

Collapse of a large billboard (50 m high) in Bangkok during a severe thunderstorm on June 2002

A rigid model fixed on the multi-component force sensor

High Frequency Force Balance Technique

60-degree Wind Direction

Model Geometry and Wind Attack Angle

Mean Drag Force Coefficient

Reference Velocity Pressure

Billboard Area

Aerodynamic Normal Force Coefficient C_D

Normalized Dynamic Drag Force

$$C_d(t) = \frac{F_x(t)}{\frac{1}{2}\rho \overline{U}^2 b d}$$

Normalized Dynamic Torsion

Wind Attack Angle $\theta = 45^{\circ}$

Peak horizontal eccentricity as a function of wind attack angle

Interference Effects from Nearby Structures

หน่วยแรงลมสำหรับป้าย และกำแพง

 ป้ายและกำแพงต้องได้รับการออกแบบให้สามารถด้านทานแรงลมทั้งในกรณีที่ทิศทางลมตั้ง ฉากกับแผ่นป้าย (θ = 0° ในรูปที่ ข.11 ข.) และในกรณีที่ทิศทางลมทำมุมเฉียง 45° กับแผ่น ป้าย (θ = ±45° ในรูปที่ ข-11 ค. และ ง.)

n. สัดส่วนรูปร่างของป้าย และทิศทางลม (heta)

หน่วยแรงลมสุทธิ ซึ่งรวมหน่วยแรงลมทั้งค้านต้นลม และค้านท้ายลม สามารถคำนวณ ได้จาก

$$p = I_w q C_e C_g C_p \tag{2-2}$$

โดยที่ ค่าประกอบ I_w, q และ C_g ให้เป็นไปตามที่กำหนดไว้ในบทที่ 2 สำหรับ วิธีการอย่างง่าย Equivalent to C_g = 1.0 for 3-sec Basic Wind Velocity ค่าประกอบ C_g มีค่าเท่ากับ 2.35 และ ค่าสัมประสิทธิ์ C_g จะขึ้นกับสัดส่วนรูปร่างของป้าย, ทิศทางลม, และ ดำแหน่งบนพื้นที่แผ่นป้าย ดังแสดงในรูปที่ ข.11ข. ข.11ค. และ ข.11ง. และ ในตารางที่ ข.1

- 3. ในกรณีที่ทิศทางลมตั้งฉากกับแผ่นป้าย ($\theta = 0^\circ$) ค่าสัมประสิทธิ์ C_p มีค่าสม่ำเสมอเท่ากันทั่ว ทั้งพื้นที่ป้าย (รูป ข.11ข) และมีค่าเท่ากับ ค่าสัมประสิทธิ์เฉลี่ย C_{pa} ซึ่งแสดงค่าในตารางที่ ข.1
- 4. ในกรณีที่ทิศทางลมทำมุมเฉียง 45° กับแผ่นป้าย (θ = ±45°) ค่าสัมประสิทธิ์ C_p มีค่าไม่ สม่ำเสมอ โดยค่า C_p จะเพิ่มขึ้นสูงกว่าค่าเฉลี่ยถึง 90% ในบริเวณขอบที่หันเข้าหาลม และค่า C_p จะลดลงจากค่าเฉลี่ยถึง 90% ในบริเวณขอบอีกด้านหนึ่ง ดังแสดงในรูป ข.11ค และ ข.11ง

- หน่วยแรงลมสุทธิ ณ ทุกๆ คำแหน่งบนแผ่นป้ายมีทิศทางตั้งฉากกับแผ่นป้ายในทุกๆ กรณี (θ = 0° หรือ θ = ±45°)
- 6. ค่าสัมประสิทธิ์เฉลี่ย C_{pa} ในทุกกรณี ($\theta = 0^\circ$ หรือ $\theta = \pm 45^\circ$) มีค่าขึ้นกับ aspect ratio (b/c) และ clearance ratio (d/h) ดังแสดงในตารางที่ ข.1

Clearance	Aspect Ratio b/d							
Ratio d/h	≤ 0.1	0.2	0.5	1	2	3	4	≤5
≤0.2	1.65	1.60	1.60	1.55	1.55	1.55	1.60	1.60
0.3	1.65	1.60	1.55	1.55	1.50	1.50	1.55	1.55
0.5	1.65	1.55	1.50	1.50	1.45	1.45	1.45	1.45
0.7	1.60	1.50	1.45	1.40	1.35	1.35	1.35	1.30
0.9	1.60	1.45	1.35	1.30	1.25	1.25	1.25	1.25
1.0 *	1.55	1.40	1.30	1.25	1.20	1.20	1.15	1.15

ตารางที่ ข.1 ค่าสัมประสิทธิ์หน่วยแรงลมเฉลี่ย $C_{
hoa}$

* กรณีของกำแพง หรือป้ายที่ตั้งขึ้นมาจากพื้น

1.4 วิธีคำนวณแรงลมร่วมกับน้ำหนักบรรทุกอื่นๆ

 (ก) ในการออกแบบอาคารเพื่อให้อาคารมีความปลอดภัยตาม<mark>ข้อพิจารณา 1.3(ก)</mark> มาตรฐานนี้ ได้กำหนดวิธีการคำนวณหาก่าแรงลมสถิตเทียบเท่า (W_L) ดังแสดงรายละเอียดในบทที่ 2, 3 และ 4 การนำค่าแรงลมดังกล่าวนี้ไปใช้ในการออกแบบสามารถกระทำได้ 2 วิธีคือ การ ออกแบบด้วย<mark>วิธีกำลัง</mark> และการออกแบบด้วย<mark>วิธีหน่วยแรงใช้งาน</mark> ดังต่อไปนี้

1.3 ข้อพิจารณาหลักของการออกแบบ

ในการออกแบบอาการ จำเป็นต้องพิจารณาถึงผลกระทบจากแรงลมในรูปแบบต่างๆ ดังต่อไปนี้ (ก) ระบบโครงสร้างหลักของอาการ องค์อาการ และส่วนประกอบอื่นของอาการ ต้องได้รับ การออกแบบให้มีกำลัง (strength) และเสถียรภาพ (stability) ที่สูงเพียงพอที่จะสามารถ ต้านทานแรงลมหรือผลกระทบเนื่องจากลมได้อย่างปลอดภัยโดยไม่เกิดกวามเสียหายใดๆ ตามที่กำหนดในบทที่ 2, 3 และ 4 ในการออกแบบด้วยวิธีหน่วยแรงใช้งาน จะด้องออกแบบให้ ค่าหน่วยแรงสูงสุดใน องค์อาคารที่พิจารณา อันเป็นผลมาจากการรวมแรงลม (W_L) เข้ากับน้ำหนักบรรทุก คงที่ (D_L) และ น้ำหนักบรรทุกจร (L_L) ในรูปแบบต่างๆดังต่อไปนี้ มีค่าไม่เกินหน่วย แรงที่ยอมให้

รูปแบบที่ 1 : $D_L + W_L$ (1	1-1))
------------------------------	------	---

ູລູປແบນที่ 2 :	$D_L + 0.75W_L + 0.75L_L$	(1-2)

รูปแบบที่ 3 : $0.6D_L + W_L$ (1-3)

โดยที่ ในทุกรูปแบบ จะ ไม่ยอมให้ปรับค่าหน่วยแรงที่ยอมให้เพิ่มขึ้นจากค่าปกติ

Case A:	$D_L + W_L$	Ministe	erial Regulations No. 6:
Case B:	$D_L + W_L$	+ L_L with a 33 % inc.	rease in allowable stresses
which is equal to	0.75 D _L + 0.75 W	/ _L + 0.75 L _L with no increas	e in allowable stresses
Case A:	D_L + W_L		ASCE 7-05
Case B:	$D_L + 0.75 W_L$	L_{L} + 0.75 L_{L} + 0.75 (L_{r} or R_{L})
Case C:	$0.6 D_L + W_L$	which is equal to (1/1.6)x (0.9	$9 D_L + 1.6 W_L$)

 ในการออกแบบด้วยวิชีกำลัง จะต้องออกแบบให้ค่าสูงสุดของโมเมนต์ แรงเฉือน หรือ แรงภายในอื่นๆ ขององค์อาคารที่พิจารณา อันเป็นผลมาจากการรวมแรงในรูปแบบ ต่างๆ ดังต่อไปนี้ มีค่าไม่เกินค่ากำลังต้านทานที่คูณด้วยตัวคูณลดกำลัง ф (strength reduction factor)

รูปแบบที่ 1 : $1.25D_L + 1.6W_L + 0.5L_L$ (1-4)รูปแบบที่ 2 : $1.25D_L + 1.6L_L + 0.6W_L$ (1-5)รูปแบบที่ 3 : $0.9D_L + 1.6W_L$ (1-6)

โดยที่ ตัวคูณน้ำหนักบรรทุก (L_L) ในสมการ (1-4) จะต้องปรับเพิ่มขึ้นจาก 0.5 เป็น 1.0 ในกรณีของอาคารจอดรถ, พื้นที่เก็บวัสดุ (storage areas), อาคารโกดังเก็บ วัสดุ (storage warehouses), สถานที่สาธารณะที่เป็นชุมนุม (places of public assembly) และ พื้นที่ที่มีน้ำหนักบรรทุกจรมากกว่า 500 กก./ตร. ม.

รูปแบบที่ 1 : รูปแบบที่ 2 : รูปแบบที่ 3 :	$\begin{split} &1.25D_L + 1.6W_L + 0.5L_L \\ &1.25D_L + 1.6L_L + 0.6W_L \\ &0.9D_L + 1.6W_L \end{split}$	(1-4) (1-5) (1-6)
Case A: <i>which is equal to</i> Case B:	$0.75 (1.7 D_{L} + 2.0 W_{L} + 2.0 L_{L})$ $1.275 D_{L} + 1.5 W_{L} + 1.5 L_{L}$ $0.9 D_{L} + 1.3 W_{L}$	Ministerial Regulations No. 6
Case A: Case B: Case C:	$1.25 D_{L} + 1.4 W_{L} + 0.5 L_{L}$ $0.9 D_{L} + 1.4 W_{L} + 0.5 L_{L}$ $1.25 D_{L} + 1.5 L_{L} + 0.4 W_{L}$	NBCC 2005
Case D: Case A:	$0.9 D_{L} + 1.5 L_{L} + 0.4 W_{L}$ $1.20 D_{L} + 1.6 W_{L} + 0.5 L_{L} + 0.5$	(Lor R.) ASCE 7-05
Case B: Case C:	$\frac{0.9 D_{L}}{1.20 D_{L}} + 1.6 W_{L}$ $\frac{1.20 D_{L}}{1.20 D_{L}} + 1.6(L_{r} \text{ or } R_{L}) + (0.8)$	$W_L \text{ or } 0.5 L_L$)
De	ad Load Principal Load Con	npanion Load

Principal Load: The specified variable load or rare load that dominates in a given load combination.

Companion Load: The specified variable load that accompanies the principal load in a given load combination.

Load Factor: A factor that accounts for

- Deviations of the actual load from the nominal load,
- Uncertainties in the analysis that transform the load into a load effect,
- The probability that more than one extreme load will occur simulteneously

Strength Reduction Factor: A factor that accounts for

- Deviations of actual strength from the nominal strength (due to the variability of dimensions, material properties, workmanship, and uncertainty in the prediction of strength)
- Consequences of failure

Nominal Loads: about 50 to 100 years return period

Factored Loads: about 500 to 1000 years return period

Instantaneous external pressure distributions and Simplified code distributions

(ข) ในการออกแบบอาคารเพื่อให้สามารถใช้งานอาคารได้เมื่อเกิดลมแรง ให้พิจารณาผลของ การโก่งตัวด้านข้าง และการสั่นไหวของอาคารตามข้อพิจารณา 1.3(ข) และ 1.3(ค) ที่เกิด จากความเร็วลมอ้างอิงที่คูณด้วยค่าประกอบความสำคัญ (I_w) ในสภาวะจำกัดด้านการใช้ งาน โดยไม่จำเป็นต้องรวมกับผลของน้ำหนักบรรทุกอื่นๆ

Reduce to the corresponding return period of about 10 to 20 years

0.75

1.3 ข้อพิจารณาหลักของการออกแบบ

- (ข) การโก่งตัวด้านข้าง (lateral deflection) ของอาคารเนื่องจากแรงลมจะต้องมีก่าน้อยเพียง พอที่จะ ไม่ก่อให้เกิดความเสียหายแก่องค์อาคารหลักและองค์อาคารรอง ตามที่กำหนดใน บทที่ 3
- (ค) การสั่นใหวของอาคาร (building motion) ที่เกิดจากลม ทั้งในทิศทางลม และทิศทางตั้งฉาก กับทิศทางลม ต้องมีระดับที่ต่ำเพียงพอที่จะ ไม่ทำให้ผู้ใช้อาคารรู้สึกไม่สบายหรือเกิด อาการวิงเวียน ตามที่กำหนดในบทที่ 3 และ 4