l — 2V)O-avg‘

The dilation strain energy density,

U :31 o,to,+to0, \1-2vo,+o0,+o0,
2 3 E 3

U :i(l—Zvj o, +0,+0, ?
> 20 E 3
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The distortion strain energy density is U, , =U, —U, . Thus,

0.d :é(HTVJ((O-l _0-2)2 +(o, _0-3)2 + (o, _0-1)2)

The distortion strain energy density in simple tension test at failure is

I+v) ,
Uo’dy =[—3E jay

Mathematically, if the material is subjected to a general state of stresses the failure

will occur when U, , =U,, ,,. Thus,

! (1"“/)((0_1 _0-2)2 + (o, _0-3)2 +(o; _0-1)2): (I‘FV]O_;

2E 3 3E

(o, _0_2)2 +(0o, _0-3)2 +(o; _0-1)2 = 20—5

If the material is subjected to plane stress, the failure will occur when
(0,-0,) +(0,)" +(-0))* = 20—;

2 2 2
o, +0,-00,=0,

2 2
AT I U By IV I
g, G, 0, o,

This is an equation of an ellipse. The plot of this equation is shown in Fig. 5.10. Any
stress falling within the ellipse indicates that the material behave elastically. Points on the
ellipse indicate that the material is yielding. Experimental investigations show that this

criterion is best fitted for isotropic materials that fail by yielding or ductile rupture.

G2
Gyp

3

Fig. 5.10
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5.3.5 Maximum octahedral shearing stress yield criterion
This failure criterion gives the same results as the maximum distortion energy
criterion does. However, this criterion provides us to deal only with the stresses instead of the
energy. From does the maximum distortion energy criterion, we have
(0,-0,)" +(0,-0,)" +(0,~0,)" = 20_;

From chapter 1, we have the octahedral shearing stress as

0

1 1/2
Toct :E[(O-l _02)2 +(o, _03)2 + (o, _01)2]
or

oct

1
T = 5[(0} —ay)2 + (o, —GZ)2 +(G}, —O'Z)2 +6rfy +6er +6r§z ]1/2

Mathematically, if the material is subjected to three-dimensional stress, the failure will

occur when

Failure will occur when the maximum octahedral shearing stress become equal to or
exceed the octahedral shearing stress at failure in a simple tension test using a specimen of
the same material.

5.3.6 Coulomb-Mohr fracture criterion

In some brittle materials such as gray cast iron and concrete, the tension and
compression properties are different. The failure of these materials should be predicted by
using the Coulomb-Mohr criterion.

In the Coulomb-Mohr criterion, the fracture is hypothesized to occur on a given plane
in the material when a critical combination of shear and normal stress acts on this plane. The
simplest mathematical relation giving the critical combination of stresses is in the form of
linear relationship. At fracture, we have

|z'| + uo =r,
where 7 and o are the shearing stress and normal stress acting on the fracture plane,

respectively, and ¢ and 7, are constants for a given material. This equation forms a line on a

plot of o versus |r| and the line has a slope of — 1 and intercepts the 7 axis at 7, as shown

in Fig. 5.11.

Consider a stress element subjected to the principal stress o,, o,, and o;. The

Mohr’s circle of the state of stresses can be drawn as shown in Fig. The failure is occurred if
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the largest of the three circles touch the line. Thus, the line represents a failure envelope for

the Mohr’s circle.

o2 f
— T
fracture planes —~ ) i ~
( =1/u) N ®
(tan & = 1/u) | \ @ e el
a 2 T

Oq On 0 T4

Fig. 5.11

As shown in the figure, the touching point has the coordinate (o', 7" ) where

o, t+to |O' —O'|
r_ 21 EI bl 3|COS¢

O, — 03

|r'| = sin ¢

Also, the failure planes are occurred where the maximum principal stress acts by a rotation

@ /2 in either direction and

1
tang = —
y7,

o C ol 1. .

Substituting o', |7|, and tan ¢ = — into the relation |z'| + uo =rt,, we have
U
|a1 —0'3| +m(o, +0,)=2r,
u T, .
where m = =cos¢ and 7, = =17,sing.

N 1+ u°
For torsion test, we have o, = -0, =7 and o, =0. Thus,
|z'+2'|+m(z'—r) =27,

T=r1,

The 7, is the pure shear necessary to causes fracture. The corresponding largest Mohr’s circle

and predicted fracture planes are show in Fig. 5.12.
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a——
G4
o
o3 O3
Fig. 5.12
For uniaxial tensile test, we have o, =0, and o, =0, =0. Thus,
|am - 0| +m(oc, +0)=27,
_ 2z,
“14+m
For uniaxial compression test, we have o, =0, =0 and o, =—0o,, . Thus,
0+0,|+m(0-0,)=2z,
27,
GMC =
1-m
. 27 . o
It should be noted that o, must have a negative value or o, =1 “— since it is the
—m

compressive stress. The fracture planes predicted by the Coulomb-Mohr criterion for uniaxial

tensile test and uniaxial compression test are shown in Fig 5.13.

‘03 =%uc
\/{0 o= 0
/
|| / N\
/ / T
. . - / s
uniaxial / — o G, =0y
compression / uniaxial
tension
fx” > O3=0] 3~
: )
Suc 0 Sut G o
Fig 5.13
Eliminating 7, , we have
_ 14+m
we — Ou
I-m

Solving for m , we obtain



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 5-11

— O-uc + O-ut
o-uc - O-ut

We can see that for a positive value of m, the strength in tension is predicted to be

less than that in compression.

If the subscript for the principal stresses are assumed to be arbitrary assigned, then,
|0'1 —0'3| +m(o, +0;) =27,
|O'2 - 0'3| +m(o, +0;) =21,
|0'1 - 0'2| +m(o, +0,)=2r,
For plane stress,
|0'1|+ mo, =2t,
|0'2| +mo, =21,
|c7l - 0'2| +m(o, +0,) =21,

The plot of this equation is shown in Fig. 5.14.

62

Out

Cug

G

uc

Fig. 5.14
It should be noted that the Coulomb-Mohr criterion with the constant m =0 is
equivalent to the maximum shear stress criterion and Fig. 5.14 will be the same as Fig. 5.7.
5.4 Comparison of the Failure Criteria
Fig. 5.15 shows the experimental results with the failure criteria presented before. It is

concluded that
1. The maximum principal stress criterion is best fitted for isotropic material that is
failed by the brittle fracture.
2. The maximum distortion energy criterion is best fitted for isotropic materials that

fail by yielding or ductile rupture.
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3. The maximum shearing stress criterion is almost as good as the maximum

distortion energy criterion for isotropic materials that fail by yielding or ductile

rupture.
o5 Maximum
Maximum o 3 distortion energy
normal stress /
————
\‘\ _,-’- S 5
”;', 1.0 ~
o, *+
s,
r v,
, !
,/ R4 1
+
/
,’/ \ ) Rd
1, Maximum 6!
&y shear stress A
f! -1.0 0 110 o1
‘: o Cult
' /J) N
I 2 1
'l :5"% 1
1 /9/ S
’
+ Castiron A ’:,' M
O Steel
-
® Copper S -1.0
A Aluminum

Fig. 5.15
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Example 5-1
The stesolid shaft as shown in Fig. Ex 5-1a has a radius of 12.7 mm and is made of

steel having o, = 250 MPa . Determine if the loadings cause the shaft to fail according to the

maximum shearing stress criterion and the maximum distortion energy criterion.

70 kN,,/_zL
127mm 370 N-m

(a)

oo 11500 MPa

138.15 MPa

|
:
|
(b)

Fig. Ex5-1
Let the x - axis is in the longitudinal direction of the shaft. The averaged axial stress
due to the axial force is

70

o, =—————=138.15MPa
7(0.0127)

The maximum shear stress caused by the torque is

370(0.127)

T, =

" 2(0.0127)*
2

=115.0 MPa

The stress element at point A is as shown in Fig. Ex 5-1b.

The principal normal stresses due to the state of stresses as shown in Fig. Ex 5-1b are

2
- :—138.15+0i\/(—138.215—0) 1500

2 2
o, =65.07 MPa

o, =-203.23 MPa

Maximum shearing stress criterion
Since the principal normal stresses have the opposite sign,

. {ﬂ ) &}
O-y O-y

<1
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‘{65.07 -203.23

=1.073>1.0
250 250 }‘

Thus, the loadings cause the shaft to fail according to the maximum shearing stress criterion.

Maximum distortion energy criterion

2 2
o o, O o ?
GJ’ O-,V O-,V GJ’

(65.07)2 _(65.07 - 203.23j N (— 203.23

250 250 250 250

2
j =0.940<1.0

Thus, the loadings do not cause the shaft to fail according to the maximum distortion energy

criterion.
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Example 5-2
A circular cylindrical shaft is made of steel with o, =700 MPa, E =200 GPa, and

v =0.29. The shaft is subjected to a static bending M =13.0 KN -m and a static torque of
T =30.0kN-m as shown in Fig. Ex 5-2. Using the factor of safety of SF' =2.60, determine
the minimum diameter of the shaft based on the maximum octahedral shearing stress
criterion (or equivalently the maximum distortion energy criterion) and the maximum

shearing stress criterion.

Fig. Ex 5-2

The shaft is subjected to a static bending moment M =13.0 KN -m and a static torque
of T'=30.0kN-m. However, due to the factor of safety of SF' =2.60, the moment and the
torque must be increased by the factor. Thus, if we let the x- axis is in the longitudinal

direction of the shaft, the stresses due to the loadings are

o, = s Me _ 3ASPM
1 d

B Te 16(S};“)T
J 7d

For the maximum octahedral shearing stress criterion,

NG

z-oct(max) = 3

Oy

%\/(O'x —O'y)2 +(o,-0,) +(o, ~-0.)’ +6rfy +672 +6er :%O-Y

1l ——5 2
g 2(754‘61';} ZTGY
o o +3T§y

Substituting the stresses into the obtained equation, we get

oy, = 16(‘95) AM?* +3T?

7d

or

1/3
d. = {16(5]1) Vam? +3T2}

oy

d, ., =103 mm
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For the maximum shearing stress criterion,

_ Oy

1 2 2 O-Y
—\o, +4r. =—-
2 X Xy 2

Substituting the stresses into the obtained equation and rearranging the term, we get

1/3
doin ={—32(SF) VM’ +T2}

oy

d, ., =107 mm
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Chapter 6

Introduction to Fracture Mechanics
6.1 Introduction

Traditionally, the structural design approaches are based on the concept that the
structures must have enough strength, stiffness, and stability to resist the loads.

For the strength criteria, the applied stress must be less than the yielding or ultimate
strength of the material. However, when a crack is occurred in a component of the structure, it
can cause the failure (in the form of fracture) at stresses well below the material's yielding
strength. In this case, a special methodology called fracture mechanics can be used in design
to minimize the possibility of failure.

Fracture mechanics is important in engineering design since cracks and crack-like
flaw occur more frequently than we might expect. For example, the periodic inspections of
large commercial aircraft frequently reveal cracks that must be repaired. Also, they are
commonly occurred in ship structures, in bridge structures and in pressure vessel and piping.

The ability of a given material to resist a crack depends principally on the toughness
of the material. Generally, fracture toughness in some metals such as steel increase with
temperature as shown in Fig. 6.1. Also, there is an especially abrupt change in toughness over
a relative small temperature range such as —50°C for A469 steel. The temperature at this

point is called the transition temperature. Thus, the fracture of the steel can be promoted by

the temperature below the transition temperature.

240 :
Rotor Steel : 0, MPa {200
o A217,2.25 Cr-1Mo, cast : 419
200 - o AISI 403, 12 CrSS: 682

e A A471, Ni-Cr-Mo-V : 931 160

@ . g

a o A469, Ni-Mo-V : 590 .

= 160 - A470, Cr-Mo-V : 626

<
= 4120 E
S 120 -
= <
o

2 80

S 80

o

©

* A 40

40 __8/
0 : ' 0
-200 -100 0 100 200

Temperature, °C

Fig. 6.1
Generally, fracture process can be categorized into three stages.

1. Crack initiation — micromechanics and dislocation theory
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2. Crack extension — slow crack growth

3. Fast crack propagation

Thus, in fracture mechanics, a preexistent crack is assumed. Fracture mechanics is used to

study the growth behavior of crack and residual strength of cracked structures, and to evaluate

the life.

The growth of a crack and its corresponding stress can be shown as in Fig. 6.2.

Crack size, a Crack size, g

Maximum
allowable

crack size, a,,

Detectable

crack size, a .00

aﬂ
0 ‘

1 0 Fal, Fall1
Time, ¢ Allowable stress, =,

Fig. 6.2

The following questions are important in designing a structure using fracture

mechanics.

l.
2.
3.

o
What is the maximum permissible crack size?

What is the residual strength as a function of crack size?

How long does it take from the maximum detectable crack size to the maximum
permissible crack size?

During the period available for crack detection, how often should the structure be

inspected for crack?

6.2 Fracture Modes

Once a crack has been initiated, subsequent crack propagation may occur in several

ways depending on the relative displacement of the particles in the two faces (surfaces) of the

crack. There are three fundamental modes of fracture acting on the crack surface displacement

as shown in Fig. 6.3.

1.

Opening mode (Mode I) - The stress acts perpendicular to the crack growth
direction and the crack growth plane. The crack surfaces move directly apart.

Shearing mode (Mode II) - The stress acts parallel to the crack growth direction
and the crack growth plane. The crack surfaces move (slide) normal to the crack

edge and remain in the plane of the crack.
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3. Tearing mode (Mode III) - The stress acts perpendicular to the crack growth
direction and parallel to the crack growth plane. The crack surfaces move parallel
to the crack edge and remain in the plane of the crack.

The most general cases of crack surface displacements are obtained by superposition

of these basic three modes.

~ Crack edge
Crack
surface:—:‘“‘\ w Q
PRI
Y SISIRERINES: FRRICES S48
,.r"—
-~
-~
-
-~
| ! ~ |
|
l ! p Crack
: Crack Crack SII.IF‘face I sirface
i surface
———H - AT T -i—ﬂ_,__._ N S
.-"'/ i
-~y | ..-v'l/
—— NN : S
|
/)- _____ /‘J_ ___________
- g e —'—f""!"‘/
e S P //
Mode | Mode || Mode 111
{Opening) (Sliding) {Tearing)
(a) (b) (c)

Fig. 6.3
6.3 Stress and Displacement Field at the Crack Tip
In 1950, Irwin showed that the local stresses near the crack tip, as the curvature at the
crack tip goes to zero as shown in Fig. 6.4, are of the form
K

== 10
j mf,]()

and we can see that o, — a as r — 0. Thus, the stress field is a singular stress field with a

O

singularity of Jr. The term K is called the stress intensity factor, which defines the
intensities or magnitudes of the singular stress around the crack tip. The expression of K

depends on the fracture modes.
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(4]

G A A

6.3.1 Mode 1

IREREREE
Fig. 6.5

The stresses at a point having a distance » and angle € from the crack tip and for

Mode I as shown in Fig. 6.5 are

o, = cos—| 1—sin—sin—
2w
o, = cos—| 1+ sin—sin—
N2
_ K, .
T, = \/ﬁcos—sm—cos—
Plane stress c.=7,=7.=0
Plane strain o.=v(c,+0))

T,.=T, =0

where K, = linolo-y‘g=0 (V2mr) = O'D\/E
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The displacements at a point having a distance » from the crack tip and angle 6 with
the x axis are

u, = L9 cos—(2K—1) cosﬁ
8G \ 2z 2

u,(6) = u,(~9)

u K sin — (2K 1)—s1n£
» 86\ 2r 2 2

u,(0)=-u,(-0)

3—-4v  planestrain
where K=<:3
plane stress
I+v
6.3.2 Mode I1
o T
(r.8)

?:H

Fig. 6.6

The stresses at a point having a distance » from the crack tip and angle 8 with the x
axis for Mode II as shown in Fig. 6.6 are

K, . 9( 0 36’)
O, =————=sIn—| 2+c0s—Ccos—
N2mr 2 2 2

K, 9 6 30
f \/_ s1n — cos 5

o

T Q( —SIHQSIHﬁj
v ,/2 2 2

o.=7_=17_=0

z yz Xz

Plane stress

Plane strain o.=v(c,+0))

where K, =t,Nm
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The displacements at a point having a distance » from the crack tip and angle 6 with

u, :&1/2 (2K—|—3)sin§—|-sinﬁ
8G \ & 2 2

u,(0) =-u (-0)

u =&1/3 —(2K—3)cosg—cosﬁ
T 8G \ 2 2

u,(0)=u,(-0)

the x axis for Mode II are

3—-4v  planestrain
3—

where K= v
plane stress
I+v
6.3.3 Mode 111
f ?'_r.l
y | :',E}

/ [

Fig. 6.7
The stresses at a point having a distance » from the crack tip and angle 8 with the x

axis for Mode III as shown in Fig. 6.7 are

where K, =t Nm

The displacements at a point having a distance » from the crack tip and angle 6 with

the x axis for Mode III are
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K
u, =—1 zsin9 and wu. =u_=0

z X y

/4
6.4 Stress Intensity Factor (SIF or K )

Stress intensity factors are needed to measure the intensity or magnitude of the
singular stress field in the vicinity of an ideally sharp crack tip in a linear elastic and
isotropic material. This approach is called linear-elastic fracture mechanics (LEFM). The
factors do depend on loading condition, crack size, crack shape, and geometric boundaries.

The general form of the stress intensity factors is given by

K:f.O'\/E

where o = applied stress
a = effective crack length

f = correction factor. For infinity plate, f =1.

Thus, stress intensity factor K has a unit in ksivin or MPav/m . The solutions of the stress
intensity factors have been obtained for wide variety of problems and published in a
handbook form. The followings are the typical solution for SIF:

6.4.a Center crack

A O S

2b

==

IEEREE

Fig. 6.8

K -o . f(gj

6.4.b Double edge crack
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2 3
fA2]=1.12+02032-1.197 2| +1.930 <
b b b b

O O

BRERERERD
Fig. 6.9
6.4.c Single edge crack
L O
Ny

BRERED

Fig. 6.10

K, =o,Jm. f(%)

2 3 4
f(ﬁ] =1.12-02312 + 10.55(3) - 21.72(3j + 30.39(3]
b b b b b

6.4.d Crack under bending
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K, =00\/E.f(%j

6M
O =
b’t

2 3 4
f(3j=1.12—1.403+7.33(3j —13.08(ﬁj +14(3j
b b b b b

6.5 Superposition of SIF

Stress intensity factor for combined loading can be obtained by the superposition
method, that is, by adding the contribution to K from the individual load components. It is
valid only for combination of the same mode of failure.

Consider an eccentric load applied at a distance e from a centerline of a member with
a single edge crack as shown in Fig. 6.12. This eccentric load is statically equivalent to the
combination of a centrally applied tension load and a bending moment.

The stress intensity factor for the centrally applied tension load is
P a
K/ =—~ma.f*| —
Y / (bj
The stress intensity factor for the bending moment is
oM a
K =—Ama.f" (—j
" b 4 b
Thus, the total stress intensity factor of this case is

K, =K"+K’ =£(f”(ﬁj+@ b[ﬁnﬁ

bt b b b
P P
M= Pe
e‘T [ 1 ="
-—| b/2
_‘:a=- K = :E.Ez- |»-(‘1 + :“—EL Kg
e b —
* * Y
(a) (h)
Fig. 6.12

6.6 Fracture Toughness (Critical SIF)

Fracture toughness K,. is the critical value of the stress intensity factor K. If the

stress intensity factor K occurred in a given material is less than the fracture toughness, the

material will have ability to resist the crack without brittle fracture.
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Fracture toughness is a material parameter, but it depends on both temperature and

specimen thickness.

K=o, Nma.f (%)

K
o = Ic

gz

Ky = O-\/E-f(%)

where a_ = critical crack size.

It should be noted that in order to ensure that the state of stress is plane strain for each

of the cases in Section 6-4, the magnitudes of the crack half-length a and the thickness ¢

should satisfy

K
a,t >2.5 —<

o,

Table 6-1 shows K. at the room temperature for several metals.

Table 6-1
a, T, K Minimum
Values for B, a, t
Material MPa MPa MPaym mm

Alloy Steels
A533B — 500 175 306.0
2618 Ni Mo V — 648 106 66.9
V1233 NiMo V — 593 75 40.0
124 K 406 Cr Mo V — 648 62 229
17-7PH 1289 1145 77 113
17-4PH 1331 1172 48 42
Ph 15-7Mo 1600 1413 50 31
AISI 4340 1827 1503 59 39

Stainless Steel
AISI 403 821 690 77 311
Aluminum Alloys
6061-T651 352 299 29 235
2219-T851 454 340 32 221
7075-T7351 470 392 31 15.6
7079-T651 569 502 26 6.7
2024-T851 488 444 23 6.7
Titanium Alloys

Ti-6Al-4Zr-28n-0.5Mo-0.5V 890 836 139 69.1
Ti-6A1-4V-25n 852 798 111 484
Ti-6.5A1-5Zr-1V 904 858 106 382
Ti-6Al-4Sn-1V 889 878 93 28.0
Ti-6Al-6V-2.55n 1176 1149 66 8.2
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Example 6-1

Determine the stress intensity factor for the edge-cracked beam having the crack half-

length a of 1.75in.when subjected to a moment of 100 kips - ft . It the beam was made of an
extremely tough steel that has o, =195ksi and a K. of 150 ksi~/in.. The width of the

beam is 4in. and the depth of the beam is 12in.. If the moment applied to the beam was

increased to 400 kips - ft , would this beam fail?

The flexural stress due to the moment 100 kips - ft is

O_:%: M(3b/2) _ 6]\21 _ 6(100)512) 125 ksi
I (b’ /12) b 4(127)
Since the crack half-length a of the beam is 1.751n.,

a_L75 14583
b 12

2 3 4
f(3j=1.12—1.403+7.33(3j —13.08(ﬁj +14(ﬁj ~1.329
b b b b b

The stress intensity factor for the edge-cracked beam is

K, =12.5/(1.75)(1.329) = 38.95 ksi/in.

The flexural stress due to the moment 400 kips - ft is

6(400)(12)
O 412Y)

K, =50,/7(1.75)(1.329) = 155.80 ksi/in.

Since the stress intensity factor is larger than K,. of 150ksi.v/in. and the flexural stress is

=50ksi

less than the yielding strength o, =195ksi, the beam does fail by fracture.
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Example 6-2

A tool as shown in Fig. Ex 6-2 is used to dig up old road beds before replacing them.
Let the tool be made of AISI 4340. The dimensions of the tool are d =250mm, » =60 mm,
and the width # =25mm. Determine the magnitude of the fracture load P for the crack

length of @ =5 mm.

- O b=

i
i gV

S

Fig. Ex 6-2
The crack half-length a and the thickness ¢ satisfy the condition

2
a2 B |- 2.5(2j (10° mm/m) = 3.9 mm
o, 1503

Thus, we can consider the problem as a plane strain problem.
At the crack section, the tool is subjected to combine axial load and bending.

Assuming the behavior of the tool is in the linear-elastic range and by using the superposition

method. Thus,
K, =K} +K]
For the crack length of @ =5mm, a/b=5/60=0.0833.

2 3 4
f“(ﬁj:1.12—0.231£+10.55(£j —21.72(3j +30.39(ﬁj =1.163
b b b b b

2 3 4
fb(2j21'12_1'40£+7'33(2j —13.08(% +14(3j =1.047
b b b b b
P al 6M _,(a
K = — al = + —_
e [btf [b) bzzf(bj)“m

59\/1000=( P (l.l63)+w(1.047)}/7f(5)

25(60) (60%)25

P=23.17kN
The total maximum stress is

P oM 2317 N 6(0.280)23.17

O=—+—7-= 2
bt b7t 0.025(0.060) 0.060°(0.025)

=448 MPa <o, =1503 MPa

which is in accordance with the assumption of linear elastic behavior.
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6.7 Strain Energy Release Rate and Its Equivalent to SIF

Consider a cracked member under a Mode I as shown in Fig. 6.13a. Assume that the
behavior of the material is linear elastic under the action of load P. As a result of the elastic
deformation, the strain energy stored in the member as shown in Fig. 6.13a is

U:va
2

where v is the displacement at the loading point.

S
(a) t i L 1b:
—
I
a da s , L 4
du ¢
p * 5 S [ a+da
\ A /
U 70N
0 \ U—du,
v =AL
Fig. 6.13

If the crack moves ahead by a small distance da, while the displacement is held
constant, the stiffness of the member decreases as shown in Fig. 6.13b. This results in the
decreasing in the strain energy by the amount of dU , that is, U decreases due to a release of
this amount of energy.

The strain energy release rate (G ) is defined as the rate of change of strain energy

with increase in crack area .

G=_2oU__1U
04 t Oa
. : ... Ib—in Ib . .
where ¢ = thickness of the plate. Since G has a unit in ———=—, G is sometimes
in in

considered as a crack driving force.

For plane stress,

K2
G, =L
E
K2
=T
1+v
Gm = K1211
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For plane strain,

1-v
G, = E K}
1-v?
(;H = E l(é
1+v
(;LU _'_jgf‘liél

6.8 Plastic Zone Size

6-14

Irwin has shown that the local stress at the crack tip as shown in Fig 6.14 is in the

form of

K
L1 (0
Nl

O-ijz

This means that at the crack tip or » — 0, the local stress is infinite or o, — a. However,

real materials can not support these theoretical infinite stresses. Thus, upon loading, the crack

tip becomes blunted and a region of yielding or microcracking forms. This region of yielding

is called plastic zone.

_- theoretical elastic stress
G \

\ - Yyielded, redistributed stress

&7 T plastic zone

Fig. 6.14
For any cases of Mode I loading, the stresses near the crack tip are
o, = K, cosg l—singsinﬁ
b)Y 2 2 2
o, =— cosg 1+singsin£
Y2 22

K, 6.6 30
COS—SIn —COS—
272 2

T
Y 2

Plane stress o.=7t_=7_=0

z yz Xz

Xz

Plane strain o,=v(o,+o,)and 7, =7_=0
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where K, =0 ma

For plane stress, the state of stress at the plane of the crack where the angle 8 = 0° is

Since all shear stress along the plane of the crack are zero, 0,,0,, and o, are the

principal normal stresses. The maximum shear stress and the maximum octahedral shearing
stress criteria estimate the yielding at
c,=0,=0

X y ys

where o is the yielding strength. Therefore, we obtain the radius of the plastic zone for the

2
1 [ &,
ro=—/|—L
b 2r|o,

For the plane strain, the radius of the plastic zone can be determined by using the

1| K ’
r,o=—/—L
g 671|:0'yj

It should be noted that the radius of the plastic zone for the plane strain is smaller than

plane stress in the form of

equation

one of the plane stress. This is due to the fact that the stress o for the plane strain is nonzero,
and this elevates the value of o, =0, necessary to cause yielding, in turn decreasing the

plastic zone size relative to that for plane stress.

Thus, for different materials, the one having a lower o, will have a larger r,. The plastic

zone size for plane stress condition is larger than that of the plane strain condition.
For cyclic loading, the cyclic plastic zone size can be determined by

For plane stress,

For plane strain,

cyclic < ry

Hence, we can see that r,

static
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Example 6-3

A large plate made of 4140 steel (o, =90ksi) containing a 0.2in. center crack is

subjected to a tensile stress of o, =30ksi.

a.) Determine the plastic zone size.

This problem is a plane stress problem. The plastic zone size can be determined by

2
Lo LK
b 2m|o,
X, :ao%.f(%j

a a
f(%j = sec(zj =1.0
K, =304/7(0.2)/2.(1) = 16.81 ksi~/in

Thus, the plastic zone size is 7, = 5.56(107) in.

using the equation

The stress intensity factor,

b.) Are the LEFM's assumptions violated?

The assumptions remain valid since the plastic zone size is small relative to the crack
size and cracked body.

c.) If the yielding strength of the material is reduced by a factor of 2.0, cal culate the

plastic zone size. Are the LEFM's assumptions violated

2
o= [ 1O8LF 6 022in,
T 2x| 45

The assumptions are violated since the plastic zone size is quite large compared to the

crack size (about 22% of the half crack size).
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Chapter 7

Fatigue
7.1 Introduction

Structural members and mechanical parts are often found to have failed under the
action of repeated or fluctuating stresses called fatigue failure. The actual maximum repeated
stresses were well below the ultimate strength of the material and quite frequently evens
below the yield strength. Typical fatigue failures do not involve macroscopic plastic
deformation.

Fatigue failure often begins with a small crack. The initial crack is so minute that it
can not be detected by the naked eyes and even by the X-ray method. The small cracks are
usually developed at high stress gradient area. Once crack is developed, the stress gradient
becomes larger and larger, and the crack progresses more rapidly.

At present, there are three major approaches to analyzing and designing against
fatigue failure. They are stress-based approach, strain-based approach, and fracture mechanic
approach.

Stress-based approach is based on the nominal stresses in the region of the component
being analyzed. The nominal stress that can be resisted under cyclic loading is determined by
considering mean stresses and by making adjustments for the effects of stress risers such as
holes and fillet.

Strain-based approach involves more detailed analysis of the localized yielding that
may occur at stress risers during cyclic loading.

Fracture mechanic approach is used to treat growing crack due to cyclic loading by
using the method of fracture mechanics.

7.2 Nomenclature

Some practical applications involve cycling between maximum and minimum stress
levels that are constant. This is called constant amplitude stressing as shown in Fig. 7.1 and
7.2.

The following nomenclatures for cyclic loading are important.

Mean stress is the average of the maximum stress and the minimum stress.

O-max + O-min
O'm =
2

Stress range is the difference between the maximum stress and the minimum stress.

Stress amplitude is half of the stress range.



7-2

Advanced Mechanics of Materials by Dr. Sittichai Seangatith

Amplitude ratio is the ratio of the stress amplitude over the mean amplitude

a=
o

m

Cyclic loading needs two independent variables to specify. Some combinations that

may be used are: o, and 0, 0, and R, Ac and R, o, and o, and o, and a.

Stress o

_ Omax + Omin_

0
Timet
T erin

i
o |
1,

-‘-—-—-—:_ic'—h
I
M

Smin

(© —\— £

Fig. 7.2
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Point stresses Versus Nominal Stresses

It is important to distinguish between the stress at a point, o, and the nominal stress,
S'. Nominal stress, S, is equal to point stress, o , only in certain situations.

For simple axial loading, the point stress, o, is the same everywhere and so is equal
to the nominal stress, S =P/ A.

For bending, the nominal stress is usually calculated from the elastic bending
equation, S =Mc/I. Hence, o =S at the edge of the bending member, with o being less
everywhere. However, if yielding occurs, the actual stress distribution becomes nonlinear, and
o at the edge of the bending member is no longer equal to S'. Thus, in material testing, it is
essential to distinguish S from o when the yielding occurs.

For notched member, the nominal stress, S, is determined from the net area remaining
after removal of the notch. Due to the stress raiser effect, the nominal stress, S, needs to be
multiplied by a stress concentration factor, k,. Thus, the peak stress at the notch o is equal to
k,S.

7.3 Cyclic Stress-Strain Behavior of Metals
Consider a stress-strain response curve from a fatigue test of a metal specimen as

shown by the solid line in Fig. 7.3. When the strain is increased from 0 to ¢__, the stress is

max

also increased from 0 to o, by following the dashed line of the stress-strain curve. Then,

when we unload the specimen from the strain ¢_, to &_. , the stress-strain curve follows the

min °

unloaded line, and the stress is decreased from o, to o . . Finally, if we reload the

min *

specimen from ¢, to ¢, , the stress is increased from o, to o . by following the reload

curve. It can be seen that there is a loop occurred due to the unloading and reloading the
specimen. This loop is called hystereis loop. It represents measurement of plastic deformation
work done on the material. The area within the loop is the energy per unit volume dissipates

during a cycle.

€ — Emax
200 |
MPa

€ min
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Bauschinger Effect

Consider the monotonic tensile stress-strain curve as shown in Fig. 7.4a. If the
specimen is loaded passed the yielding strength o, to reach a maximum stress o, and the
direction of straining is reversed, the stress-strain path that is followed differs from the initial
monotonic one as illustrated in Fig. 7.4b. Yielding on unloading generally occurs prior to the
stress reaching the yield strength o, for monotonic compression, as at point 4. This early

yielding behavior is called the Bauschinger effect.

)

(a) \

140 MPa

o

|
(=]
B

2024-T4 Al

Fig. 7.4

The cyclic stress-strain response of metal is dramatically altered due to plastic strain.
It depends on the initial conditions of the specimen such as quenching, tempering, and
annealing, and its testing conditions.

Under the strain-controlled fatigue test, a metal specimen may exhibit the cyclic
stress-strain response as following:

a.) Cyclically hardening

If the stress required to enforce the strain increases on subsequence reversals, the
material undergoes cyclic hardening as shown in Fig. 7.5. In this case, the yield and ultimate
strength of the material are increased. The example of the metal that exhibits this response is
the annealed pure metal.

b.) Cyclically softening

If the stress required to enforce the strain decreases on subsequence reversals, the
material undergoes cyclic softening as shown in Fig. 7.5. In this case, the yield and ultimate
strength of the material are decreased. The example of the metal that exhibits this response is
the cold worked pure metal.

c.) Cyclically stable

Through the cyclic hardening and softening, some intermediate strength levels are
attained which represents a cyclically stable condition. The stable condition is usually reached

in about 20-40% of total fatigue life.
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Cyclic Hardening .

Hysteresis Loops

Strain Control

Cyclic Softening.

Fig. 7.5

d.) Mixed behavior

A material exhibits cyclic softening at the early stage of fatigue life and then cyclic
hardening at the later stage of fatigue life.
7.3.1 Comparison of Metal Behavior between Monotonic and Cyclic Tests

Cyclic stress-strain curves for several engineering metals are compared with
monotonic tension curves as shown in Fig. 7.6. When the cyclic curve is above the monotonic
one, the material is one that cyclically hardens and when the cyclic curve is below the
monotonic one, the material is one that cyclically softens. A mixed behavior may also occur,
with crossing of the curves indicating softening at some strain levels and hardening at the
others.

The following criteria were proposed by Manson.

If S > 1.4, cyclically hardening.

020,

If Sur <1.2, cyclically softening.

O.ZUJ,

If1.2< S <1.4, generally stable, or may hardening or softening.
020,

The monotonic strain-hardening coefficient » is needed for predicting the material
cyclic behavior. In general,

If n>0.20, cyclically hardening.

If n<0.10, cyclically softening.
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o Companion Specimens

| | — Incremental Step
Cyelic Cyclic
d © Cyclic
i Monotonic )
* Monotonic Monotonic
50
ksi 2024 -T4 7075-T6 Man- Ten Steel
0.0l ' ' ' '
‘-inlln*
Monotonic
Cyclic
) i - i - =0~
Cyclic Monotonic] .~ = Cyclic
() & -
L L _
d
/ Monotonic
1 SAE 4340 - Ti- 8l - Waspaloy A
(350 BHN)
A 1 L L L i
Fig. 7.6

7.4 Cyclic Stress-Strain Curve

There are several test methods that can be used to develop a cyclic stress-strain curve.
For most metallic material, the controlled strain amplitude fatigue test will generate a
stabilized hysterisis loop. The stress-strain curve is constructed by a sequence of the stabilized
hysterisis loop.

a.) Companion sample method

The cyclic stress-strain curve is constructed by a set of test specimens at various strain

levels as shown in Fig. 7.7. This method is time-consuming and requires a large number of

tests.
b
V.
g
' /
AL S
| T
N
!
Tp - i
i ,/ﬂ_ '|
I s P
e S A AR S A S
lL A { &
x| |
vARR . :
e & e
— &, p= - .

Fig. 7.7
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Massing’s hypothesis states that the stabilized hysterisis loop can be obtained by

doubling the cyclic stress-strain curve as shown in Fig. 7.8.

w0ne AE
Fig. 7.8
b.) Incremental step method
A cyclic stress-strain curve is constructed by a sequence of gradually increasing or

decreasing strain amplitude in a single test as shown by the strain-time curve in Fig. 7.9.

?fr_. —_—

“block.

Fig. 7.9
In general, the material will be stabilized after three to four blocks of loading. After
the incremental step test, the cyclic stress-strain curve will be nearly identical to the one
obtained by connecting the loop tips.
7.5 § — N Diagram and Stress Life Relation

The S—N curve is a plot of alternating stress, S, versus cycles to failure, N,

obtained from the fatigue test. The S — N data are usually presented on a log-log plot with the
actual S — N line representing the mean of the data as shown in Fig. 7.10.

Certain materials exhibit an endurance limit, which is stress level below that the
material has an infinite life. For engineering purpose, the infinite life is usually considered as
10° cycles. For most nonferrous metal such as aluminum, there exist no distinct endurance

limit and the S— N curve has a continuous slope. A pseudo-endurance limit for these

materials is taken on the stress value corresponding to 5(10)* cycles.
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/S =0.95, (in ksi, § = 0.45 - Bhn; in MPa, $ = 3.10 + Bhn)

1.0 i
0.9 )
0.8 N ) Cb—%,
_ i i '--\:_% D1 T : Not broken
g 0.7 - i - ; - il
w 06 : : e : ol Qn : [
ety i e " g\ 8 ) o p =1
i NLEB e[ 18
0.5 ; T
0.4 . [
108 2 4 6810* 2 4 6810° 2 4 6810° 2 4 6810 |
Life ¥ (eycles (log)) S, =058, ‘
(in ksi, S;, = (.25 - Bhn: -
in MPa, S,, =1.73 « Bhn)
Fig. 7.10

Empirical relations of endurance limit are

S_ (ksi) = 0.25(BHN)
S_(MPa) = 1.73(BHN)

where BHN = brinell hardeness number. In addition,

S, =100 ksi for BHN > 400
S, =058, for S, <200ksi
S, =100 ks1 for S, >200ksi

Stress-Life relation

Consider a general S — N curve plotted on a log-log coordinate as shown in Fig. 7.11.

Peak alternating stress S (log)

10 104 108 108 107
Life N (cycles (log))

Fig. 7.11

For the number of cycle is 10° < N, < 10°, the S— N curve is a straight line. The

following equation can be fitted to obtain a mathematical representation of the curve.
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logS =blogN,+C
=blog N, +logl0°
=log Ny +logl10©
=log N;10¢
Thus, we have
S=10°N ji
The exponents b and C are determined by using two end points. In general,
alternating stress level corresponding to a life of 10° cycles can be estimated as
Si000 = 0.9S,,,. Also, the endurance limit at 10° cycles can be estimated as, S, =0.55,,.
Thus,
logS, =blogl0® +C =6bh+C
log S0 =blogl0® +C=3b+C
C=logs$,,, —3b
log S, =3b+10gS,
log S0 —log s, =-3b

b= —llogM =-0.085
3 S

e

2
C= log% =logl.62S ,

e

Thus, the mathematical representation of the curve is

S =1.625,,N "

ult
The general form of the above equation may be written as
S=AN f)B
In some cases, this equation is written in another form of
S=o) (2Nf)b
The fitting constant for of the two forms are related by
A=2"c', and B=b
and are given in Table 7-1 for several engineering metals.
It should be noted that the S — N curve is primary valid within the elastic range of the

material and does not work well in low-cycle fatigue.
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Table 7-1
Yield Ultimate  True Fracture a, =ol(2 N}-)b — ANE
Material Strength Strength Strength d !
a, a, Op o} A b=218
(a) Steels
AISI 1015 227 415 725 976 886 —0.14
(normalized) (33) (60.2) (105) (142) (128)
Man-Ten 322 557 990 1089 1006 —0.115
(hot rolled) (46.7) (80.8) (144) (158) (146)
RQC-100 683 758 1186 938 897 —0.0648
(roller Q & T) (99.0) (110) (172) (136) (131)
AISI 4142 1584 1757 1998 1937 1837 —-0.0762
(Q & T, 450 HB) (230) (255) (290) (281) (266)
AISI 4340 1103 1172 1634 1758 1643 —0.0977
(aircraft quality) (160) (170) (237) (255) (238)
{b) Other Metals
2024-T4 Al 303 476 631 900 839 —0.102
(44.0) (69.0) (91.5) (131) (122)
Ti-6Al1-4V 1185 1233 1717 2030 1889  —0.104
(solution treated (172) (179) (249) (295) (274)

and aged)

7-10
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Example 7-1

From axially loaded fatigue testing under zero mean stress of unnotched AISI 4340
steel specimen, we obtain the stress amplitude and corresponding stress as shown in Table Ex

7-1. Plot the data on the log-log coordinate and determine the constant 4 and B of the

equation = A(N,)”.

Table Ex 7-1
o,(MPa) N, (Cycles)

948 222
834 992
703 6004
631 14130
579 43860
524 132150

The plotted data are shown in the Fig Ex 7-1a. They seem to fall along a straight line,

and the first and the last points represent the line well. Using this two point and denoting them
(o,,N,)and (o,,N ,), we have
o, = A(Nfl)B o, = A(Nfz)B
It should be noted that for axially loaded fatigue testing, the nominal stress, S, is

equal to the point stress, o .

3000
|67 =1694 MPa
EE 2000 “:___ AlSI 4340 steel
= .:'.h-"""--.. 0u=11?2MPa
C‘.}h — —
T 1000 |- . — o
= = v -
£ - A = 1587 MPa O~ ]
£ h |
< 500 5
& Fo B= 1 5 =—0.0945 y
& 300 v
o Dv
© 200} b=B 1
[~ Dh—|
100 ! l :
05 1 10 102 108 104 10° 108

N;, Cycles to Failure
Fig Ex 7-1

Dividing the second equation into the first, and take logarithms of both sides.

B
o _[Nn
o, Nf2
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N
logi = Blog /!
o, 12
Solving for B,
log—"
o, logo, —logo,

/2

log948 —log 524

g& B logN,, —logN,

=-0.0928

" 102222 —log132150

Then, we can find 4.

4=

948

=1565 MPa

(Nf])B = 7797 —0:0928

7-12
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7.6 Fatigue Strength Diagram (Haigh diagram)

A fatigue strength diagram is a plot of alternating stress versus mean stress with lines

of constant life.

80 o
BN N
70 — . o
)O o2-ey ce fiie %
% 60 e . ~ o
~ S [ 2
E 50 a ~
2 '?d; ,d\oi ‘5‘*‘\ z <
8 s 3 -
g % N )
2 40 @3;/_29 ?0 N \0.;3 / b\o
E s 3 A | &
£ 30 P =] 8]
= T A0 5 >
= g % \S G’\h'{‘
£ 4 % S I &
-, 4 /"30- > D e
10 A 7 A
A ’0| |'\'°
g0 —60 —40 —20 0 20 40 60 80
© Minimum stress o,,;, (ksi)
5
o
>
Fig. 7.12

Fig. 7.12 is a fatigue strength diagram for alloy steel, S, = 125 to 180 ksi, axial

loading. Since the tests required to generate a fatigue strength diagram is expensive, several
relationships have been proposed to generate the lines defining the infinite life design region.
The following relationships are commonly used for an infinite life.

a.) Soderberg (USA, 1930)

o, ©
Za Zm
S, S,
b.) Gerber (German, 1874)
2
Gll + Jlﬂ — 1
Se Sult
c.) Goodman (England, 1899)
O O _y
Se ult

The curves of each relationship are shown in Fig. 7.13. For finite life, the S, in the

above equations can be replaced with a fully reversed alternating stress level corresponding to
that finite life. It should be noted that

1. The Soderberg model is too conservative and seldom used.

2. The Gerber model is good for ductile material.

3. The Goodman model is good for brittle material.
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S}.- D

Gerber relation

Goodman relation

Soderberg relation

Alternating stress o,

Su!r

7-14
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Example 7-2

A 30mm diameter shaft is subjected to the cyclic loading as shown in Fig. Ex 7-2a
where the magnitude of the load varies from P . =-0.60P,  to P, . The shaft is made of
stress-relieved cold-worked SAE 1040 steel having the ultimate stress of 830 MPa , yielding

stress of 660 MPa, the endurance limit of 410 MPa. Determine the magnitude of P, based

on a factor of safety of 1.80 against the failure at N, = 107 cycles.

Z
|
|

01060 m
300P

02508 200P
2<_s50p | .
0.250 m v
. 400P
AN e 0 1QN
l'}‘i\‘.t]nm ) D 0.150m -
Fig. Ex 7-2a

Since the steel is a ductile material, we will use the Gerber relation to determine the

2
o (o) _
Se Sult

For the linear elastic behavior of the material under the cyclic loading and we have the

magnitude of P .

relationship of the minimum load and the maximum load in the form of P, =-0.60P

max 2

then, we obtain the relationship of the minimum stress and the maximum stress of the form

.., =—0.600,

. . O ax — O mi
The stress amplitude is o, = % Then, we have

O =1.250,
Since o, =0, +0,, the mean stress is
o, =0250,

Thus, from the Gerber relation, we have
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o, 0.250, ’
+ =1
410 830

Solving the polynomial equation, we obtain the alternating stress equal to 403.9 MPa

and the maximum stress and the maximum stress equal to

O = 1.250, =504.9 MPa
0., =—0.600, . =-302.9MPa
Since o, <o, =660MPa, the failure would be by fatigue and not by the general

yielding.
The loads need to be multiplied by 1.80 due to the factor of safety. Then, we can draw

the bending moment diagram and torque diagram as shown in Fig. Ex 7-2b.

M,
213.75P
|
|
|
|
| F ¥
0.25m ' 0.25m 10.15 m
Moment diagram caused by
loads in y-z plane
|
| |
M, |
135P)

.
Moment diagram caused by
loads in x-y plane
| |

|
T |
|
|
|

|
|
|
|
|
| .
| b
|
5

QTP Joe o

Torque diagram caused by torgues
applied about the shaft’s axis

Fig. Ex 7-2b

The maximum bending moment occurred on the shaft is

M, = \/(213.75P)2 +(67.5P)* =224.1P
The maximum toque occurred on the shaft is 27P. The moment of inertia and the

polar moment of inertia of the shaft are

I= =39.76(10"°) m*

md*  7(0.030)"
64 64
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md*  7(0.030)*
32 32

I= =79.52(10"°)m*

Let P=P

max *

The flexural stress doe to the bending moment is

224.15P,, (0.015
o= _ max (79 ) _84.564(10°)P,..
I 39.76(10)

and the shearing stress due to the torque is

Tc 27P,,.(0.015)
J  79.52(107)

=5.093(10%)P

max

For the steel, we use the maximum octahedral shearing stress criteria to predict P, .

2 2 2
3t+0° =0

max

P2 =35.266

max

P =593N

P. =-356N
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7.7 Endurance Limit Modifying Factor

The endurance limit of metallic materials is often obtained in the laboratory by a
rotating beam specimen test. However, in most structural applications, the endurance limit of
a structural member is obtained from modifying the data from the tests. There are many
factors that affect the endurance limit. The followings are significant factors:

S, =K K,K K,K,S

where S, = endurance limit of the structural member.

S! = endurance limit of the test specimens.

K, = surface factor.

K, =size factor.

K, = load factor.

K, = temperature factor.

K, = other factor.

7.7.1 K, surface factor
Ka = aS:lt
Surface finish a b
ksi MPa
Ground 1.34 1.58 -0.085
Machine or cold drawn 2.70 4.51 -0.265
Hot-rolled 14.4 57.7 -0.718
Forged 39.9 272 -0.995
7.7.2 K,, size factor
For bending and torsion loading,
-0.1133
d 0.11<d <2in.
0.3

K, =

d —-0.1333

For tension loading, K, =1.
7.7.3 K, load factor
K, =0.923 for axial loading when S, <220 ksi

K, =10 for axial loading when S, > 220 ksi
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K, =10 for bending
K, =0.577 for torsion and shear

7.7.4 K ,, temperature factor

where S, = tensile strength at the operating temperature
Sy, = tensile strength at the room temperature
7.7.5 K,, other factor

Only the stress concentration factor will be considered here.

where K, = fatigue stress concentration factor,
K, =1+q(K, -1
g = material parameter
K, = static stress concentration factor

7.8 Fatigue Crack Propagation

The presence of a crack can significantly reduce the strength of an engineering
component due to brittle fracture. However, it is unusual for a crack of dangerous size to exist
initially. Normally, the crack is developed from a small flaw until it reaches the critical size.
Crack propagation can be caused by cyclic loading. Typical constant amplitude crack

propagation is shown in Fig. 7.14.

by = hoy > Agy

. fils?
Load, P Ao, 3

ls - o |
o P Ao a

::7\'\’\1“". t
Qal
* Time

Cycles, N

Fig. 7.14
. : . d
Crack propagation rate is defined as crack extension per cycle, ﬁ. The growth rate

of crack is a function of stress intensity factor.

da
E_f(K)
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Fig. 7.15 is the typical experimental data plot of the crack propagation rate j—; Versus

stress intensity range AK .

AK, ksivin
5 10 20 50 100 3
. 10
2 d
10 A533B-1 steel
oy = 627 MPa
rd
@ | (1y_| , 5#
|
10°-
@
(&) _
5‘ ] 105 ©
£ °
E 4 Q
E‘J' 10 = g
] C =
o - [&]
£ AKin £
= = : p=d
o —10°% 2
5 3
5 . 5
® 10”1
5]
>
h=
@
© 107
10°
1108
10'? 1 | | |
5 20 50 100

AK, Stress Intensity Range, MPa/m~
Fig. 7.15
It can be seen that the plot can be separated into three regions.

Region I: Crack behavior is associated with fatigue crack growth threshold value AK,

below which the crack growth is negligible.

da <107* in/cycle

Region II: The relationship between logj—; versus log AK is linear and steeper than

the curve in Region I. This is due to rapid unstable crack growth just prior to final failure of

the test specimen

107* < j—; <1077 in/cycle

The relationship representing this line is
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2@ _ ek
dN

where C 1is a constant and m 1is the slope on the log-log plot, assuming that the decades on
both log scales are the same length. The value of m is important since it indicates the degree
of sensitivity of the growth rate of the stress. For example, if m =3, doubling the stress range
AS doubles the stress intensity range, thus increasing the growth rate by a factor 0f 2" =8.

Region III: The crack growth rate is extremely high and little fatigue life is involved.
7.9 Factors Affecting the Fatigue Crack Growth

Stress ratio effect

O

max

For a constant K, the more positive R, the higher crack growth rate as shown in Fig.

7.16.
AK, ksifin
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A0 A . 110
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9 O [ —
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£ 103 oo07 L o ]
£ - SN o o
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5] 4 o |
i o q © o
= g8 & o © =4
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5 d% AA O — 107 =
4 &‘ \9 =
[#] A e
@ 5o A O © - <
© (@ A § o ©
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-}?g _ O A © B
o — y
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< |
yo |
10-5 | | L |
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Fig. 7.16
Two crack growth models accounting for the stress ratio effect are

1. Forman’s crack growth model

dac AK

dN  (I-R)K. —AK
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where K is the fracture toughness for the plane stress condition.

2. Walker’s crack growth model
da n
—=C|1-R)"K
=cli-nrk,.]

Frequency effect

At normal environmental condition, frequency has little effect on fatigue life for
metallic structure. However, the growth rate will be significantly affected if under an adverse
environment.
Temperature effect

Fatigue life will be reduced if the temperature is increased as shown in Fig. 7.17.

T T T T T T T
|

1t

/
¢ | Fe—2ICr—6Ni—9Mn Alloy
= AISI 304L [ {annealed)
f'_:“ 1073 (annealed) . J L o T=295K
E e T=295K ?0 | E o T=T6K
] © T-76K [ 4 1t CT=4K
= r o T=4K ; H, 1r
: L g ]
5 4
x . [
=
g { ZI!
& : f
5 10 41 .’# / -
g | J o ] f
w i . Jr 10
s | A g
= ¢ /| f

/{ 11 i ]

M . | " M .

N R | P M

5 10 50 100 5 10 50 100
STRESS INTENSITY FACTOR RANGE. AK, MPa.m”

Fig. 7.17
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Chapter 8

Beams on Elastic Foundation
8.1 Introduction

In some applications such as railroad track and the rail of movable crane, the rail does
usually acts as a beam of relatively small flexural stiffness placed on elastic foundation. The
loads are transferred through the beam to the elastic foundation. This rail can be analyzed as a
beam supported by series of discrete elastic springs. However, this analytical method is very
tedious. It is usually more practical to idealize the supports as a continuous elastic foundation.
8.2 General Theory

The response of a beam on elastic foundation can be depicted by a single differential
equation subject to different boundary conditions.

Assumptions

1. The foundation has sufficient strength to prevent failure.

2. The foundation behaves linearly elastic under loads with a small deflection.

3. The beam is fully attached to the foundation.

Consider a beam of infinite length resting on an elastic foundation with infinite length
and subjected to a point load P acting at the origin of the coordinate (x, y, z) as shown in
Fig. 8.1a. Under the action of the load P, the beam is deflected as shown in Fig. 8.1c, which
induces a distributed force g between the beam and the foundation.

Consider a free body diagram of an element Az as shown in Fig. 8.1b subjected to the
positive shear forces and moments. For small displacement analysis, we have the differential

relation of the displacement and the forces as

5 _,
dz
dzy

EI, = =-M, 8.1
F4
d3y

El = ==V,
d4y

EL dz* -

where the distributed reaction force ¢ is positive when acting upward.
For linearly elastic foundation, the distributed force ¢ is linearly proportional to the

deflection y . Thus,
q=ky 8.2
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k = bk, 8.3

where £ is the elastic coefficient, &, is the elastic foundation modulus, and b is the width of

the foundation.

e s

0 ¢
fa) Beam loading Vv Az
M, + AM,
M,Cﬁp
9 (b) V, + AV,
y q Az
. Bz
fc) Deflection, y V
3n 3r
b = - 3
4 y q
p— 0 T ﬁz
dy
{d) Slope, # = —=
dz

i}
{¢) Bending moment, 0 !
M, = — kI, TV I'
* ¥ da2 My
osrp Bz
(f) Shear, \lj'ﬁ

g d3y
Vo = — E W
! e dz3 | '

Fig. 8.1
The k, usually has a value between 20(10°)N/m*/m to 200(10°)N/m*/m for soil.

Large values of k£ are best. Then,

d'y
EI, = = —ky 8.4
d'y ___k_
dz*  EI, 4

To solve this homogeneous, fourth order, linear differential equation with constant

) k
coefficients, we let — =4/", then,

X

4

d’y
dz*

+4B8%y=0 8.5

By using the method of differential equations or by direct substituting into Eq. 8.5, the

general solution of y is
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y =e”(C, sin fz +C, cos fz) + e (C,sin fz + C, cos ) 8.6
where the constant of integration C,, C,, C,, and C, can be determined by using the

boundary conditions of the beam.

Consider a semi-infinite beam on elastic foundation as shown in Fig. 8.2, which is a

half of the beam in Fig. 8.1. Since the deflection y =0 when z — «, then, the term e” —
and e”* — 0. Hence, we obtain C, =C, =0 and
y=e*(C,sin f+C, cos ) z>0 8.7

Due to the symmetry of the beam, we can determine the deflection of the beam for

negative value of z by y(-z) = y(z).

P

0 z ;

¥

Fig. 8.2
8.3 Infinite Beam Subjected to Point Load
The constant of integration C, and C, of the Eq. 8.7 can be determined by using the

following boundary conditions of the infinite beam:

dy

1. The slope of the beam 2 =0 at z =0 due to the symmetry of the beam.
z
% =—fe ™ (C,sin fz+C, cos fiz) + e ™ (C, cos fz — C, sin fz) = 0
C,=C,=C
y = Ce *(sin fz + cos fz) 8.8

2. A half of the point load P is carried by the beam specified by +z and the other
half is carried by the beam specified by —z .

2j.kydz =P
0

2I kCe ™" (sin ffz + cos fz)dz = P
0

a

a P
7 (si dz+|e” dz =——
.(I;e (sin fz)dz '([e (cos fz)dz "%
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1t r_ 7
28 2B 2kC
_PB
2k

8-4

8.9

Therefore, the deflection, the slope, the moment, and the shear of the beam can be written as

y= Zf “ (sin Sz + cos )
_dy Pﬂ
dz

= —%[e‘ﬁz sin fz]

Sl # (sin f&2)]

2 2
Ay _p PP 4
dz? Tk

=FI, %[ﬂeﬂz (cos fz —sin f)]

M. =-EI

=FI, PT’W[e& (cos fz —sin fz)]
e’ _ )
4ﬂ (cos Sz —sin fz)]
8.12

V = ——

am d
d dz dz

4p

= ——ﬂ[ﬂe 7 (2c0s f2)]

= —E[e'ﬂz cos fz]

Defining

A, =e " (sin fz +cos )

yi4

C, =e "™ (cos ffz —sin f&)

=

Then, we have

P
r= 25 /E
0=-"0s,
-l
v.=-2p

—[e " (cos ffz —sin fz)]

B

D

[e"& (sin fz)]

g =€

|

g =€

z20

" sin fz

cos [z

8.10

8.11

8.13

8.14

8.10

8.11

8.12

8.13
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Example 8-1

A rail road uses steel rails ( £ = 200 GPa ) with a depth of 184 mm. The distance from
the top of the rail to its centroid is 99.1mm, and the moment of inertia of the rail is

36.(10°) mm*. The rail is supported by ties, ballast, and a road bed that together are assumed

to act as an elastic foundation with spring constant k =14.0 N/mm”.
a.) Determine the maximum deflection, maximum bending moment, and maximum
flexural stress in the rail for a single wheel load of 170 kN as shown in Fig. Ex 8-
la.

170 kN

{ :
AN AL AN A7 A A7 A7 A AR A 7R AN U AL A7 AR AR AR NANS AN

y
Fig. Ex 8-1a
b.) If a locomotive has 3 wheels per truck equally spaced at 1.70 m, determine the
maximum deflection, maximum bending moment, and maximum flexural stress in
the rail when the load on each wheel is 170 kN .

Since the equations of deflection and bending moment require the value of £,

B=4 £, 134 —=0.000830 mm”
AET. | 4(200)10°(36.9)10

a.) The maximum deflection and the maximum bending moment occur under the load

where
A, =C, =10
Thus,
3
o = Pp 4, = 170(107)0.000830 (1) = 5.039 mm
2k 2(14)
P _170(10%)

== Cp = (1) =5121kN-m
48 4(0.000830)

M .c 51.21(10°)99.1

max

Ox = =137.5MPa

e I 36.9(10°)

X

b.) The deflection and the bending moment at any section of the beam obtained by
superposition the effects of each wheel of the 3 wheel loads.

By using the superposition method, the maximum deflection and the maximum
bending moment may be under 2 following cases:

1. Under one of the end wheel as shown in Fig. Ex 8-1b.
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i... 1.7 m»—\—«l.? m 4-—|

170 kN+ 170 kN{, 170 kN+

DA A A A A AN A AN AN/ AR SR/ A A A A S St A )
y
Fig. Ex 8-1b
2. Under the center wheel as shown in Fig. Ex 8-1c¢

i-- 1.7 m-»-\—«l.'? m h—|

170 kN+ 170 kN{, 170 kN+

2N AN AL A AN A7 AN/ A7 A7 AN A7 AN R AR A AL AN B!

¥
Fig. Ex 8-1c
For case 1, let the origin of the coordinate be located under one of the end wheel. The

distance to the first wheel z, =0, we have
Ay =Cp =10
The distance from the origin to the next wheel is z, =1700 mm, we have
A4,,=0.2797 Cp, =-0.2018
The distance from the origin to the next wheel is z; = 3400 mm, we have
A, =-0.0377 Cpsy =-0.0752
Therefore, for this case, we get the maximum deflection and the maximum bending moment

equal to

Viax = };—f(Aﬁzl + Ay, + A4,,) =5.039(1+0.2797-0.0377) = 6.258 mm

M, = %(Cﬂz1 +Cpy +Cpy) = 51.20(10°)(1-0.2018 - 0.0752) = 37.02 kN - m

For case 2, let the origin of the coordinate be located under the center wheel. The

distance to the first wheel z, =0, we have
Ay =Cph =10
The distance from the origin to either of the end wheel is z, =1700 mm, we have
A, =0.2797 Cp, =-0.2018

Therefore, for this case, we get the maximum deflection and the maximum bending moment

equal to

Vowr = i—f(A g +2A4,,) = 5.039(1+2(0.2797)) = 7.858 mm
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M, = %(cﬁz1 +2C,,) = 51.20(10°)(1 - 2(0.2018)) = 30.54 kN - m

m

From the calculation, we obtain

Viax = 7-858 mm

M, =37.02kN-m

M, .c 37.02(10°)99.1

max

and o= =994 MPa

. I 36.9(10°%)

X

8-7
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8.4 Beam Supported on Equally Spaced Separated Elastic Supports

The concept of beam on elastic foundation previously mentioned can be applied to the
problem of long beam supported by elastic supports equally spaced along the beam as the one
shown in Fig. 8.3.

] =

_’l |
3

—
E: .-
|
-
-

i Bttt R \VAYA —Jf
VA
YA%A
VAYA

P
f— / ! [ e — ] - | - [ —wte—
| 2y 172 | r .
L - T }___g;{j

‘-.H"l\._“ ‘_—’
i T I L-T
Nk B
{h)
Fig. 8.3

Let each spring in Fig. 8.3a has the same spring constant K. The reaction force R
that each spring exert on the beam is directly proportional to the deflection y of the beam at
the section where the spring is attached. Thus,

R =Ky

If [ is the spring spacing, the load R can be idealized as uniformly distributed over a
total span / (//2 on either side of the spring) as shown in Fig. 8.3b. If the stepped distributed
loading is approximated by the dashed curve, the approximate distributed load is similar to

the distributed load ¢ of Fig. 8.1a. If the two forces are to be the same, then,

Ky =kyl
=X
/

where k is the elastic coefficient for this case. Then, we can use Eq. 8-10 to Eq. 8-13 to find
the deflection, the slope, the moment, and the shear of the beam. However, it has been found

that the solutions are only practically useful when
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<X
4p
The approximate solution for a beam of infinite length, with equally spaced elastic
supports, may be used to obtain a reasonable approximate solution for a sufficiently long
finite length beam as shown in Fig. 8.4a. In general, the end springs do not coincide with the
ends of the beam, but lie at some distance less than //2 from the end of the beam as shown in
Fig. 8.4b. Thus, we extend the beam of length L to a beam of length L" , where
L"=ml

and integer m is the number of spring supports. To obtain a reasonable approximate solution,

L”23_7T
2B
P
e L2 — — L/
'r-(—l—:-—-—— o = 'a‘ 2 s I— i / | ! i
g — g é g ///g é é/

{a)
P

i —— L2 — . L'y i 1




Advanced Mechanics of Materials by Dr. Sittichai Seangatith 8-10
Example 8-2

An aluminum alloy I-beam (depth = 100 mm, 7, =2.4510°)mm*, E=72GPa) as
shown in Fig. Ex 8-2 has a length of L=6.6m and is supported by 7 springs
(K =110 N/mm) spaced at distance /=1.10m center to center along the beam. A4 load
P =12.0kN is applied at the center of the beam. Determine the load carried by each spring,
the maximum deflection of the beam, the maximum bending moment, and the maximum

bending stress in the beam.

12. [] kN
- ] —-—-!-—-qfh-——-—fl-—-—f-
Fig. Ex 8-2
The elastic coefficient,
=105 100 N/mm?
1100
and the value of S,
p=4 0'3100 — =0.000614 mm"
4(72)10°(2.45)10
Check the spacing of the spring.
< - T _1279mm 0K
45  4(0.000614)
Check the length of the beam.
L' = 660041100 =7700mm > % = — % _7675mm  OK.

28 2(0.000614)

The maximum deflection and the maximum bending moment of the beam occur under

the load where

4, =C, =10
Thus,
3
b - P,B 4, = 12710 )0'000614(1):36.84 mm
2k 2(0.10)
3
P c, = 1210°) (1) =4.886(10°) N-m

™ T 48" T 4(0.000614)
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max

X

= M}mc =99.7 MPa

Due to the symmetry of the beam, the magnitude of fz, the corresponding 4, , and

the deflection for the first (point C), second (point B), and third (point A4 ) springs to the

right and left of the load are

Pp
fl=06754 Ay =07153 yo =—~Ay =3684(0.7153) = 26.53 mm

28 =13508 4

30=2.0262 A4

=0.3094 y, = Ig—fA

=0.0605 Yy :EA

28

Pp

34

=36.84(0.3094) =11.40 mm

= 36.84(0.0605) = 2.23 mm

The reaction for each spring can be obtained by using the equation R = Ky and the

results are shown in the Table Ex §-2.

Table Ex 8-2

Approximate solution

Exact solution

Reaction 4 245N —454 N
Reaction B 1254 N 1216 N
Reaction C 2899 N 3094 N
Reaction D 4052 N 4288 N
Yo 36.84 mm 38.98 mm
M 4.886 N-m 4.580 N-m

max

Comparing the results with the exact results by using the energy method, we can see

that only the reaction at 4 are considerably in error.
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8.5 Infinite Beam Subjected to a Distributed Load Segment

Consider the beam on elastic foundation subjected to uniformly distributed load

segment as shown in Fig. 8.5.

e L’
AP = wiz
—"ll-l—dz

[TIMITTTITITTT]

0 o H z
e s S T //////////////////////////////////{

e——— T ———o
e d > b—J

¥

L ]

4 B

Fig. 8.5

From the displacement solution of the beam subjected to concentrated load, Eq. 8.10,
y:I;—feﬂz(sin,Bz+cos,Bz) z>0 8.10
Then,
dy, = %eﬁz (sin Sz + cos fz)dz
By using the principle of superposition, the total deflection due to the distributed load is

), = ! f_;:e-ﬂz (sin B + cos f)dz

b
+ }[’f—zje‘ﬂz (sin Sz + cos f)dz

Yy = V;—f[%(l —e ™ cos ﬂa)+ %(1 —e™ cos ,Bb)}

= %[2 —e ™ cos fa—e ™ cos ﬁb]

8.11

Then, by using the differential relations, the deflection, the slope, the shear force, and

the bending moment of the beam can be determined and simplified as
w
Yu :ﬁ[z_Dﬂa _Dﬁb]

“d td B
0, :!%&ﬂ%ﬁ :Vzv—k[A,}a—A,}b] 8.12

M, =$[B/h +B,)

w

Vi = 4ﬂ[cﬂa _Cﬂb]
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where
A, =e ™ (sin fa + cos fa) B, =e ™ sin fa
fa pa
C,, =e ™ (cos fa—sin fa) D, =e "™ cos fa
pa Pa
A, =e " (sin fb+ cos [b) B, =e " sin pb
pb pb
C, =e " (cos fb—sin fb) D, =e " cos fb
pb pb
‘.(. — ———— = L’ -_--_)l
w .
[TITIITITIIT T ITITITITITITIT] ol
( . {
fa) Beamn : :-1-—:2—}
~ e b I
: : z
I = L' )
: A
| 0
: z
fc) Sl :
c ope P

e —— |
|
() Shear | \/
| V,

Fig. 8.6
Fig. 8.6 shows the plot of the expressions of the deflection, the slope, the shear force,
and the bending moment of the beam with respect to the z axis. We can see that the
maximum deflection occurs at the center of the segment L'. However, the location of the
maximum bending moment may or may not occur at the center of the segment L', depending

on the magnitude of AL’ .
If SL' < 7z, then, the location of the maximum bending moment is at the center of the

segment L'.
If BL" > a, then, 6 >0, M, —> 0, V,—>0,and y > % Therefore, the location of
the maximum bending moment of the beam is at either fa=7x/4 or pb =7/ 4.

If BL' >z, then, the location of the maximum bending moment may lie outside the

segment L'. However, the maximum value outside the segment L' is larger than the
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maximum value within the segment L' only 3%. Thus, we may assume that the location of

the maximum bending moment in this case is at 7/4f from either ends of the uniformly

distributed load within the segment L'.
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Example 8-3

A long wood beam (£ =10.0GPa) has a rectangular cross section with a depth of
200 mm and a width of 100 mm. It rests on an earth foundation having spring constant of
k, =0.040 N/'mm’ and is subjected to a uniformly distributed load w=35.0 N/mm
extending over a length L' =3.61m. Taking the origin of the coordinate at the center of the
segment L', determine the maximum deflection, the maximum bending stress in the beam,
and the maximum pressure between the beam and the foundation.

The moment of inertia of the beam about x -axis is
I, =66.67(10°) mm*
The elastic coefficient,
k = bk, =100(0.040) = 4.00 N/mm®

and the value of 3,

B =4 . 4 ~=0.001107 mm"
4(10)10° (66.67)10

From the graph of the deflection of the beam as shown in Fig. 8.6b, the maximum

deflection occurs at the center of segment L'. Since a=b=1L1"/2,
L!
pa=pb=p 5 2.0

Dy, =Dy, =—0.0563

fa

w 35
Vo =3 2= D = D] =22 (2= 2(-0.0563)) = 9243 mm

The maximum pressure between the beam and the foundation occurs at the point of

the maximum deflection.
Gax =K, V00 =0.040(9.243) = 0.370 MPa

They are 4 possible locations at which the maximum bending moment may occur.
However, since the beam is symmetry with respect to the center of the segment L', the
maximum bending moment may be occurred at the center of the segment L' or where
vV, =0.

Since AL'=0.001107(3.61)10° = 4.00 > 7, the maximum bending moment does not
occur at the center of the segment L'. Hence, L', the maximum bending moment will occur

at the location where V,, =0.

v, =%[cﬂa ~C, =0
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Cp =Cp
e 7 (cos fa —sin fa) = e * (cos b —sin fb)
Using the above equation and fb =4.0—- fa, we can solve the equation and obtain
Pa=0.858 and —0.777. The corresponding b =3.142 and 4.777, respectively. These

conditions locate the position of the maximum relative bending moments inside segment L’

and outside segment L’.
By comparing the conditions, we can see that the maximum bending moment occurs

outside segment L' and

__M;[Bﬂa _Bﬁb

Mmax =
‘4ﬂ

= 3—52[0.3223 —(~0.0086)]
4(0.001107)

=2363kN-m
which is larder than the bending moments occurred inside segment L' by about 3%.

The corresponding bending stress is

M€ _ 3 544 MPa

O =

max
X

It should be noted that if the maximum bending moment is assumed to occur at

7wl4pf, Pa=n/4 and Pb=4—-r/4 (inside segment L'), we obtain the bending moments

equal to
w
M, = W[Bﬂa +B,]
= 3—52[0.3224 +(~0.0029)]
4(0.001107)

=2362kN-m
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8.6 Semi-infinite beam Subjected to Loads at Its End
Consider the semi-infinite beam subjected to a point load P and a positive bending
moment M, at its end as shown in Fig. 8.7. The displacement solution of the beam is in the
form of, Eq. 8.7,
y=e”(C,sin f+C, cos ) z20
In this case the constants of integration C, and C, can be determined by using the

boundary conditions:

2
o 2 ——m,
dz"|__,
3
Y~y -p 8.13
dz"|__,
F
Mﬂ
0 z g
y
Fig. 8.7
2 2
Since d g} __2b [C, cos iz — C, sin f&],
dz e”
M 2p°M
== pM, 8.14
2B°EI k
) dy 28’ . .
Since P =— [C3 sin fz + C, cos fz + C, cos ffz — C, sin ,Bz],
'z e
C,+C, = f = 2pP
2B°EI k
2P 2B°M,
C, = -
k k
Thus, the deflection of the beam in this case is
-&
= 2pe [Pcos Pz — M ,(cos fz—sin ﬂz)] 8.15

Rearranging and simplifying the equation, we have

28 M

o
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The expressions of the slope, shear force, and bending moment can be found by using

the differential relation.

48°M
f +TDﬂz

M =L M4
ﬁ B o

V,=-PC, —2M,[B,

y
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Example 8-4
A steel I-beam ( £ = 200 GPa) has a depth of 102 mm, a width of 68 mm, a moment

of inertia of 7, =2.53(10°)mm*, and a length of 4m . It is attached to a rubber foundation

for which k, = 0.350 N/mm’. A concentrated load P =30.0kN is applied at one end of the

beam. Determine the maximum deflection, the maximum bending stress in the beam, and
their locations.
The spring coefficient,

k = 68(0.350) = 23.8 N/mm’

and the value of 3,

LB=4 23'8 o= 0.001852 mm"
4(200)10°(2.53)10
Since

L = 4000 mm > >% = 2540 mm
2B

the beam can be considered as a long beam.
The maximum deflection occurs at the end where load P is applied (z=0), since

D, is maximum. We have fz =0 and D, =1.0.

2P
ymax = kﬁDﬁz

_2(30)10°(0.001852)
23.8

(1) =4.67 mm

The maximum bending occurs at z =7 /4f , where B, is maximum. This is the same

location of the maximum bending stress.

3
Moy =-Lp, =30 0394y 522kN-m
i 0.001852

and

o =1053MPa
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Chapter 9
Flat Plates

9.1 Introduction
Flat plate is a structural element whose middle surface lies in a flat plane and

subjected to lateral load ¢ . Floor slabs and pavements are the common examples. The plate

can be categorized according to its thickness relative to its other dimensions and according to
its lateral deflection compared to its thickness.

1. Relatively thick plates with small deflections

2. Relatively thin plates with small deflections
3. Very thin plate with large deflection
4

Extremely thin plates or membrane

i “-

/ T /:i /

s
L
-
) -
/ Midsurface|of the Flat Plate A

y

. £ e T, ,dA
Tyz (TJ. T\'_v ”-_‘;' dA \Txy (fAU
(b)
Fig. 9.1

Under the action of the lateral load ¢, the midsurface of the flat plate is deflected as

shown in Fig. 9.1a. Fig. 9.1b shows the state of stresses and their distribution in a small
element of the plate. The governing equations of the flat plate can be determined by using the
equilibrium equations, the strain-displacement relations, and the stress-strain relations.
9.2 Assumptions and Limitations of Thin Plate with Small Deflection

In the classical thin-plate theory or Kirchhoff theory, the following assumptions are
applied:

1. The plate is flat and has a constant thickness.

2. The plate has a relatively small thickness compared to the smallest lateral

dimensions.
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The plate is made of linearly elastic, isotropic, homogeneous materials.
The plate is subjected to lateral loads applied perpendicular to the midsurface.

The midsurface deflection w is small in comparison with its thickness 7.

A

The midsurface remains neutral during loading. There is no deformation in the

midsurface of the plate. The strain ¢, ¢,,and y  are zeroat z=0.

7. A line normal to the midsurface before loading remains normal to the midsurface

after loading. The transverse shear strain y _ and y,. are zero.

8. The normal stress in the direction transverse to the plate o_ is negligible in

z

comparison with o and o .

Following the assumptions, the lateral deflection of the plate is a function of only

coordinate x and y, and the stresses o, o, and 7, are linearly distributed as shown in

Fig. 9.1b.
9.3 Force-Stress Relations
o ﬂ—oix—/y/
Pl (i
| “z
| n
R g
2 ,o‘//or b c z | 2
F—W/—‘ s Y
// OIZ
(a)
g1
dy. /J—ax—/w/
\\)V "7 i .
e Myl T
O Oy M ey
Y =z ‘-—L'{K"l;_— = p -MXY-}— aa. Y elx
o | -
B e R
AR T e “Qt e oix
My / .
+ Ayt -~
Mynt Ty ety (b) Q+83y
vy
My,
0,0 & M,
—_—
by
M, gdxdy|| ® O,
Mn > d X —= Mr.‘
00| |? M,
dx
—*-
vl Mb * K0,
M,
(c)
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Consider a plate differential element as shown in Fig. 9.1 and Fig. 9.2. The increment

of the bending moments dM . and dM ) the twisting moment dM . and the transverse shear
forces dQ, and dQ, can be found in the form of
dM . =z(o dA)
M , = z(c ,dA)
M, = z(z ,dA)
dQ, =t.dA
do, =t .dA 9.1

If we define the bending moments M, and M , the twisting moment M, and the

xy

transverse shear forces O, and Q, per unit length. Then, the differential area dA is

dA=(1)dz, and the moments and the shear forces can be found by integrating the

corresponding moments and shear forces.

t/2

M. = Iaxzdz
—-t/2
t/2

M, = jayzdz
—t/2
t/2

M, = Irxyzdz
—t/2
t/2

0, = [r.d
—t/2
t/2

0, = j 7,.dz 9.2

—t/2
9.4 Equilibrium Equations

By using the equilibrium equations on the plate differential element as shown in Fig.
9.2b, we have

+4 ZFZ =0;
00, o0,
2 de|dy + |:Qy + a—y}dyj|dx =0

X

-0.dy —Q,dx +qdxdy + {QX +

ox

0
{8& dx}dy + { aQy dy}dx + qdxdy =0
y
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0 0
%, Qy+q=0 9.3
ox 0oy
ZM =0
oM | oM
M dy —M dx+| M  +—=—dx|dy+| M 6 +—=dy |dx - ly |dxdy
Ox oy
[Q + 90 dx}dy LY dyd7 gaxdy=-=0
Neglecting the higher-order term, we have
oM | oM
—dx |dy +| —=dy |dx — Q,dxdy = 0
ox oy
oM oM
e =0 9.4
Ox oy ’
Similarly, the ZM , =0 will provide us with the equation
oM
oM, +—= -0, =0 9.5
ox oy
Substituting Eq. 9.4 and 9.5 into Eq. 9.3, we have the equation relating the external
lateral load ¢ with the internal resultant bending moments in the form of
M o’M_ oM
0 = +2 ~—+——=+¢q=0 9.6
Ox Ox0y oy

9.5 Kinetics: Strain-Displacement Relations
W }

t/2
|
|

|"ﬂ—?'4 -
—
@
.
—

Fig. 9.3
Consider Fig. 9.3 showing the differential slice of the plate viewed parallel to the y

axis. The displacement in the x axis of the point P is
ow

U=-z—

Oox
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If we view the slice of the plate parallel to the x axis, we have the displacement in the

y axis of the point P is

ow

V=—2—

oy

Hence, the strains components on the element due to the displacement are

_a_u_ 0w

T ox - ox?

B @ _ 0w
y ay 6)/2

ou Ov 0w
=—+—=-2z

oy Ox OxOy

&

Y 9.7

9.6 Stress-Strain Relations

For linear elastic isotropic homogeneous material,

O-:
o l=v?

(e, +ve,)

E
o, = P (&, +ve,)

r, =Gy, 9.8

E

where G = .
2(1+v)

9.7 Stress-Deflection Relations
Substituting Eq. 9.7 into Eq. 9.8, we have

E 0w 0w
O, = | T2 TV
l-v ox oy

E A2 2
o, =- Zz 8w+V8w 9.9a

o, = | Tty 9.9b

9.9¢

9.8 Governing Differential Equations
Substituting Eq. 9.9 into the internal force-stress relations, Eq. 9.2, we have the

expressions for the internal forces and the displacement w .
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t/2 t/2 2 2 2
M, = _[O'deZZ I _ £z 2{6 v2V+V8 ?}}dz
-1/2 G A=vilox oy
2 2 t/2
M, =- E 2[8 V2‘;+va Zv} J.zzdz
l-v| ox o |7,

t/2 t3
Since jzzdz =15

—t/2

E | 0°w  O'w
M. =- > TtV
12(1-v~)| ox oy

E 3
Defining D = ﬁ which is the plate flexural rigidity.
-v
-, .
M, =D T¥ O 9.10a
| Ox oy~ |
Similarly,
-, ,
M, =-p| T, 0 9.10b
y i ayZ ax2 |
_ 5 E o*w tfzzdz—— Et’ 0w
Y 2(1+v) oxdy 7, 12(1+v) oxoy
2
M, =—(1-v)D Ow 9.10¢
oxoy

Substituting Eq. 9.10 into the equilibrium equation, Eq 9.6, we have the governing
equation for the thin flat plate.

2 oO°M . O*M
0 Af)‘ +2 Y+ =
ox Ox0Oy oy

4 4 4 4 4
ALV (R Y BV, LA AL VIRLCAR L R
ox 0 x0y Ox~0y oy ox°0°y

+g=0

4 4 4
8w+2 o'w +6w:q(x,y)
ox? ox*oy’ oy’ D

9.11

The deflection of the midsurface of the flat plate w = w(x,y) can be determined by

integrating this governing equation. Then, the moment expressions are obtained by

substituting the deflection expressions into the expressions of the moment, Eq. 9.10.

0w sz}

+v
ox® oy’

M, = —D[
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2 2
M, =D T Y
g Oy ox
2
M. =—1-»Dp2Y
i Ox0y
The transverse shearing force can be obtained from the Eq. 9.4 and 9.5,
oM
0, =2 T
ox oy
0 = oM, oM,
’ ox oy
Thus,
o'w o'w o'w o'w o’w  o'w
0 =- TtV =+ =V S |=-D| —+—>
’ ox oxoy~  OxOy ox0y ox~  OxOy
2 2
0 --pl|dw v 9.12a
Ox| Ox~ Oy
Similarly,
2 2
0, =-p2|Tw, 0w 9.12b
! dy| ox* oy

By assuming that the transverse
9.9 Boundary Conditions

The most frequently encountered boundary conditions for rectangular plates are
essentially the same as those for beams. They are either fixed, simply supported, free, or

partially fixed as shown in Fig. 9.4.

/< : >
Simply-supported /

Y

b Partially
restrained

/ Fixed

Free

Fig. 9.4
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Fixed Edges
For the fixed edge, the deflection and slope are zero. Thus,
w|y:b =0
ow =0 9.13
W,
Simply Supported edge
For simply supported edge, the deflection and moment are zero. Thus,
W, =0 9.14a
y=0
2 2
M, =—D{a L V;} =0
=0 oy ox o

2
. w . 0 (ow ow .
The expression v can be rewritten as v—(—j The term — is the rate of

x> ox\ Ox ox

change of the slope at the boundary. But, the change in slope along the simply support edge

2
) ) w )
y=0 1is always zero. Hence, the quantity v Y vanishes and the moment boundary
X

condition is

2
N _0:82” =0 9.14b
y 6‘y =0
Free Edge
At the free edge, the moment and shear are zero. Thus,
Mx x=a - Yl x=a - Qx x=a - O
2 2
{avszaq 0 9.15a
ox o,

The last two boundary conditions can be combined into a single equation. Consider

the Fig. 9.5, Kirchhoff has shown that the moment M, can be though of as a series of

couples acting on an infinitesimal section. Hence, at any point along the edge

_ oM
oy

!

This equivalent shearing force, Q', must be added to the shearing force Q_ acting at

the edge. Therefore, the total shearing force is

oM,
sz[Qr—k yJ =0 9.15b
o

xX=a




Advanced Mechanics of Materials by Dr. Sittichai Seangatith 9-9

2 2 2
Substituting O =— 919 VZV 0 VZV and M _ =-(1-v)D Ow into Eq. 9.15b, we
Ox| ox~ Oy ! Ox
obtain
j =0 9.15¢
My, —dM,,

aM,,

By ij {f.-"-‘f_,-.,. — -I,F (4 d‘r
Lt)

a
&

oo

Fig. 9.5
Partially Restrained Edge
A partially restrained edge occurs in when the plate is connected to the beam as shown

in Fig. 9.6. In this case, the following boundary conditions must be satisfied.

BEAM

Fig. 9.6
plate - beam
3 4
p| & +( _1) 2 = EI aff 9.16a
axay oy i
and
plate = beam
9.16b

2 2
-D 8v2v+vav2v =
Oox oy o
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Corner Reactions
It was shown in the derivation of the boundary condition of the shearing force at the

free edge that the torsion moment M as shown in Fig. 9.5 can be resolved into a series of

couples. At any corners such as at x=a and y =b, the moment M results in an upward

force R as shown in Fig. 9.7.

9.17

R=-2M,

2
e =2(1 —v)D( 0 Wj
y=b Ox0Oy

This equation is usually used to determine the force in corner bolts of rectangular

=a
y=b

plates.

’1M.n'
——= dy
r']}' y

X=u
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Example 9-1
Determine the moment and reaction for a simply supported rectangular plate of length

a in the x direction and width 5 in the y direction as shown in Fig. Ex 9-1. The plate is

subjected to a sinusoidal lateral load, ¢ = ¢, sin X sin 2
a

Fig. Ex 9-1
The governing differential equation of the plate, Eq. 9.11, is

4 4 4
0 ZV+2 OZWZ +a Zv=q—°sinﬂsinﬂ
ox ox oy~ Oy D a

For the simply supported plate, the boundary conditions, Eq. 9.14, are

2

w=0 and > =0atx=0and x=a

Oox

0w

w=0 and =0aty=0and y=»
oy

7 =

In order to solve the governing differential equation for the deflection, the assumed
deflection equation must be in the same form as that of the governing equation and must

satisfy the boundary conditions. Thus,

. T .
w= Csm—smﬂ
a

Substituting the deflection equation into the governing equation, we obtain
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o g,
J1 1Y

Thus, the assumed deflection equation is

. X .
w= 4, Sin — sin —

1 1Y a

Substituting this equation into the force-stress relations, Eq. 9.10, we get

2 2
\ w 1 Vo). .
M, =-D 0 > +v8 | = 2o | =t sin 2 sin 2
ox oy W1 1 a- b a b
) Tt g
a- b
2 2
M, =-D 0 1;V+va V; = 4, > L2+—2 sinﬂsinﬂ
oy ox 1 1 a- b a
) N e
a- b
2
1-v
Mxyz—(l—v)DaW:— 9, ( )2 cosﬂcosﬂ
ox0Oy 1 1 a b
A 724‘72 ab
a- b

It should be noted that the maximum M, and M, occur at x=a/2 and y=>/2.

Substituting the deflection equation into the transverse shearing forces, Eq. 9.12, we have

-, .
0, :—Di 0 v2v+6 ZV = L 5 cos 2 sin 2
’ ox| ox oy 1 1 a b
- - na 72+b72
a
-, .
Qy:_Dai ";‘;’JFZZV - 9, sin = cos 2
Y ox Vo

1 1Y a b

The reaction on edge x = a can be determined by using the Eq. 9.15b,

oM _
V. :(Qx‘i' nyj L 1,2 Vjsinﬂ
y

( 1 1 ]2 (az bZ b
= m| — +—
The reaction on edge y = b can be determined by using the equation,

a’> b?
oM ,,
Vo=@t ox

_ 9,

1 2-v). m™
: : 3 b_2+ a2 Sln;
y=b ﬂb(2+j

a b*
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The total reaction around the plate can be determined by integrating the reaction
equations from x =0 to x=a and from y=0 to y =5 and then multiplying by 2 due to
symmetry.
ab 8q,(1—-v
9,90 _ 8q,(-v)

7[2 2
”2(12 + lj ab

b2

total reaction =

The first part of this equation can also be obtained by integrating the applied load over

the total area.
b a
j .[ q, s1n—s1n —dxdy
00

The second part is the summation of the four corner reactions that can be determined

by using the Eq. 9.17. Thus, for example,

0:2(1—v)D(62Wj _2q,(-v)
= OxOy

2
x=0 1 1
oz 4| ab
[az sz

The positive value of R at the corner x = y = 0 means that the reaction force has the

downward direction. Thus, it indicates that the corners tend to lift up. This action must be
considered when designing the concrete slab. The top corner reinforcements as shown in Fig.

Ex 9-1c¢ are needed to resist these forces.

-

section A-A

Fig. Ex 9-1c
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9.10 Double Series Solution of Simply Supported Plates
Navier has present the solution of a simply supported rectangular plate subjected to

uniform load g by representing the load in the double trigonometric series as

q(x,y) = Zqun sm—ﬂxsmTﬂy 9.18
m=1 n=1

To calculate any particular coefficient g, of this series, we multiply both sides of the

series by sin %dy and integrate from y =0 to y =b. Then we can see that

b '
jsinﬂsinwdyzo when n = n'
0 b b

b ’
jsinﬂsinwdyzé when n=n'
0 b b 2

In this way, we find

jf(x sin" 2y =23, sin "2
m=1

a

!

X . .
dx and integrating from x =0 to
a

Multiplying both sides of this equation by sin m

X =a, we obtain

[l

Thus, the coefficient ¢,, can be written as

S C— >

_4
qmn ab

S ey
S C— >

f(x, y)sm—sm—dxdy 9.19
a b

Similarly, the plate deflection w is determined by

w(x,y) = ZZW sm—sm Zy 9.20
m=1 n=1

This equation satisfies four boundary conditions of a simply supported plate. The

constant w, ~ can be determined by substituting the plate deflection equation into the

governing differential equation of the plate.
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Example 9-2
Determine the maximum deflection and bending moments a simply supported plate as
shown in Fig. Ex 9-2a due to a uniformly distributed load, ¢, .

a

ey

Fig. Ex 9-2a

Since the load is uniformly distributed over the entire plate,
f(x9 y) = qo

Then, the coefficient ¢, is

44, Ijsm sin —— 7zy dxdy
4 16
= q” (cosmm —1)(cosnm —1) = zq"
7*mn T mn

where m =1,3,5,... and n=13,5,....
Thus, the uniformly distributed load can be represented by the double trigonometric

series as

> Y L
m=13.5,... n=1,3,5,... M1 b

l6g,
q(x,y)=—;
T

Substituting this equation and the plate deflection w into the governing differential

. 0w o'w  o*w . .
equation of the plate, — +2 +—F = % , we obtain the coefficient w,,, as

ox ox*oy* oy

l6g,

o]

where m =1,3,5,... and n =1,3,5,.... Thus, the deflection of the plate is
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munx . n
Slnﬂ

u " sin
w=—28 2 N
n°D .-

2
2 2
1,3,5,...n=1,3,5,... m n
mn +| —
a b

In this case, the deflection is symmetric with respect to the axes x=a/2 and

y=>b/2. The maximum deflection is occurred at the center of the plate in which x =a/2

and y =b/2. Then,

16g, < < (=D 2
Wmax:7z_6—Dm=Z’m Z 2

It should be noted that this series converge rapidly to the exact solution. Substituting

the deflection equation into the force-stress relations, Eq. 9.10, we get the bending moments

as
[ 52 wl 16q, & &
M,=-D 0 VZV.H/a VZV = q40 Z F. sm—mcsinﬂ
| Ox 5 B A S a
A2 2. ] 16 a a
M,=-D 0 v2v+ 0 Zv = Z” > G,, sin sin 2
_ay Ox ] T m=135,..n=135,.. a
2 16 1_ a o
M, =—(1-v)D ow __ q0(4 V) > H,, cos 2 cos 2
8x8y T m=1,3,5,... n=1,3,5,... a
2 2
m n
| ~(3)
where F, = ?

mn

The maximum bending moments are occurred at the center of the plate in which

x=a/2 and y=>b/2. Fig. Ex 9-2b shows a plot of the equations of the bending moments by

assuming that v = 0.3. The figure also shows a plot of the bending moments M, and M, that
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are obtained from Mohr’s circle along the diagonal of the plate. It should be noted that M,

becomes negative near the corner of the plate. This is due to the uplift tendency at the corners.
This uplift is resisted by the reaction R that causes tension at the top portion of the plate near

the corners as mentioned before.

T
.-""v]l = Q"l +&[3;:Y
|
|
|
0.338qo
| My )
! ;7 dx R=0.065q0
e Y v=03
qa
()
o 1 F
Od:’m YR + :
o R
M{ ' |
1 =[]
My S -My a:
.Qaf’s E
& 1
—_— e — —F—x
oy o 0 Mz |r
02 i
ko olew
|
¥ cr‘ i‘b
o
)
gty
Pt
-(——-—---—-g—— ------- R %——————-—h
¥
Fig. Ex 9-2b

Finally, substituting x =a/2 and y =b/2 into the equation of the bending moment,

we obtain toe maximum bending moment.
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Example 9-3
A simply supported square plate of uniform thickness has the width on each side of

500mm as shown in Fig. Ex 9-3. The plate must carry the uniform lateral pressure
q, =1.0MPa without deflecting more than one-fourth its thickness and without exceeding
the allowable normal stress of 250 MPa. Let the material of the plate has £ =200 GPa and
v=0.30 and using the maximum octahedral shearing stress criterion, determine the

minimum allowable thickness.

500 mm

-
55
£
Elss Ss
7z
55
'
J.‘
Fig. Ex 9-3
Check the deflection

Due to the symmetry of the plate and loading, the maximum bending moment is

occurred at the center of the plate (x,y) =(0.25,0.25) m.

m+n

a a _ 2
W = 37 3 T

Since this series converge rapidly to the exact solution, we will use the first three
nonzero series terms for which m + n is smallest which are
m=1and n=1
m=3 and n=1

m=1land n=3

1+1_1 3+l_1 1+3»_1

164, (=D’ s (D> s (=D

ol T sl T el ]

w=256.573(10%) e
D
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The plate stiffness is
3
= E—tz =18.315(10°)¢
12(1-v7)
Hence, we have the plate thickness of

% - 256.573(10*)%
t =15.4mm
Check the allowable normal stress
Due to the symmetry of the plate and loading, the maximum bending moment is
occurred at the center of the plate (x, y) = (0.25,0.25) m and
M, =M, =M and M, =0

From example 9-2, the maximum bending moment at the center of the plate

(x,y)=(a/2,b/2) and the width a = b is

Since this series converge rapidly to the exact solution, we will use the first three
nonzero series terms for which m + n is smallest which are
m=1and n=1
m=3 and n=1

m=1and n=3

Thus, we get
2 2 2
e o) 4os)  (o3) +°-3(JJ , Los) rodes)
Mmax = 30 . . .
1

el ] ] el

M, =115663N-m

2
i
0

The flexural stresses due to the bending moment for unit width of the plate are
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Mc _11566.3(t/2) _ 69398
o I 1(£7)/12 t?

SinceM,, =0, 7, at the center of the plate is zero and the obtained flexural stresses

are the principal normal stresses. Using the maximum octahedral shearing stress criterion,

ol —0,0,+0; =250

20% —o? =250?
693298 =250(10°)
t
t=16.7 mm

Since the thickness based on the maximum octahedral shearing stress criterion is
larger than the maximum moment condition, determine the allowable thickness is at least

t=16.7 mm
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Example 9-4

Determine the deflection for the simply supported plate subjected to the uniformly
distributed load over the area of rectangular as shown in Fig. Ex 9-4.

By virtual of Eq. 9.18 and Eq. 9.19, the coefficient g, of the uniformly distributed

load can be determined from the equation

4 f+d/2e+c/2

G = j q, sinMsinwdxdy
abcd FdI2e 002 a b
log, . mme . mmc . naf . nmd
G = sin sin sin sin
mncdr’ a 2a b 2b
a -
j
d
9o
¢/
e/
J;‘
Fig. Ex 9-4

Substituting ¢, and the plate deflection w into the governing differential equation of

4 4 4
the plate, 0 Zv +2 82 W2 + 0 ZV = i, we obtain the coefficient w, = as
ox Ox~0y oy D

. mme . mmc . nnf . nuad
sin sin sin sin

_ l6g, a 2a b 2b

Wi = °cdD 2 27?2
T

mn|| — | +|—

a b

This equation will be reduced to the same equation in the previous example by setting

c=a,d=b, e=al/2,and f =5b/2. Finally, the deflection of the plate can be determined

from the equation



Advanced Mechanics of Materials by Dr. Sittichai Seangatith 9-22

9.11 Single Series Solution of Simply Supported Plates
Levy in 1900 developed the solution of a simply supported rectangular plate subjected
to various loading conditions by using single trigonometric series. He suggested that the
solution of the governing equation of the plate can be separated into two parts: homogeneous
part and particular part.
w=w, +w, 9.21
Each of these parts consists of a single trigonometric series where the unknown function is

determined from the boundary conditions. The homogeneous part is written as
W, = £, ()sin 922
m=1 a

where f, (») is a function of y only. This equation satisfies the simply supported boundary

conditionat x=0 and x=a.

vy

Substituting w, into the governing differential equation of the plate, (; ZV +2 p Zav >
X X0y

4
0 ZV -4 , we obtain
oy D

Hm_zrj () 2("”]2 Lo 4, (y)}in mm
a

a dy dy* a

This equation only satisfies when the bracketed term is equal to zero. Thus,

d*f,(») (mzx\ d’f,(») (mz)' _
o 2( ; ] e +( ; j f.(»)=0 9.23

The solution of this differential equation can be expressed as
fu(¥)=F,e™ 9.24

Substituting Eq. 9.24 into Eq. 9.23, we have

Hence, the general solution of the differential equation Eq. 9.23 is

may _mny may _muy

fm (y) = Cvlme7 +C2me T +C3myeT +C4mye 7

where C, , C,,, C,, ,and C, are constants. This equation can also be written as

f,n=4, sinhM+Bm coshw+CmysinhM+DmycoshM
a a a a
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Therefore, the homogeneous solution, Eq. 9.22, is

w, = Z{Am sinh 2 + B, cosh oy

o a a a a

+ Cmysinhw + D, ycosh M} sin 2 9.25

a

where the constants 4 , B, C

m?> m?> m?>

and D, are determined by using the boundary conditions

of the plate.
The particular solution, w,, can be expressed in a single trigonometric series as

a

Z L, ()sin 2 9.26
a

This equation also satisfies the simply supported boundary condition at x =0 and x=a.

The distributed load ¢ can be expressed as
& . M
9(%3) =24, sin—— 9.27
where the coefficient ¢, () is
2 ¢ . max
4, (») == [ g(x,y)sin " dx
as a

Substituting the equations of the particular solution w,, Eq. 9.26, and the distributed

load ¢, Eq. 9.27, into the governing differential equation, we obtain

4 2 2 4
dy a dy a D

Finally, the solution of the governing differential equation is determined by using Eq.

9.25 and the solution of Eq. 9.28.
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Example 9-5
The rectangular plate as shown in Fig. Ex 9-5 is subjected to uniformly distributed

load ¢, . Determine the deflection of the plate.

a

b SS
2
-
b SS SS
2
SS
'
y
Fig. Ex 9-5

Since ¢(x,y)=¢q, which is a constant, the coefficient ¢, (y) of the uniformly

distributed load can be expressed as

2q, ¢ .
4, () =ijsm—mm dx
a 5 a

2
=i(—cosm7r+1) where m =1,3,5,....

Substituting the distributed load ¢ into Eq. 9.28, we have

4 2 2 4
4
d kmfy)_z(mﬂ] d kmz(y)+(m7rj k()= 4o
dy a dy a m D

The solution of this differential equation can be taken as k, (y) =k, = a constant, and

satisfies the boundary conditions. Then,

, . 3 . Mnax
the particular solution w, = ka sin
a

m=1
_ 4a’q,

-5 5
" m’r’D

k where m=1,3,5,....

The particular solution for the deflection of the plate is

The homogeneous solution for the deflection of the plate is obtained from Eq. 9.25.

w, = z {Am sinh 2% B, cosh ma C,y sinh 7% 4 D, ycosh M} sin 7%
a a a a a

m=1

By observing the deflection of the plate due to the uniform load, we can see that the

deflection in the y direction is symmetric about the x axis. Thus, the constants 4, and D,
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M and ycoshw are odd functions as y

a a

must be set to zero since the quantities sinh
varies from positive to negative.
In addition, m must be set to 1,3, 5,... in order for the term sin—— to be symmetric

a

about x =a/2. Hence,

a
m . om . M
w, = E [Bm cosh 2 C, ysinh —ﬂy} sin—
m=1,3,... a a a

The total deflection of the plate is

S . 4a* .
w= E B,, cosh Y +C,, ysinh UL ? (5]” sin 2
m=13,... a a m>7°D

The boundary conditions along the y axis are

w=0at y=1b/2

2

M =0 or8 Y_o at y==2b/2

y ayZ -

Then, we have

4q°
b ¢, Dsinh 0 44 g
2a 2 2a  m’m’D

B, nr +bC,, |cosh mab +C, mab sinh mab _ 0
a 2a 2a 2a

B, cosh

Solving these two simultaneous equations, we obtain

c - 2a’q,

m

m47z4Dcoshm—”b
2a

4a*q, + mng,a’btanh mab

B = 2a
m’>7° D cosh mab

2a

4a‘q, +mnq,a’b tanhm—ﬂb

2a coshM

5 5 mmh a
m’7” Dcosh——— M

o
w= z 2a sin ——

The maximum deflection is obtained at the center of the plate x =a/2 and y =0.
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Chapter 10

Buckling and Instability

10.1 Introduction

The selection of structural members is based on three characteristics:

1. strength

2. stiffness

3. stability

Structural instability can occur in numerous situations where the compressive stresses
are present. For example,

Long and slender columns subjected to axial compression can buckle long before the
material reach the ultimate compressive strength.

Thin-walled tubes can wrinkle when subjected to axial compression.

Narrow beams, unbraced laterally, can turn sidewise and collapse under transverse
loads.

Vacuum tank can severely distort under external pressure.

The structural instability and buckling failures are occurred suddenly and dangerous.
For the structural members as shown in Fig. 10.1, we can classify the buckling modes as

followings:

(a) (b)

Fig. 10.1
a.) For the column that has limited flexural stiffness but adequate torsional stiffness
subjected to compressive force, the dominant buckling mode is the flexural

buckling.
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b.) For the same column in a.) subjected to bending moment, the dominant buckling
mode is the flexural-torsional buckling.

c.) For the same column in a.) subjected to eccentric axial force, the dominant
buckling mode is the flexural-torsional buckling.

d.) For the column that has limited torsional stiffness but adequate flexural stiffness
subjected to compressive force, the dominant buckling mode is the torsional
buckling.

10.2 Column Buckling

Consider an ideal perfectly straight column with pinned supports at both ends as
shown in Fig. 10.2. The column is subjected to axially concentric compressive force P and
deformed as shown. The bending moment due to the axial force P is M =—Pv.
p

!

i\

I",
X '|I

-
I

{a) | (b)

Fig. 10.2
The differential equation for the elastic curve of the column is
ey
e’
M =—Py
gty _p
c __py
dx’
d’v P
+—v=0
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This is the homogenous, linear, differential equation of second order with constant

P
coefficients. It can be solved by assuming that k> = T Then,

V' +k*v=0
The solution of this equation is in the form of
v=C,sin kx+ C, cos kx
The constants of integration C, and C, can be determined by using the boundary
conditions.
At x=0,v=0;C, =0
v =C,sin kx
Atx=L,v=0; C;sin kL=0
This condition is satisfied either C;, =0 or sin kL =0.

If the constant C, =0, the term sin kL # 0. Then, the term kL can have any values
and the load P can also be any values since P =k”(EIl). Thus, C, = 0 is the trivial solution.
If the term sin kL =0 and C, #0, then, kL =0, &, 2w, 3m,...... When the term

kL =0 (or k =0), the critical load P =k*(EI)=0 Therefore,

kL =nm n=1,2, 3,...
n*n’EIl
= L2 n= 1, 2, 3,...

The least force at which a buckled mode is possible is occurred when n =1 and called
the critical or Euler buckling load.
n’El
o = LZ

where P, = critical bucking load. P, <P,

E =modulus of elasticity

I = moment of inertia

L = length of the column

Consider a column subjected to axial compressive load. If the column is so slender
that its material is always linear elastic until the critical load is reached at point B as shown
in Fig. 10.3a, the column can behave into two possible ways when subjected to an increasing
axial compressive load. If the column is an ideal column, the column may remain straight
(path BC). If the column has a slight imperfection, the column may bend (path BD or path
BF') depending on the analytical approaches. If the column has a larger imperfection, the

response of the column will follow the path OF .
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The somewhat slender column behaves similar to the very slender column as shown in
Fig. 10.3b. However, the material of the column will reach the yielding strength, as the
deflection grows larger and larger as shown by the downward curve OBD . If the column has
a larger imperfection, the response of the column will follow the path OF .

For a lesser slender column, the capacity of the column will be influenced by the

yielding strength of the material.

p 1" P P A P
_ s A

Pic P|C Somewhat

slender

[ o column
~\ |,

I

Very slender column
(no yielding) R
= (vielding)

olo olo
1) i 1) v,

(a) (b)

Fig. 10.3
10.3 Plate Buckling

The differential equation of a rectangular plate subjected to lateral load ¢ is obtained

in previous chapter as

+2 +
ox* ox*oy> Oy

D

o*w o*w o'w ¢
4

Plates Subjected to Combined Bending and In-plane Loads
If the plate is additionally loaded in its plane by the compression as shown in the Fig.

10.4, summation of forces in the x direction gives

N N .
N_+ axdx dy+| N, + 6y dy |dx— N dy—N dx =0
Y

X

ON, . ON
ox oy

=0

Similarly, summation of forces in the y direction provides

N, N,

oy ox

In considering the forces in the in the z direction, we must take into account the

deflection of the plate. Due to the curvature of the plate in the xz plane, the projection of the

normal forces N onthe z axis is

ow ON ow 0w
—(N.dy)—+|N_ +—dx||—+ dx |d
(N.dy) Ox [ toox x}[ ox  ox’ x} 4
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N
Nyx §

¥
aN
Ny Nyt ’a—:d’(
aN
Nyy+ -—Ia: dx

(@)

dx

N+ F:—dx
z
(b}
Fig. 10.4
By neglecting the higher order terms, we have
? ON
N, 0 1:} dxdy + —xa—wdxdy
Ox Ox Ox

Similarly, the projection of the normal forces N on the z axis is

2
o™w
2

ON
N dxdy + —= ow dxdy
y 6 8)/’

y

ON
Due to the shearing forces N, and N, +8—Xya’x, the midsurface of the plate is
X

2
deformed as shown in Fig. 10.5. Owing to the angle ow and 6_w+ Ow

oy oy  Ox0Oy

dx, the shearing

forces N, have a projection on the z axis as

ON 2
—| N, dyé—w +| N +—dx a—W+ 0 Y dx dy
T oy Y ox oy  OxOy

2 ON
N, a—deder et a—dedy
" Ox0Oy ox Oy
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_j_dx

,_{a_w 3 aw\)

\\-iiiy x| ady/
Fig. 10.5
Similarly for N,
2
N, ow dxdy + —= a—dedy
Ox0y oy Ox
Since N, = , the final expression for the projection of the shearing forces on the
z axis is

2 ON
IN. O ety + 0 O
Y Oxoy ox Oy

oy
The total summation of the forces in the z axis is

2, 2
Na Y dedy + ON_ ow a

ON
dxd +—@dxdy
oy 0oy

2

ON ON
lid dxdy + — a—Wa’xdy+ =

Ox0y ox Oy oy

ON ON, ON,

=0and —=+ =0, we have
ox oy oy ox

+2N,,

By using the equation

2 2 2
q+Nx—gv2V+N _6w+2N 0w
X

Yoy’ ~ Oxoy

The differential equation of a rectangular plate subjected to the combined bending and
in-plane loads is obtained by substituting the total summation of the forces in the z axis into

the differential equation of a rectangular plate subjected to bending. Then

4 4 4 2 2 2
ZY+28W+5W:i[q+Na o’w aw]
X

ox*oy> oyt D ox® " oy? Y Oxoy
Strain Energy in Bending of Plates

The strain energy density of isotropic material is
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- ]
U, = E o, to, 8, +O.E AT Y +T Y, FT V..
Thus, the strain energy of a small plate element is

U= 1 j[axgx +0,6,+7 ] dxdydz

Vol

Xy }/xy

Substituting the stress-deflection relations,

Ez [d*w  o*w]
O, =———| 5 +v—5
1-v~| Ox oy

Ez | o*w  O*w

o, == +v
g 1-v?| oy’ ox? |
2
0, =262
Ox0y

and the strain-deflection relations,

0w
g, =—z
ox?
B 0w
£,=-z &
2
y, = s 0w
Ox0y

into the equation of the strain energy of a small plate element, we have

——J{( R I

am 0w o*worw (o'w)
:—-j . —2a—v) - dxdy
oy ox~ oy oxoy

Area

S}

Strain Energy Due to In-plane Loads of Plates

The strain energy due to in-plane loads of plates is derived from Fig. 10.6, which

shows the deflection of a unit segment dx. Hence,

or for a unit length
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1[8wj2
&, =—|—
2\ ox

dx

Similarly,
. lfaw)
AN

_oww
Ve ox Oy

It can also shown that

Thus, the strain energy due to the in-plane forces is

] dxdy

xy}/xy

U= [[Ne +Ne, +N

Area

g § (2] o [5) van (25|

Strain Energy Due to Bending and In-plane Loads of Plates

The total strain energy due to bending and in-plane loads is

2 2 2 2 2. \2
=_J~ 8w o“w _2( _V)81:/8v2v_ o“w dxdy
e y ox~ Oy ox0y

2 2
+lj Nx(a—wj w2 s [ 22N ey
2Area ax ay ax &y

The total potential energy of the plate is
V=Q+U

In order for the plate to be in equilibrium, the total potential energy of the plate must

be minimum.
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Example 10-1
Find the buckling stress of a simply supported rectangular plate subjected to the force

N_ as shown in Fig. Ex 10-1a.

a
55 X
— iy
R iy
Ny —afss 5S lm— Nx [
— i e
] - e
|
Y
Fig. Ex 10-1a

Let the deflection of the plate be expressed as

w(x,y) = ZZAW sm—sm%
m=1 n=1

which satisfies the boundary condition of the plate.

Substituting the deflection equation into the total strain energy and noting that the

2. A2 2. \?
term2(1—v)av;}6v2v— ow =0, we have
Ox~ Oy Ox0y

or

2
o-rof ST | e
a =

m=1 n=1

Since there are no lateral loads,
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The smallest value of the compressive forces N, 1is occurred when n=1. The

physical meaning of this is that a plate buckles in such a way that there can be several half-

waves in the direction of compression but only one half-wave in the perpendicular direction.

Thus,
2 2\?
NXCV = 72— ZD[m-i_ia_zj
a mb
o N EP . :
If we substituting o, =—= and D =————, we get the critical stress in the form
t 12(01-v7)
of
2
o, = ) - K
b
12(1-v? )(j
t
m alb)’
where K = (7 + —j . The plot of the critical stress is shown in Fig. Ex 10-1b and shows
a m

that the minimum value of K 1is 4.0.

10

ERARN
| NG

a
b

Fig. Ex 10-1b
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10.4 Plates with Various Boundary Conditions

a

RS

SREE.

Fig. 10.7
Fig. 10.7 shows a rectangular plate simply supported on sides x =0 and x=a and

subjected to the axial compression N . The governing differential equation of this plate is

otw o'w  o'w N, o*w
4 +2 A2 T ad T 2
ox ox~ 0y oy D ox

Let the deflection solution of this plate is in the form of

W) =3 1) sin "

2

VZV:O at x=0and x=a.
ox

This solution satisfies the two boundary conditions w =

Substituting the deflection solution into the governing differential equation, we obtain

AL

dy4 - dy2
2 2 2
where A= mzﬂ
a
B m'r? _ N, m’r’

a’ D a’
The general solution of this fourth order differential equation is

() =Ce™® +Che” +C,cos fy+C,sin fy

m-m N, m*n®
where o = +

2
[\

S

2
S

2_2 2_2
\/mﬂ N m'rm
- +

The values of the constants C, through C, are obtained from the boundary conditions

y=0and y=5>b.
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Case 1
Side y =0 is fixed and side y =b is free.

Aty =0, the deflection w =0 and the rotaion ow =0.

oy
2 2
Aty =b, the moment M = 0 124/+V6_v2v =0 and the shear
oy ox
3 3
0= av;}+(2—v) awz =0
oy oxoy

From the first boundary condition, we obtain
C,+C,+C, =0
From the second boundary condition, we obtain

—aC,+aC,+ pC, =0

or
C
Cl — __3+&
2 20
and
s
2 2a

Substituting C, and C, into f(y)=C,e ™ +C,e® +C,cos fy+C, sin fy, we get

f(y)=C,(cos fy —coshay) + C,(sin fy —ﬁsinh ay)
a

Substituting /() into the deflection equation, we have

w(x,y) = i[@ (cos fy —coshay) + C,(sin fy — ﬁsinh ay)} sin "%
a

a

m=1
Using the last two boundary conditions, we obtain two simultaneous equations. The
critical value of the compressive force, N , is determined by equating the determinant of

these equations to zero.
2gh(g® +h*)cos fbcosh fb = Lﬁ(oezh2 — pB*g?)sin Bbsinh Bb
1o

2_2 2_2

m°r m°rw .. .
where g =a’ —v —and h=pf S — . For m =1, the minimum value of the critical
a a

compressive stress is
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2
o, = T E - K

b

12(1—v2)(j
t

For v=0.25,
K, . =1328
Case 2

Side y =0 is simply supported and side y =b is free.
Similarly, in this case, the maximum value of K is

2
K =0.456+ b—2 for v=0.25
a

Case 3

Side y =0 and side y =5 are fixed. In this case, the maximum value of K is

K=170 for v =0.25
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Example 10-2
Let the plate in Fig. Ex 10-1a be simply supported at x=0 and x=a, simply
supported at y =0, and free at y =b. Determine the required thickness if @ =0.560m,

b=0430m, N_=52500N/m, v=0.25, o, =250MPa, E =200GPa, and factor of safety

=2.0.
Assuming that 7 =6.5mm. From case 2, the value of K =1.046. Then, the critical

compressive stress is

2
o = 7 (200000) _(1.046) = 41.93 MPa

12(1—0.252)[ 0430 j
0.0065

which is significantly less than the yielding stress o, =250 MPa .

Thus, the allowable stress is 41.9/2 =20.95MPa.
The actual applied stress is 52500/0.0065 = 8.07 MPa .. -~ OK.
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10.5 Application of Buckling to Design Problems
The AISC assumes the buckling stress of unsupported members in compression not to

exceed the yielding strength of the material. Thus,

2
= 7k K

12(1- vz)[i’j

This equation is based on the assumption that the interaction between the buckling

stress and the yielding stress is designated by the curve ABC as shown in Fig. 10.8. For steel
members with v =0.3 and £ = 29000 ksi, we have

é:162 /£
t o,

:rbut:klinq

-’.‘;1.7‘5.::rjf

Fig. 10.8
However, due to the residual stress occurred in the steel member during the
manufacturing, the actual interaction curve is represented by the curve ADC. Therefore,

AISC use a factor of 0.7 to account for this effect and
b 141K
t o,

Consider the leg AB of a single angle as shown in Fig. 10.9a as a plate. The plate AB

Single Angles

has a free support at point B and has simply supported support at point 4 since the point 4

2

can only rotate due to the deflection. Thus, K = 0.456 + b—2 and K
a

=0.456 . Then,

min
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b_ 14 [0456 _ 76

t o, K

Double-Angles

Due to the symmetry of the double angles as shown in Fig. 10.9b, the possibility of
rotation of the section under the axial compression load is significantly reduced from the
previous case. Thus, AISC uses the average of the case 2 (simply supported-free) and the

average of the case 1 (fixed-free) and the case 2 (simply supported-free).

0.456 + 0.456+1.328
K= 2 =0.674
2
Therefore, we have
2:114 0.674 _ 95
t o, ,/O'y
. A
!
b b
| I
?*—-E l—r
{aj 1+)]
1
ST A .
b
A

(€ (d)

(e)

Fig. 10.9
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Stems of T-section
Consider the stem of the T-section as shown in Fig. 10.9¢ as a plate. The support at
point A4 is considered as a fixed support and the support at point B is considered as a free

support. Therefore, the K value is 1.328 for case 1.

by, [1328 _ 132

t o, :E

In practice, the AISC reduces the coefficient of this equation from 132 to 127.

Flanges of Box Sections
Consider the flange of the box section as shown in Fig. 10.9¢c as a plate. The support at

point 4 and B can be conservatively considered as simply supported. Therefore, K =4.0.

by [t0_ 228

t o, o,

The AISC increases the coefficient of this equation from 228 to 238 to match the
experimental results.
Perforated Cover plates

For the perforated plate as shown edge in Fig. 10.9¢, the supports of the plate between
the perforation and the edge are assumed to be fixed. This is because the continuous areas
between the perforations add more rigidity to the plate. If the ratio of the dimension a and b
of the perforated plate is equal to one, the value of K is about 7.69. This value is higher than

that obtained in case 3 since it is based on the smallest possible value of K . Thus,
92114 [7.69 _ 317
t o, /o‘y

Other compressed members are assumed to have the K values between 4.0 for simply

supported edge to 7.0 for fixed edges. The AISC uses the value of K =4.90.

b_ g [490 _ 253
t o, /o‘y

Other Compressed Members
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