ตัวอย่างการออกแบบ

โครงหลังคา คาน เสา จุดต่อ เหล็ก พื้น และ ฐานราก ค.ส.ล.

<u>ตัวอย่าง</u> การออกแบบอาคารโครงหลังคาเหล็ก

แปลนโครงสร้างหลังคา

(กรณีไม่ใช้กาน ค.ส.ล. RB1 สามารถใช้ T-2 แทนได้ ซึ่งวางระดับเดียวกับ T-1 แนวกลาง ยกเว้นแนวตาม ขวางไม่จำเป็นต้องมี T-2 เนื่องจากมี T-1 เป็นโครงสร้างหลักยันไว้แล้ว)

ตรวจสอบความลาดเอียงของโครงหลังคา

$$= \tan^{-1}\frac{1.5}{6}$$

θ

_

14.04 ° < 18° เพราะฉะนั้นเป็นโครงหลังกาแบนจึงไม่ต้องกิดแรงลม

1. ออกแบบแปเหล็ก

น้ำหนักบรรทุกจร	=	30	kg/m ²			
น้ำหนักกระเบื้องลอนคู่	=	14	kg/m ²			
รวม	=	44	kg/m ²			
น้ำหนักลงแป	=	น้ำหนัก	เรวม X	າະຍ	ะห่าง	งของแป
	=	44 × 1	.00	=	44	kg/m
ประมาณน้ำหนักแป	=	6	kg/m			
รวมน้ำหนักลงแปทั้งหมด	=	44 +	6	=	50	kg/m
	0/	10 d	a a	~		

การคิดความยาวแป ให้ดูจากจุดรองรับของแปในที่นี้วางบนโครงหลังคาที่มีระยะห่าง 5.00 m. เพราะฉะนั้นความยาวแปเท่ากับ 5.00 m และออกแบบเป็นคานช่วงเดียว

$$W_{x} = 50 \sin 14.04 = 12 \text{ kg/m}$$

$$W_{y} = 50 \cos 14.04 = 49 \text{ kg/m}$$

$$M_{x} = \frac{49 \times 5^{2}}{8} = 153 \text{ kg.m}$$

$$M_{y} = \frac{12 \times 5^{2}}{8} = 38 \text{ kg.m}$$

จาก M_{max} หาค่าโมดูลัสหน้าตัดที่ต้องการได้ $S_x = \frac{M_x}{Fb} = \frac{153 \times 100}{0.60 \times 2,400} = 10.63 \text{ cm}^3$ (เนื่องจากต้องตรวจสอบ fb < Fb จึงแนะนำให้เพิ่ม S_xประมาณ 2 เท่า ใช้ S_x = 21.26 cm³) เลือกแปเหล็กรูปตัว C - 125 × 50 × 20 × 2.3 mm น้ำหนัก 4.51 kg/m $(S_x = 21.9 \text{ cm}^3, S_y = 6.22 \text{ cm}^3, I_x = 137 \text{ cm}^4, I_y = 20.6 \text{ cm}^4)$ Fb = 0.60Fy = 0.60 × 2,400 = 1,440 kg/cm² fb = $\frac{M_x}{S_x} + \frac{M_y}{S_y} \leq Fb$ $= \frac{(153 \times 100)}{21.9} + \frac{(38 \times 100)}{6.22}$

 $= 1,309.56 \text{ kg/cm}^2 < 1,440 \text{ kg/cm}^2$ lvld

ตรวจสอบการโก่ง;

- การโก่งที่ยอมให้,
$$\Delta_{all} = \frac{L}{360} = \frac{500}{360} = 1.38 \text{ cm}$$

- การโก่งที่เกิดขึ้น, $\Delta_{max} = \frac{5 \text{WL}^4}{384 \text{ EI}} = \frac{5 \times 49 \times (500)^4}{384 \times 100 \times 2.1 \times 10^6 \times 137} = 1.38 \text{ cm}$
 $\Delta_{max} \leq \Delta_{all}$ ใช้ได้

$$M_y = \frac{12 \times 2.5^2}{8} = 9$$
 kg.m
และ S_y ที่ใช้กีลดลงครึ่งหนึ่ง $= \frac{6.22}{2} = 3.11$ cm³

ตรวจสอบ

$$fb = \frac{M_x}{S_x} + \frac{M_y}{S_y} \le Fb$$

= $\frac{(153 \times 100)}{21.9} + \frac{(9 \times 100)}{3.11}$
= 988.01 kg/cm² < 1,440 kg/cm² ?

2. ออกแบบเหล็กยึดแป (sag rod)

ความยาวหลังคาแต่ละด้าน = $\sqrt{(1.5)^2 + (6)^2}$ = 6.18 m หลังกาใช้กระเบื้องลอนคู่ยาว 1.20 m วางแปเหล็กห่างกัน 1.00 m ที่เหลือ 20 cm เป็นระยะที่ ซ้อนทับกัน ฉะนั้นหาจำนวนแปเหล็กได้ = $\frac{6.18}{1.00}$ = 6.18 ช่วงปัดเป็น 7 ช่วง ใช้แปจำนวน 8 ตัว แปเหล็ก C - 125 × 50 × 20 × 2.3 mm น้ำหนัก 4.51 kg/m แปเหล็กยาว 5.00 m ใช้เหล็กยึดแป 1 แถว วิ่งที่กึ่งกลางของแป ดังนั้นพื้นที่รับแรงของ เหล็กยึดแป = $\frac{5}{2}$ = 2.50 m น้ำหนักแป 8 ตัว = $4.51 \times 2.50 \times 8$ = 90.20 kgน้ำหนักหลังคา = น้ำหนักกระเบื้องลอนคู่ + น้ำหนักบรรทุกจร = 14 + 30 kg/m² = 44 kg/m² น้ำหนักหลังคา = 44 ×2.50 × 6.18 = 679.80 kg = 90.2 + 679.80 = 770 kgน้ำหนักรวม = 770 sin 14.04 = 186.80 kg น้ำหนักในทิศทางของเหล็กยึดแป หน่วยแรงดึงที่ยอมให้, Ft = $0.60 \times 2,400$ = 1,440 kgฉะนั้นพื้นที่หน้าตัดที่ต้องการของเหล็กยึดแป = $\frac{186.80}{1.440}$ = 0.13 cm^2 เนื่องจากขนาดเหล็กกลมเล็กสุดที่ใช้ทำเหล็กยึดแปต้องไม่ต่ำกว่า $igoplus 15 \ \mathrm{mm} \ (\ \mathrm{A} = \ 1.77 \ \mathrm{cm}^2)$ ดังนั้นใช้เหล็กยึดแป ϕ 15 mm (A = 1.77 cm² > 0.13 cm²)

คังนั้น $r = \frac{L}{r} = \frac{100}{300} = 0.333 \text{ cm}$ $r = \frac{D}{4}$ $D = 4r = 4 \times 0.333 = 1.332 \text{ cm}$ คังนั้นใช้เหล็กยึดแป ϕ 15 mm 1 แถว @ 5.00 (จัดที่แนวกึ่งกลางความยาวแป) ตอบ

3. ออกแบเหล็กที่ใช้ทำโครงหลังคาเหล็ก

จากการวิเคราะห์แรงในโครงหลังคาโดยการกำนวณได้ดังนี้

- ท่อนของขื่อ (lower chord)

L_1L_2	=	$L_{12}L_{13}$	=	0	kg (-)	ความยาว	1.00	m
$L_2 L_3$	=	$L_{11}L_{12}$	= 2	2,200	kg (แรงคึง)	ความยาว	1.00	m
$L_3 L_4$	=	$L_{10}L_{11}$	=	3,000	kg (แรงคึง)	ความยาว	1.00	m
$L_4 L_5$	=	$L_{9}L_{10}$	=	3,240	kg (แรงดิง)	ความยาว	1.00	m 🔶
$\mathbf{L}_{4} \mathbf{L}_{5}$ $\mathbf{L}_{5} \mathbf{L}_{6}$	=	L_9L_{10} L_8L_9	= :	3,240 3,200	kg (แรงดึง) kg (แรงดึง)	<mark>ความยาว</mark> ความยาว	1.00 1.00	m 🔶

- ท่อนของจันทัน (upper chord)

$U_1 U_2$	=	$U_{12} U_{13}$	=	-2,267	kg	(แรงอัด)	ความยาว	1.03	m
$U_2 U_3$	=	$U_{11} U_{12}$	=	-3,092	kg	(แรงอัค)	ความยาว	1.03	m
U ₃ U ₄	=	U ₁₀ U ₁₁	=	-3,339	kg	(แรงอัด)	ความยาว	1.03	m 🔶
$U_4 U_5$	=	$U_{9} U_{10}$	=	-3,298	kg	(แรงอัค)	ความยาว	1.03	m
$U_5 U_6$	=	U ₈ U ₉	=	-3,092	kg	(แรงอัค)	ความยาว	1.03	m
$U_6 U_7$	=	$U_7 U_8$	Ŧ	-2,783	kg	(แรงอัค)	ความยาว	1.03	m
	,								

- ท่อนยึดแบบดิ่ง (vertical web)

$\mathbf{L}_{1} \mathbf{U}_{1}$	=	L ₁₃ U ₁₃	=	-1,800	kg	(แรงอัด) คว	ານຍາວ	0.50	m 🔶
$L_2 U_2$	=	$L_{12} U_{12}$	=	-1,100	kg	(แรงอัค) คว	วามยาว	0.75	m
$L_3 U_3$	=	$L_{11}U_{11}$	=	-600	kg	(แรงอัค) คว	ວານຍາວ	1.00	m
$L_4 U_4$	=	$L_{10} U_{10}$	=	-240	kg	(แรงอัค) คว	ານຍາວ	1.25	m
L ₅ U ₅	=	L ₉ U ₉	=	50	kg	(แรงดึง) คว	ານຍາວ	1.50	m
$L_6 U_6$	=	$L_8^{} U_8^{}$	=	300	kg	(แรงดึง) คว	ານຍາວ	1.75	m
$L_7 U_7$			=	1,050	kg	(แรงคึง) คว	ານຍາວ	2.00	m

- ท่อนยึดแบบเอียง (diagonal web)

L, U_1	=	$L_{12} U_{13}$	= 2,460	kg (แรงดึง)	ความยาว 1.1 2	m 🔶
$L_3 U_2$	=	L ₁₃₁ U ₁₂	= 1,000	kg (แรงคึง)	ความยาว 1.25	m
$L_4 U_3$	=	$L_{10}U_{11}$	= 339	kg (แรงคึง)	ความยาว 1.41	m
$L_5 U_4$	=	$L_{9} U_{10}$	= -64	kg (แรงอัด)	ความยาว 1.60	m
$L_6^{}U_5^{}$	=	$L_8 U_9$	= -360	kg (แรงอัด)	ความยาว 1.80	m
$L_7 U_6$	=	$L_7 U_8$	= 604	kg (แรงคึง)	ความยาว 2.02	m

• ออกแบบเหล็กที่ใช้ทำท่อนของขื่อ (lower chord)

ขนาดแรงสูงสุดเกิดในองค์อาการ;

 L_4L_5 และ L_9L_{10} = 3,240 kg (แรงดึง) ความยาว 1.00 m = 100 cm หน่วยแรงดึงที่ยอมให้, Ft = 0.60Fy = 0.60 × 2,400 = 1,440 kg/cm² พื้นที่หน้าคัดที่ต้องการ, A_{net} = $\frac{3,240}{1,440}$ = 2.25 cm²

- ถ้าเลือกหน้าตัดต่อปลายโดยการเชื่อมงาเดียว

ใช้ เหล็กฉากขนาด L - $50 \times 50 \times 4$ mm (A = 3.89 cm^2 , $r_{min} = 1.53$ cm)

$$A_{net} = A_1 + \frac{A_2}{2} = \frac{3.89}{2} + \left(\frac{1}{2} \times \frac{3.89}{2}\right)$$

= 2.92 cm² > 2.25 cm²

ตรวจสอบอัตราส่วนความยาวชะลูด

ดังนั้นใช้เหล็กฉาก L - $50 \times 50 \times 4$ mm ทำเป็นท่อนของขื่อได้ ตอบ

ถ้าเลือกหน้าตัดต่อปลายโดยใช้หมุดย้ำ ขนาด ф 12 mm แถวเดียว

พื้นที่หน้าตัดสุทธิ์,
$$A_{net} = A_{1net} + \frac{A_2}{2}$$

= $\left[\frac{3.89}{2} - (1.2 + 0.3) \times 0.4\right] + (\frac{1}{2} \times \frac{3.89}{2})$
= 2.32 cm² > 2.25 cm² ใช้ได้

ในกรณีที่ใช้หมุดย้ำ φ 12 mm แถวเดียวกีสามารถใช้เหล็กฉาก L- 50 ×50 × 4 mm ทำเป็นท่อนของงื่อได้ *ตอบ*

ออกแบบเหล็กที่ใช้ทำท่อนของจันทัน(upper chord)
 ขนาดแรงสูงสุดเกิดขึ้นในองก์อาการ,

 $U_3 U_4$ และ $U_{10} U_{11} = -3,339$ kg (แรงอัค) ความยาว 1.03 m = 103 cm สมมติหน่วยแรงอัคที่ยอมให้, Fa = 1,000 kg/cm² พื้นที่หน้าตัคที่ต้องการ, A = $\frac{3,339}{1,000}$ = 3.34 cm² เลือกเหล็กฉาก L- 50 × 50 × 4 mm (A = 3.89 cm², r_{min} = 1.53 cm)

ตรวจสอบ,

$$\frac{\text{KL}}{\text{r}} = \frac{1 \times 103}{1.53} = 67.32$$

Cc = $\sqrt{\frac{2\pi^2 \text{E}}{\text{Fy}}} = \sqrt{\frac{2\pi^2 \times 2.1 \times 10^{-6}}{2400}} = 131.42$

จากกรณีที่ว่า $rac{\mathrm{KL}}{\mathrm{r}}$ < Cc ดังนั้น หน่วยแรงอัดที่ยอมให้

Fa =
$$\frac{\left[1 - \frac{1}{2} \left[\frac{\text{KL}/\text{r}}{\text{Cc}}\right]^2\right] \cdot \text{Fy}}{\frac{5}{3} + \frac{3}{8} \left[\frac{\text{KL}/\text{r}}{\text{Cc}}\right] - \frac{1}{8} \left[\frac{\text{KL}/\text{r}}{\text{Cc}}\right]^3}{\frac{1}{8} \left[\frac{1 - \frac{1}{2} \times \left[\frac{67.32}{131.42}\right]^2\right] \cdot 2,400}{\frac{5}{3} + \frac{3}{8} \left[\frac{67.32}{131.42}\right] - \frac{1}{8} \left[\frac{67.32}{131.42}\right]^3}\right]}$$
$$= \frac{2,085.51}{1.84} = 1,133.21 \text{ kg/cm}^2$$

สามารถรับแรงอัคใค้สูงสุดเท่ากับ= 1,133.21 × 3.89

=
$$4,408 \text{ kg} > 3,339 \text{ kg}$$

ใช้ได้

มากกว่าแรงที่เกิดขึ้นคิดเป็น 32.02 % ประหยัดและปลอดภัย

ดังนั้นใช้เหล็กฉาก L- 50 × 50 × 4 mm ทำเป็นท่อนของจันทันได้

ตอบ

ออกแบบเหล็กที่ใช้ทำท่อนยึดแบบดิ่งและท่อนยึดแบบเอียง (vertical and diagonal web)

ในการออกแบบจะเอาแรงที่มากที่สุดในองก์อาการมาออกแบบทั้งท่อนยึดแบบดิ่งและท่อนยึดแบบ เอียง

แรงมากที่สุดเกิดขึ้นในองค์อาการ,

 L_2U_1 และ $L_{12}U_{13} = 2,460$ kg (แรงอัค) ความยาว 1.12 m = 112 cm หน่วยแรงคึงที่ยอมให้, Ft = $0.60 \times 2400 = 1,440$ kg/cm² พื้นที่หน้าคัคที่ต้องการ, $A_{net} = \frac{2,460}{1,440} = 1.71$ cm²

- เลือกหน้าตัดต่อปลายโดยการเชื่อมขาเดียว

ใช้เหล็กฉาก L- 40 \times 40 \times 3 mm (A = 2.35 cm², r_{min} = 1.23 cm)

$$A_{\text{net}} = A_1 + \frac{A_2}{2} = \frac{2.35}{2} + \frac{235}{4}$$
$$= 1.76 \text{ cm}^2 > 1.71 \text{ cm}^2$$

ตรวจสอบอัตราส่วนความยาวชะลูด

$$\frac{L}{r} = \frac{112}{1.23} = 91.05 < 240$$
 ใช้ได้

ดังนั้นใช้เหล็กฉาก L- 40 × 40 × 3 mm ทำเป็นท่อนยึดแบบดิ่งและท่อนยึดแบบเอียงได้ *ตอบ*

ขนาดของเหล็ก (T - 2) เป็นโครงสร้างช่วยดึงและค่ำยันให้โครงสร้าง (T - 1) แข็งแรงขึ้น ดังนั้นตรวจสอบรัศมีใจเรชั่นที่ต้องการ $r \geq \frac{L}{L}$

$$r \ge \frac{L}{300}$$

 $r \ge \frac{500}{300} = 1.67 \text{ cm}$

จากตารางเหล็กใช้ L - 65 × 65 × 6 mm (ค่า r = 1.98 cm > 1.67 cm) แต่ในทางปฏิบัติใช้เป็นแบบ โครงข้อหมุนทั้ง Upper และ Lower ซึ่งทำให้ดูสวยงามและมีความแข็งแรงมากขึ้น ส่วนท่อนยึดแบบดิ่งและเอียงใช้เท่ากับขนาดของ (T-1) คือ L – 40 ×40 ×3 mm *ตอบ*

ออกแบบฐานรองรับเคลื่อนที่ใด้ (Free (Roller) Support)

ความยาวโครงหลังคา = 12.00 m สัมประสิทธิ์การขยายตัวของเหล็ก, $\alpha = 12 \times 10^{-6}$ ต่อ 1°C สมมติการเปลี่ยนแปลงอุณหภูมิในประเทศไทย, $\Delta T = 40$ °C ความยาวของร่อง (Slot length) 1 ข้าง , $\alpha \Delta TL = 12 \times 10^{-6} \times 40 \times 1,200 = 0.576$ cm ดังนั้นใช้ความยาวร่อง 2 ข้าง = 2×0.576 = 1.15 cm ถ้าสมมติใช้สลักเกลียว ϕ 12 mm ดังนั้นความยาวร่องทั้งหมด = 1.15 + 1.2 = 2.35 cm ใช้ 5 cm ตอบ

ออกแบบแผ่นเหล็กรองใต้เสา (Base Plate) ด้าน Fix Suport

ขนาดเสาคอนกรีตจากการออกแบบ	=	0.40×0	0.40
น้ำหนักจากโครงหลังคาลงหัวเสา	=	1,800	kg

กำหนดให้ก่า fc' = 170 ksc. หน่วยแรงกราก(Fy) = 2,400 ksc. พื้นที่เต็มของฐานรองรับคอนกรีต, $F_p = 0.35 \text{ fc}'$ $Fp = 0.35 \times 170 = 59.5 \text{ kg/cm}^2$ หน่วยแรงที่เกิดขึ้น, fp = $\frac{1,800}{40 \times 40}$ = 1.125 kg/cm² < 59.5 kg/cm² **ใช้ได้**

ให้ n₁ = ส่วนขึ้นของแผ่นเหล็ก = $\frac{40}{2}$ - ความหนาเหล็กประกับ - ความหนาเหล็กอาก - รัศมีส่วนได้งเหล็กของอาก = 20-0.6-0.4-0.65 n₁ = 18.35 cm , n₂ = 20 cm ◀ M = fc.n. $\frac{n}{2}$.b = $1.125 \times 20 \times \frac{20}{2} \times 40$ = 9,000 kg.cm จาก Fb = $\frac{6M}{bt^2}$ t = $\sqrt{\frac{6M}{b.Fb}}$ ความหนาแผ่นเหล็ก, t = $\sqrt{\frac{6 \times 9,000}{40 \times 0.75 \times 2,400}}$ = 0.86 cm ใช้ 9 mm หรือหาโดยใช้สูตร, t = $\sqrt{\frac{3f_p n^2}{Fb}}$ = $\sqrt{\frac{3 \times 1.125 \times (20)^2}{0.75 \times 2,400}}$ = 0.86 cm ใช้ 9 mm

ดังนั้นใช้แผ่นเหล็กรองหนา 9 mm ตอบ หาจำนวนสลักเกลียว ให้คิดว่าแรงอัดเท่ากับแรงถอนของสลักเกลียว ดังนั้น

$$F_{t} = \frac{P}{A}$$

$$A = \frac{P}{F_{t}} (Ft = 0.60Fy \text{ หรือ } 0.33Fu)$$

$$= \frac{1,800}{0.60 \times 2,400} = 1.25 \text{ cm}^{2}$$
ใช้สลักเกลียว ϕ 12 mm (A = 1.13 cm²) จะได้
N = $\frac{1.25}{1.13} = 1.11$ ตัว ใช้ 4 ตัว
จัดระยะขอบได้ = $2 \times 1.20 = 2.4 \text{ cm}$ ใช้ 5 cm
ความยาว, L = $\frac{D.Ft}{4\mu} = \frac{1.20 \times 0.60 \times 2,400}{4 \times 11}$
= 39.27 cm ใช้ L = 40 cm ตอบ

หรือถ้าคิดว่าแรงเฉือนที่เกิดขึ้นในแนวนอนบนหัวเสามีค่า ≈ 1.40 ของแรงปฏิกิริยา

$$= 1.40 \times 1,800 = 2,520$$
 kg

ให้หน่วยแรงเฉือนที่ยอมให้, Fv = 0.40Fy = 0.40×2,400 = 960 kg/cm² < 1,190 kg/cm² (ตามค่าที่ให้ในตาราง A325) ดังนั้นสามารถหาพื้นที่ของสลักเกลียวได้ A = 2,520 / 960 = 2.63 cm² เลือกใช้สลักเกลี่ยว ϕ 12 mm (A = 1.13 cm²) จะได้ N = 2.63/1.13 = 2.32 ตัว ใช้ 4 ตัว *หมายเหตุ* จากสูตร μ = หน่วยแรงยึดเหนี่ยวที่ยอมให้ของเหล็กกลม = $\frac{3.23\sqrt{fc'}}{2.D}$ = $\frac{3.23\sqrt{170}}{2.\times1.2}$ = 17.54 kg/cm² ใช้ไม่เกิน 11 kg/cm² fc' = หน่วยแรงอัดประลัยของคอนกรีต = 170 kg/cm² หรือหาความยาวของสลักเกลี่ยวจากวิธีASD ตามมาตรฐานAISC ได้จาก $L_h = \frac{\left(\frac{T}{2}\right)}{\left(\frac{0.70 fc' d}{1.7}\right)} = \frac{\left(\frac{1,800}{2}\right)}{\left(\frac{0.70 \times 170 \times 1.20}{1.7}\right)} = 10.71$ cm กวามยาวทั้งหมดเท่ากับความยาวที่หาได้บวกกับความยาวที่ฝังต่ำสุด = 12d = 10.71 + (12 × 1.20) = 25.11 cm ใช้ความยาว 25 cm ตอบ ออกแบบรอยเชื่อม คุณสมบัติเหล็ก Fy เท่ากับ 2,400 kg/cm² ใช้ลวดเชื่อม E60

ີວີ້ຮີ້ກຳ

สำหรับความหนาเหล็กประกับ (Gusset plate) ให้ใช้ไม่น้อยกว่าความหนาต่ำสุด ขององค์อาคาร เลือกใช้ความหนาเหล็กเท่ากับ 6 mm ขนาดรอยเชื่อม ตามมาตรฐาน ว.ส.ท. ใช้รอยเชื่อมเท่ากับ 3 mm ลวดเชื่อม E60 หน่วยแรงเฉือนบนพื้นที่ประสิทธิผล = 1,260 kg/cm²

ดังนั้นกำลังของรอยเชื่อม,
$$P_w = 0.707 \times 0.30 \times 1,260 \times 1$$

= 267 kg/ความยาว 1 cm
- ความยาวการเชื่อมในท่อนของชื่อ แรงคึงสูงสดใน L₄L₅ = 3,240 kg
3,240 kg
L 50×50×4 mm
L2
Fa $= \frac{3,240 \times 1.37}{5} = 887$ kg
Fb = 3,240-887 = 2,353 kg
ความยาวการเชื่อม L1 = $\frac{887}{267}$ = 3.32 cm
เนื่องจากไม่มีการเชื่อมอ้อมปลาย ดังนั้นความยาวที่กำนวณได้ต้องบวก 2 เท่าของขนาดการเชื่อม
ใช้ความยาวการเชื่อม L2 = $\frac{2,353}{267}$ = 8.81 cm
ใช้ความยาวจริง = 8.81 + 2(0.30) = 9.41 cm ใช้ 10 cm ตอบ

- ความยาวการเชื่อมในท่อนจันทัน แรงอัดสูงสุดใน $U_3U_4 = U_{10}U_{11} = 3,339 \ \mathrm{kg}$ (เพื่อให้ง่ายต่อการมองจึงปรับรูปในแนวนอน)

โดยหลักการสมดุล ดังนั้น

Fa = $\frac{3,339 \times 1.37}{5}$ = 915 kg Fb = 3,339 - 915 = 2,424 kg Pointering and L1 = $\frac{915}{267}$ = 3.43 cm (นี้องอากไม่มีอารเพื่อนอ้อนปอาย ดังนั้นความยาวที่อำนวยได้สั

เนื่องจากไม่มีการเชื่อมอ้อมปลาย ดังนั้นความยาวที่กำนวณได้ต้องบวก 2 เท่าของขนาดการเชื่อม ใช้ความยาว = 3.43 + 2(0.30)

ความยาวการเชื่อม L2 =
$$\frac{2,424}{267}$$
 = 9.08 cm

เนื่องจากไม่มีการเชื่อมอ้อมปลาย ดังนั้นความยาวที่คำนวณได้ต้องบวก 2 เท่าของขนาดการเชื่อม ใช้ความยาว = 9.08 + 2(0.30) = 9.68 cm ใช้ 10 cm ตอบ

- ความยาวการเชื่อมในท่อนเอียง แรงดึงสูงสุดใน $L_2U_1 = L_{12}U_{13} = 2,460 \ \text{kg}$ (เพื่อให้ง่ายต่อการมองจึงปรับรูปในแนวนอน)

โดยหลักการสมดุล ดังนั้น
Fa =
$$\frac{2,460 \times 1.09}{4}$$
 = 670 kg
Fb = 2,460 - 679 = 1,781 kg
ความยาวการเชื่อม L1 = $\frac{670}{267}$ = 2.51 cm
เนื่องจากไม่มีการเชื่อมอ้อมปลาย ดังนั้นความยาวที่กำนวณได้ต้องบวก 2 เท่าของขนาดการเชื่อม
ใช้ความยาว = 2.51 + 2(0.30)
= 3.11 cm ใช้ 4 cm ตอบ
ความยาวการเชื่อม L2 = $\frac{1,780}{267}$ = 6.67 cm
เนื่องจากไม่มีการเชื่อมอ้อมปลาย ดังนั้นความยาวที่กำนวณได้ต้องบวก 2 เท่าของขนาดการเชื่อม
ใช้ความยาว = 6.67 + 2(0.30)
= 7.27 cm ใช้ 8 cm ตอบ

- ความยาวการเชื่อมในท่อนดิ่ง แรงอัดสูงสุดใน $L_1 U_1 = L_{13} U_{13} = 1,800 \ \text{kg}$

ออกแบบโครงสร้างส่วนที่เป็นคอนกรีต

ข้อกำหนดที่ใช้ออกแบบ (Design Criteria)

fs = $0.5 \times 3,000 = 1,500$ ksc. fc = $0.375 \times 170 = 63.75$ ksc. (ATH N.5.1). It fc illin 65 ksc.) $n = \frac{ES}{EC}, \quad n = \frac{2.04 \times 10^6}{1,5120\sqrt{170}} = 10$ k = $\frac{1}{1 + \frac{fs}{nfc}} = \frac{1}{1 + \frac{1,500}{10 \times 63.75}} = 0.298$ j = $1 - \frac{0.298}{3} = 0.900$ R = $\frac{1}{2} \times 63.75 \times 0.298 \times 0.900 = 8.54$ ksc.

ออกแบบคาน RB1 ค่าที่ใช้ออกแบบ fy = 3,000 ksc. fc' = 170 ksc. ออกแบบตาม พ.ร.บ. ควบคุมอาการ พ.ศ. 2522

หาน้ำหนักทั้งหมดลงคาน เลือกใช้คานขนาด 0.20×0.40

เนื่องจากเป็นคานช่วยยึดโครงสร้างหัวเสาไม่มีน้ำหนักอื่นใดลงคาน มีเฉพาะน้ำหนักตัวคานเอง เท่านั้น ฉะนั้น

DL. ของคาน RB1 =
$$0.20 \times 0.40 \times 2,400$$
 = 192 kg/m
ออกแบบโดยใช้ สัมประสิทธิ์ตามมาตรฐาน ว.ส.ท. โดยใช้ M+_{max} และ M-_{max} ดังนี้

 $M^{+}_{max} = \frac{1}{14} \times 192 \times (5)^{2} = 343 \text{ kg.m}$ $M_{max} = \frac{1}{10} \times 192 \times (5)^2 = 480 \text{ kg.m}$ Mc = $8.54 \times 0.20 \times (35)^2$ = 2,092 kg.m ออกแบบเหล็กเสริมรับโมเมนต์บวก เนื่องจาก $M_c > M_{_{max}}^{^+}$ จึงใช้ $M_{_{max}}^{^+}$ หาปริมาณเหล็กเสริม $As^{+} = \frac{343}{1,500 \times 0.900 \times 0.35} = 0.73 \text{ cm}^{2}$ Use $As_{min} = \frac{14}{Fv}Ac = \frac{14}{3000} \times 20 \times 40 = 3.73 \text{ cm}^2$ $\sqrt[9]{2}$ 2-DB16 mm (As = 4.02 cm²) ออกแบบเหล็กเสริมรับโมเมนต์ลบ เนื่องจาก Mc > M _{max} จึงใช้ M _{max} หาปริมาณเหล็กเสริม $As^{2} = \frac{480}{1.500 \times 0.900 \times 0.35} = 1.02 \text{ cm}^{2}$ Use $As_{min} = \frac{14}{Fv}Ac = \frac{14}{3,000} \times 20 \times 40 = 3.73 \text{ cm}^2 \, \text{\% 2-DB16 mm} \text{ (As} = 4.02 \text{ cm}^2\text{)}$ ไม่ต้องตรวจสอบแรงเฉือนเพราะน้ำหนักน้อย ดังนั้นใช้ ป. ϕ 6 mm @ 0.15 (ใช้ตาม Code ไม่เกิน d/2) ไม่ต้องตรวจสอบหน่วยแรงยึดเหนี่ยว (Bond Stress) เพราะน้ำหนักน้อย 2-DB 16 ป.| 🗄 mm @ 0.15 6 2-DB 16 5.00 5.00 5.00

รูปตัดตามยาวคาน RB1

รูปตัดตามขวางคาน RB1

ออกแบบคาน GB1 ค่าที่ใช้ออกแบบ fy = 3,000 ksc. fc' = 170 ksc. ออกแบบตาม พ.ร.บ. ควบคุมอาการ พ.ศ. 2522

ออกแบบเหล็กเสริมรับแรงอัดโมเมนต์บวก

As⁺, =
$$\frac{0.11}{2} \times \frac{(1-0.298)}{0.298 - \frac{5}{35}}$$
 = 0.25 cm²

Use $\Im 2$ -DB16 mm (As = 4.02 cm²)

ออกแบบเหล็กเสริมรับแรงดึงโมเมนต์ลบ

เนื่องจาก M _{max} > Mc

$$M_2 = 3,000 - 2,092 = 908 \text{ kg.m}$$

 $As_1 = \frac{2,092}{1500 \times 0.900 \times 0.35} = 4.42 \text{ cm}^2$

$$As_{2}^{-} = \frac{908}{1,500 \times (0.35 - 0.05)} = 2.02 \text{ cm}^{2}$$

$$\sum As^{+} = As^{+}_{1} + As^{+}_{2} = 4.42 + 2.02 = 6.44 \text{ cm}^{2}$$

Use 4-DB 16 (As = 8.04 cm^2)

ออกแบบเหล็กเสริมรับแรงอัดโมเมนต์ลบ

As'' =
$$\frac{2.02}{2} \times \frac{(1-0.298)}{0.298 - \frac{5}{35}}$$
 = 4.57 cm²

Use Use 2-DB 16 + 1- DB 12 (As = 5.15 cm^2)

Check Shear

$$V_{max} = 1.15 \times 1,200 \times \frac{5}{2} = 3,450 \text{ kg}$$

Vc = $0.29\sqrt{170} \times 20 \times 35$ = 2,646 kg V ที่ d = Vmax - wd = $3,450 - (1,200 \times 0.35)$ = 3,030 kg V' = V ที่ d - Vc = 3,030 - 2,646 = 384 kg ใช้เหล็กปลอก ϕ 6 mm, Fy = 2,400 ksc. S = $\frac{\text{fv.Av.d}}{\text{V'}}$ = $\frac{1,200 \times 2 \times 0.28 \times 35}{384}$ = 61.25 cm ดังนั้นใช้ ป. ϕ 6 mm @ 0.15 (ใช้ไม่เกิน d/2)

Check Bond

<u>Top Bar (</u>ส่วนรับแรงดึง)

$$\begin{split} \mu_{\text{all}} &= \frac{2.29\sqrt{fc'}}{D} = \frac{2.29\sqrt{170}}{1.6} = 18.66 \text{ ksc.} (\leq 25 \text{ ksc.}) \\ \mu \vec{\tilde{n}} \cdot \vec{\tilde{n}} \cdot \vec{\tilde{n}} \cdot \vec{\tilde{n}} = \frac{V_{\text{max}}}{\sum 0.jd} = \frac{3,450}{(4 \times \pi \times 1.6) \times 0.900 \times 35} = 5.45 \text{ ksc.} < \mu_{\text{all}} \quad O.K. \end{split}$$

Lower Bar (ส่วนรับแรงคึง)

$$\begin{split} \mu_{\text{all}} &= \frac{3.23\sqrt{fc'}}{D} = \frac{3.23\sqrt{170}}{1.6} = 26.32 \text{ ksc.} (\leq 35 \text{ ksc.}) \\ \mu \vec{\tilde{n}}_{\text{l}} \hat{\tilde{n}}_{\text{l}} \hat{\tilde{n}}_{\text{l}} \vec{\tilde{n}}_{\text{l}} = \frac{V_{\text{max}}}{\sum \text{o.jd}} = \frac{3,450}{(2 \times \pi \times 1.6 + 1 \times \pi \times 1.2) \times 0.900 \times 35} = 7.92 \text{ ksc.} < \mu_{\text{all}} \text{ O.K.} \end{split}$$

ออกแบบเสาคอนกรีตรับหลังคา กำหนดให้ fc' = 170 ksc., fy = 3,000 ksc.

ตรวจสอบ $\frac{h}{t} = \frac{600}{40} = 15 \le 15$ เป็นเสาสั้น

(ทั้งนี้ไม่คิดว่าผนังเป็นโครงสร้างช่วยในการค้ำยัน)

e = $\frac{M}{P} = \frac{7,500 \times 100}{2,760}$ = 271.74 cm

เลือกเสาขนาด 40×40 cm และเลือกปริมาณเหล็กเสริม pg = 0.02 (2 %) หน้าตัดสี่เหลี่ยมผืนผ้าเสริมเหล็กทั้ง 2 ด้านเหมือนกัน

, As = $0.02 \times 40 \times 40$ = 32 cm² $\rho_{g=\frac{As}{t^2}}$ Use 8 - DB 25 mm (39.28 cm²) จัดเหล็กเหมือนกัน 2 ด้าน ชนิดเสาปลอกเดียว $ebx = eby (0.67 \rho g.m + 0.17)(t - d')$ New " ρg " = $\frac{39.28}{40 \times 40}$ = 0.025 m = $\frac{\text{fy.}}{0.85\text{fc'}}$ = $\frac{3,000}{0.85 \times 170}$ = 20.76 ksc. $ebx = eby (0.67 \times 0.025 \times 20.76 + 0.17)(40-3) = 19.16 cm$ e > ebx ดังนั้นต้องออกแบบแรงดึงเป็นหลัก หาสมบัติหน้าตัด เสาหน้าตัดสี่เหลี่ยมจัตุรัสวางเหล็กยืนเหมือนกันทั้ง 2 ด้าน รับแรงคึงและแรงอัด Ix = Iy = $\frac{1}{12}t^4 + (2n-1)Ast\frac{gt^2}{4}$ โมเมนต์ความเฉื่อย $Ag = t^{2}$ $c_{x} = cy = \frac{t}{2}$ เนื้อที่หน้าตัดกอนกรีต າະຄະ Ix = Iy = $\left[\frac{1}{12} \times (40)^4\right] + \left[(2 \times 10 - 1) \times 39.28 \times \frac{(34)^2}{4}\right] = 429,020 \text{ cm}^4$ = 0.34 (1 + ρ g.m) fc' = 0.34 (1 + 0.025 × 20.76) × 170 = 87.79 ksc. Fa $= 0.45 \text{ fc}' = 0.45 \times 170 = 76.5 \text{ ksc}.$ Fb $\frac{fa}{Fa} + \frac{fb}{Fb} \leq 1.00$ จาก fa $= \frac{Pb}{Ag} = \frac{Pb}{t^2} = \frac{Pb}{40^2} = \frac{Pb}{1,600} = 0.000625Pb$ $= Mx. \frac{C_x}{I} = Pb.eb \frac{C_x}{I_x} = \frac{Pb \times 19.16 \times 20}{429,020} = 0.000893Pb$ fb แทนค่าในสมการ $\frac{0.000625Pb}{87.79} + \frac{0.000893Pb}{76.5} \le 1.00$ Pb = 53,205 kgMb = Pb $\times \frac{eb}{100}$ = 53,205 $\times \frac{19.16}{100}$ = 10,194 kg.m

Mo = 0.40 As.fy.(d-d')
As = พื้นที่หน้าตัดเหล็กรับแรงดึง =
$$4 \times \pi \times \frac{2.5^2}{4} = 19.64$$
 cm²

 $Mo = 0.40 \times 19.64 \times 3,000 \times (37-3) = 801,312 \text{ kg.cm} = 8,013 \text{ kg.m}$ $P = Pb\left(\frac{M-Mo}{Mb-Mo}\right)$ $= 53,205\left(\frac{7,500-8,013}{10,194-8,013}\right)$ $= -12,514 \text{ kg} < 2,760 \text{ kg ซึ่งอยู่ด้ำกว่าขอบเขตการวิบัติ <u>ตอบ</u>$ Check Tied เหล็กยืนโตกว่า Ø 20 mm ใช้เหล็กปลอก Ø 9 mm $S = 16 \times 2.5 = 40 \text{ cm}$

or = 48 ×0.9 = 43.2 cm or = ด้านแคบ = 40 cm

หรือกรณีออกแบบใช้เสาเหล็ก โดยใช้เหล็ก WF กำหนดให้ใช้เหล็ก A36 มีกำลังดึงครากเท่ากับ 2,250 – 2,530 kg/cm² มาตรฐาน AISC

หาค่า
$$\frac{\text{KL}}{\text{r}} = \frac{(1.2 \times 600)}{5.13} = 140.35$$

 $C_c = \sqrt{\frac{2\pi^2 \text{E}}{\text{Fy}}} = \sqrt{\frac{2\pi^2 \times 2.1 \times 10^6}{2,400}} = 131.42$

จากกรณีที่

 $23(KL/r)^{2}$

แทนค่าในสูตรได้

r

Fa

Fa =
$$\frac{12 \times \pi^2 \times 2.1 \times 10^6}{23 \times (14035)^2}$$
 = 548.96 kg/cm²
fa = $\frac{P}{A}$ = $\frac{2.760}{83.69}$ = 32.97 kg/cm²
 $\frac{fa}{Fa}$ = $\frac{32.97}{548.96}$ = 0.06 < 0.15
ตรวจสอบค่าโดยใช้สมการ $\frac{fa}{Fa} + \frac{fb}{Fb} \leq 1.00$
ตรวจสอบการค้ำยัน $L_b < \frac{636bf}{\sqrt{Fy}}$
 $\frac{636 \times 20}{\sqrt{2,400}} = 259.65$ cm
 $L_b = 600 > 259.65$ ตะนั้นการค้ำยันไม่พอ ใช้ Fb = 0.60Fy

(หมายเหตุ ในกรณีที่ไม่มีการตรวจสอบการค้ำยันด้านข้างและไม่มีการตรวจสอบหน้าตัดแนะนำให้ใช้ ค่า
 Fb = 0.60Fy ซึ่งปืนค่าที่น้อยซึ่งอยู่ระหว่าง 0.60Fy - 0.66Fy)

 $Fb = 0.60 \times 2,400 = 1,440 \text{ kg/cm}^2$ $fb_x = \frac{M}{S_x} = \frac{7,500 \times 100}{628} = 1,194.26 \text{ kg/cm}^2$ $\frac{39.27}{548.96} + \frac{1,194.26}{1,440} = 0.90 < 1.0$ Itherefore the set of the se

สามารถใช้เหล็ก WF 200 × 65.7 ทำเป็นเสาได้

ออกแบบเสาตอม่อ C1 กำหนดให้ fc' = 170 ksc., fy = 3,000 ksc.

 หาน้ำหนักลงเสาตอม่อ

 น้ำหนักจากเสารับหลังคา = 2,760 kg

 น้ำหนักจากคาน GB1
 = 192 × 5.00 = 960 kg

 รวมน้ำหนักลงเสา
 = 3,720 kg

โมเมนต์ในเสา = 7,500 kg.m

เลือกขนาดเสาตอม่อ 0.40 × 0.40

fa
$$= \frac{Pb}{Ag} = \frac{Pb}{t^2} = \frac{Pb}{40^2}$$
 $= \frac{Pb}{1,600} = 0.000625Pb$
fb $= Mx. \frac{C_x}{I_x} = Pb.eb \frac{C_x}{I_x} = \frac{Pb \times 19.16 \times 20}{429,020} = 0.000893Pb$
แทนกำในสมการ
 $\frac{0.000625Pb}{87.79} + \frac{0.000893Pb}{76.5} \leq 1.00$
Pb $= 53,205 \text{ kg}$
Mb $= Pb \times \frac{eb}{100} = 53,205 \times \frac{19.16}{100} = 10,194 \text{ kg.m}$
Mo $= 0.40 \text{ As.fy.(d-d')}$
As $=$ พื้นที่หน้าคือเหล็กรับแรงดึง $= 4 \times \pi \times \frac{2.5^2}{4} = 19.64 \text{ cm}^2$
Mo $= 0.40 \times 19.64 \times 3,000 \times (37-3) = 801,312 \text{ kg.cm} = 8,013 \text{ kg.m}$
P $= Pb \left(\frac{M-Mo}{Mb-Mo} \right)$
 $= 53,205 \left(\frac{7,500-8,013}{10,194-8,013} \right)$
 $= -12,514 \text{ kg} < 2,760 \text{ kg} $\frac{2}{9}$ งอยู่คำกว่าขอบเขตการวิบัติ воบ$

Check Tied เหล็กยืนโตกว่า Ø 20 mm ใช้เหล็กปลอก Ø 9 mm

S	=	16×2.5	=	40	cm
or	=	48 ×0.9	=	43.2	cm
or	=	ด้านแคบ	=	40	cm

ออกแบบจุดต่อระหว่างเสาเหล็กกับเสาตอม่อ

ออกแบบขนาดแผ่นเหล็ก (base plate) โดยวิธี ASD ตามมาตรฐาน AISC

ใช้แผ่นเหล็กเท่ากับขนาดเสา N = 40 cm, B = 40 cm กำลังดึงต่ำสุดของสลักเกลียว = 4,077 kg/cm²

1. หาค่าหน่วยแรงด้านทานที่ยอมให้จากสมการ $F_{p} = 0.35 \, fc'$

 $F_P = 0.35 \times 170 = 59.5 \text{ kg/cm}^2$

2. ตรวจสอบ $e = \frac{7,500 \times 100}{2,765} = 271.25 \text{ cm}$ $\frac{N}{6} = \frac{40}{6} = 6.67 \text{ cm}$ 3. $\frac{N}{6} \leq e$

สมมติให้ระยะสลักเกลียวจากขอบแผ่นเหล็ก (d) ประมาณ 5 cm

หาแรงดึง (T) ในสลักเกลี่ยวจากสมการ $T = \frac{F_P.A.B}{2} - P$ $T = \frac{59.5 \times 24.91 \times 40}{2} - 2,760 = 26,883 \text{ kg}$ 3. หน้าตัดวิกฤติ = $\frac{N - 0.95d}{2} = \frac{40 - 0.95 \times 20}{2} = 10.5$ cm จากขอบเสา หาหน่วยแรงด้านที่ระยะ 10.5 cm = $\left(\frac{59.5}{24.91}\right) \times (24.91 - 10.5) = 34.42 \text{ kg/cm}^2$ 4. ค่าโมเมนต์ต่อความกว้าง 1 cm $M_{Pl} = 34.42 \times \frac{(10.5)^2}{2} + \left(\frac{1}{2} \times 10.5 \times (59.5 - 34.42) \times (\frac{2}{3} \times 10.5)\right)$ = 2,819.09 kg.cm/cm 4. ขนาดแผ่นเหล็กรองใต้เสา, $t_p = \sqrt{\frac{6M_{Pl}}{F_p}} = \sqrt{\frac{6 \times 2,819.09}{0.75 \times 2,400}} = 3.06$ cm Use 3 cm ใช้แผ่นเหล็กรองใต้เสาขนาด 40 ×40 cm หนา 3 cm ตอบ หาจำนวนและขนาดของสลักเกลียว (anchor bolt) ชนิดงอขอ แบบ A307 แรงดึง (T) ในสลักเกลียว = 26,882.9 kg1. หาแรงดึงที่ยอมให้ของสลักเกลียวจาก $Ft = 0.33Fu = 0.33 \times 4,077 = 1,345.41 ~kg$ ดังนั้นหน้าตัดที่ต้องการ, Ag = $\frac{T}{Ft}$ = $\frac{26,883}{1.345.41}$ = 19.98 cm² เลือกสลักเกลียวขนาด ϕ 25 mm (Ag = 4.91 cm²) ดังนั้นใช้สลักเกลียว = $\frac{19.98}{4.91}$ = 4.06 ใช้ด้านละ 4 ตัว ใช้สลักเกลียวขนาด 25 mm ด้านละ 4 ตัว (Ag = 4×4.91 = 19.64 cm² <19.98 cm² เล็กน้อยมากใช้ได้) 2. หาความยาวของสลักเกลียว $L_h = \frac{\left(\frac{T}{2}\right)}{\left(\frac{0.70 fc'd}{1.7}\right)} = \frac{\left(\frac{26,883}{2}\right)}{\left(\frac{0.70 \times 170 \times 2.5}{1.7}\right)} = 76.80$ cm ้ความยาวทั้งหมดเท่ากับความยาวที่หาได้บวกกับความยาวที่ฝังต่ำสุด = 12d = 76.80 + (12 ×2.5) = 106.80 cm ใช้ความยาว 110 cm ออกแบบรอยเชื่อม ใช้ลวดเชื่อม E60 หน่วยแรงที่ปีกเสา = $\frac{M}{Sx} - \frac{r}{A}$ WF 200 × 65.7 (A = 83.69 cm², Sx = 628 cm³)

750,000 2,760 ดังนั้นหน่วยแรงที่ปีกเสา = 628 83.69 1,161.29 kg/cm² (เป็นแรงดึง) แรงดึง = ft.A ft.bf.tf $1,161.29 \times 20 \times 1.6$ = 37,161.28 kg ลวคเชื่อม E60, กำลังต้านทานการเชื่อม = 0.707 a.L.Fv 1,260 kg/cm² Fv = เลือกขนาดการเชื่อม 5 mm กิดต่อกวามยาว 1 cm = กำลังต้านทานการเชื่อม = $0.707 \times 0.5 \times 1 \times 1,260 = 445 \text{ kg/cm}$ 37,161.28 ความยาวการเชื่อม = = 83.51 cm 445 รอยเชื่อมทั้งหมด = ปีกเสาด้านนอกยาว + ปีกเสาด้านในยาว + ขอบ $= 20 + (20-1) + (1.6 \times 2) = 42.2$ cm เสริมรอยเชื่อมเพิ่มโดยใช้เหล็กแผ่นหนา 10 mm 2 แผ่น ยาวแผ่นละ 10 cm ได้ความยาวรอย

เชื่อม = $(10 \times 2 \times 2) + (1 \times 2) = 42$ cm รวมความยาวรอยเชื่อมทั้งหมดเท่ากับ = 42.2 + 42 = 84.2 cm > 83.51 cm O.K ดังนั้นสามารถรับแรงได้ = $445 \times 84.2 = 11,125$ kg > 835 kg ตอบ

สามารถเขียนรูปขยายจุดต่อระหว่างเสาเหล็กกับเสาตอม่อคอนกรีตได้ดังนี้

แปลน

ออกแบบฐานราก ใช้เสาเข็ม □ 0.20 × 0.20 × L (Safe Load = 20 T/Pile)

ไม่เมนต์ 7,500 kg.m								
น้ำหนักจากเสาตอม่อ 3,720 kg								
DL. $\approx 10 \%$	=	372	kg					
Total Load	=	4,092	kg					
No. of pile	=	$\frac{4,092}{20,00}$	2 00	= 0.21	Use 2			
Use Size of footing	=	0.50×1	1.10					

(ระยะห่าง = 3เท่าของขนาดเสาเข็ม ส่วนตัวริมใช้ 1เท่าของขนาดเสาเข็มหรือมากกว่า)

 $= \frac{4,092}{2} + \frac{7,500}{0.60} = 14,546 \text{ kg/pile} < 20,000 \text{ kg} \text{ O.K.}$ Max. Load per pile $\frac{4,092}{2} - \frac{7,500}{0.60} = 10,454 \text{ kg/pile} < 20,000 \text{ kg} \text{ O.K.}$ Min. Load per pile = $= 14,546 \times \frac{(0.60 - 0.40)}{100}$ M ที่ขอบเสา = 1,455 kg.m 2 $\sqrt{\frac{1,455}{8.54 \times 0.50}}$ = 18.45 cm d Use "t" = 40 cm= 40 – 7 = 33 cm (กิดกอนกรีตหุ้มเหล็กและถึงจุดศูนย์ถ่วงของเหล็ก) New "d" $=\frac{1,455}{1,500\times0.900\times0.33}$ = 3.27 cm² As Use 3-DB 12 (As = 3.39 cm^2)

Check Shear

1. Beam Shear ที่หน้าตัดวิกฤตระยะ d จากขอบเสา 33 cm

พิจารณาเสาเข็มที่อยู่ห่างจากหน้าตัดวิกฤติ ปรากฏว่าเสาเข็มห่างจากหน้าตัดวิกฤติเข้ามาหาตอม่อ เท่ากับ 23 cm มากกว่า 15 cm ฉะนั้นจึงไม่ต้องกิดแรงเฉือน

2. Punching Shear ที่หน้าตัดวิกฤตระยะ $\frac{d}{2} = \frac{33}{2} = 16.5 \text{ cm}$ จากขอบเสาโดยรอบ Vc _{all} = $0.53\sqrt{170}$ = 6.91 ksc.

พิจารณาเสาเข็มที่อยู่ห่างจากหน้าตัดวิกฤติ ปรากฏว่าเสาเข็มห่างจากหน้าตัดวิกฤติเข้ามาหา ตอม่อเท่ากับ 6.5 cm น้อยกว่า 15 cm ฉะนั้นจึงนำไปคิดแรงเฉือนและลดแรง P ลงตามส่วน

P' =
$$\frac{1}{30}$$
 (-x + 15) P = $\frac{1}{30}$ ×(-6.5 + 15)×14,546 = 4,121 kg
V = 4,121×2 = 8,242 kg

$$Vp = \frac{V}{bo.d} = \frac{8,242}{2 \times (40+33) + 2(40+20) \times 33} = 0.94 \text{ ksc.} < 6.91 \text{ ksc.} \mathbf{O.K.}$$

Check Bond

$$\mu_{all} = \frac{3.23\sqrt{170}}{1.2} = 35.09 \text{ ksc.} (\text{use} \le 35 \text{ ksc.})$$

$$\Sigma O = \frac{V_{\text{max}}}{\mu \text{ jd}}$$

$$= \frac{14,546}{35 \times 0.900 \times 33} = 13.99 \text{ cm}$$

Use 4-DB 12 ($\Sigma O = 15.07 \text{ cm}$)
As $\tilde{\beta} 1 \mu \tilde{\beta} \tilde{\mu} = 0.0025bt = 0.0025 \times 110 \times 40 = 11 \text{ cm}^2$

Use 10-DB 12 (As = 11.3 cm^2)

เขียนรูปแสดงการเสริมเหล็กของฐานรากได้

ออกแบบพื้น GS

GS เป็น Slab on Ground ฉะนั้นการออกแบบพื้นวางบนดินสิ่งสำคัญที่สุดคือการบดอัดดินให้ แน่น กรณีดินอ่อนมากแนะนำให้ออกแบบเป็นพื้นวางบนคาน (Slab on Beam) หรือออกแบบเป็นพื้นวางบน เสาเข็มแบบปูพรมซึ่งมีค่าใช้จ่ายสูงขึ้น สำหรับการเสริมเหล็กในพื้นเป็นเพียงเหล็กเสริมด้านทานการยืดหด ตัว การสร้างต้องแยกพื้นออกจากคานคอดินทั้งนี้เพื่อป้องกันการยุบตัวที่เกิดขึ้นอาจทำให้ตรงขอบคานแตก ได้หากไม่แยกออกจากกัน และเพื่อบังคับให้พื้นแตกเป็นระเบียบ จำเป็นแบบต้องมีข้อต่อเพื่อการยืดหดตัว (Contraction joint) ที่เกิดขึ้นด้วย ซึ่งกวรทำทุกระยะ 5.00 m หรือไม่เกิน 10.00 m ซึ่งมีความยาวเท่ากับ ความยาวเหล็กเส้นพอดี

ความหนาของพื้นวางบนดินสำหรับโรงงานทั่วไปอยู่ระหว่าง 10-15 cm

<mark>กรณีใช้เหล็กกลม</mark> ค่า Fy = 2,400 kg/cm² ขนาดต่ำสุดที่ใช้ไม่เล็กกว่า 6 mm และระยะห่างไม่เกิน 3เท่าของความหนาพื้น

 $As_{temp} = 0.0025bt$

หรือกรณีใช้เหล็กตะแกรงสำเร็จรูป (Wire mesh) ตามมาตรฐาน ASTM A185-89 และมาตรฐาน มอก. 737-2531

มีขนาดเส้นผ่านศูนย์กลางตั้งแต่ 4-8 mm ความกว้าง 0.90-2.50 m ความยาว 2.00-10.00 m
ค่า Fy = 5,500 kg/cm² ค่า F_U = 6,000 kg/cm² As_{temp} = 0.0014bt ในที่นี้เลือกออกแบบพื้นวางบนดินและทำการบดอัดดินให้แน่น ใช้ความหนา 12 cm ใช้เหล็กกลม \emptyset 9 mm (As = 0.64 cm²) As_{temp} = 0.0025bt = 0.0025 ×100 ×12 = 3.0 cm² ใช้เหล็ก \emptyset 9 mm @ 0.20

ข้อต่อกว้าง 2 cm ถึก 2.5 cm อุดด้วยขางมะตอยผสมทราย เหล็กเสริมกันร้าววางชิดบน Ø 9 mm @ 0.20 0.12 0.12 0.12 0.10 0.40 15 mm @ 0.30 15 mm @ 0.30

เสาตอม่อ C1 และเสารับหลังคา C1

ข้อต่อกว้าง 2 cm ลึก 2.5 cm อุคด้วยยางมะตอยผสมทราย

<u>รายละเอียดโครงสร้างหลังคาเหล็กและขยายจุดต่อ</u>

(โดยการเจาะรูกลางแปและใช้เหล็กกลมที่เหลือในหน่วยงานตัดเป็นท่อนทำเกลียวทั้งสองข้างขันยึดด้วยนอต ดังรูป ซึ่งอาจจะยุ่งยากและเสียเวลาบ้าง)

รายละเอียดโครง T-1

(แนะนำการใส่ T-2 ควรใส่ทุกระยะ 5.00 m เพื่อป้องกันการโก่งเคาะค้านข้างของโครงหลังคา ในที่นี้ เนื่องจาก Span Length = 12.00 m จึงจัคไว้ที่กึ่งกลางของ T-1 ยังถือว่าระยะห่างไม่มากนัก)

รายละเอียดโครง T-2

(ใช้ความสูง T-2 เท่ากับ 50 cm เท่ากับระยะยกของส่วนปลายของ Truss ซึ่งดูมี Space และไม่เกะกะกรณี ไม่มีคาน ค.ส.ล. ใช้ T-2 แทน คาน ค.ส.ล. RB1 ได้ วางในแนวระดับเดียวกันกับ T-2 แถวกลาง ยกเว้น แนวตามขวางไม่จำเป็นต้องใช้ เนื่องจากมี T-1 เป็นโครงสร้างหลักยันไว้แล้ว)

รายละเอียดโครงหลังคาทั้งหมด

(ใช้ Bracing (เหล็กยึดทแยง) ไม่น้อยกว่า Ø15 mm ใส่ช่วงเสาเว้นช่วงเสา สำหรับด้านข้างทั้งสองข้างของ โครงหลังกาต้องใส่ดังรูป ด้านหนึ่งเชื่อมยึดแน่น อีกด้านหนึ่งทำเกลียวและขันเกลียวให้ตึง จะช่วยรับ แรงลมได้ดี)

ขยายจุดต่อ L_1, L_{13}

(Gusset Plate (เหล็กประกับ) แนะนำให้ใช้ความหนาไม่น้อยกว่าความหนาของเหล็กโครงสร้าง)

ขยายจุดต่อ $\mathbf{L}_2, \mathbf{L}_3, \mathbf{L}_4, \mathbf{L}_5, \mathbf{L}_6, \mathbf{L}_8, \mathbf{L}_9, \mathbf{L}_{10}, \mathbf{L}_{11}, \mathbf{L}_{12}$

ขยายจุดต่อ \mathbf{L}_7

ขยายจุดต่อ U_1, U_{13}

ขยายจุดต่อ $\mathbf{U}_2, \mathbf{U}_3, \mathbf{U}_4, \mathbf{U}_5, \mathbf{U}_6, \mathbf{U}_8, \mathbf{U}_9, \mathbf{U}_{10}, \mathbf{U}_{11}, \mathbf{U}_{12}$

ขยายจุดต่อ U_7

ขยายจุดต่อระหว่าง T-1 กับ T-2

ขยายจุดรองรับด้านซ้ายแบบ Fix Suport

ขยายจุดรองรับด้ำนขวาแบบ Free Support

ขยายความกว้างร่อง

รูปขยายจุดต่อเสระหว่างเสาตอม่อคอนกรีตกับเสาเหล็ก

กรณีเป็นเสาเหล็ก จุดรองรับด้านซ้ายแบบ Fix Suport สามารถขยายได้ดังรูป

รูปแปลน

กรณีเป็นเสาเหล็ก จุดรองรับด้านซ้ายแบบ Free Suport สามารถขยายได้ดังรูป

ขยายความกว้างร่อง

<mark>ตัวอย่างการออกแบบโครงสร้างเหล็ก</mark> โดยใช้โปรแกรมคอมพิวเตอร์ (โปรแกรม Midas)

(1)

<u>บทที่ 4</u> สร้างแบบจำลองโมเดลโรงงานโครงสร้างเหล็ก

(2)

รูปที่ 4.1.1 ตัวอย่าง Grid Line ที่ใช้ในการสร้างแบบจำลองโมเดล

4.1) การเปลี่ยนหน่วยที่ใช้ในการออกแบบ

สามารถทำได้โดย คลิกที่ List Box ที่อยู่ด้านล่าง มุมขวาของโปรแกรม จากนั้นให้เปลี่ยนหน่วย ของแรงจาก kips เป็น kg และเปลี่ยนหน่วยวัดความยาวจาก ft เป็น mm.

- หน่วยของแรงที่ใช้ในการออกแบบที่สามารถเลือกใช้ได้มี กิโลกรัม, ตัน, นิวตัน, กิโลนิวตัน, ปอนด์ และ กิปส์
- หน่วยวัดความยาวที่ใช้ในการออกแบบที่สามารถเลือกใช้ได้มี มิลลิเมตร, เซนติเมตร, เมตร, นิ้ว

รูปที่ 4.1.2 การเปลี่ยนหน่วยที่ใช้ออกแบบ

4.2) สร้างตาราง Grid Line ตามตัวอย่างข้างต้น

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Line ที่อยู่ในแถบเครื่องมือของ Grid/Snap โดยต้องระบุ ระยะห่างออกไปจากแนวแกน X และแกน Y โดยกำหนดให้ด้านบน Y เป็นบวก ส่วนด้านล่างเป็น ลบ และกำหนดให้ด้านขวามือ X เป็นบวก ส่วนด้านซ้ายมือเป็น ลบ

(3)

เนื่องจาก Grid Line ในตัวอย่างข้างต้นสามารถแบ่งได้เป็นสองส่วนคือ Grid Line ที่บอก ระยะทางด้านซ้ายมือ (right) และบอกระยะทางด้านขวามือ (left) ดังนั้นจึงต้องสร้าง Grid Line ขึ้นมา สองแบบคือแบบ (right) และ (left)

Frequen	Grid/S	n U	cs/g	G	View Co Activati
田田田	F	r P	2	y	33

รูปที่ 4.2.1 คำสั่ง Line ในแถบเครื่องมือของ Grid/Snap

• ในหน้าต่าง Define Grids-(Model View) คลิกที่ปุ่ม Add

Current Grid :	None	Add
		Delete
		Modify
		⊆орў

รูปที่ 4.2.2 หน้าต่าง Define Grids-(Model View)

ในหน้าต่าง Add/Modify Grid Lines ที่ช่อง Grid Name : ให้พิมพ์คำว่า left

(4)

길 ให้คลิกที่ปุ่ม Add เพื่อทำการสร้าง และกำหนคระยะห่างของ Grid Line ในแนวแกน X

ให้คลิกที่ปุ่ม Add เพื่อทำการสร้าง และกำหนคระยะห่างของ Grid Line ในแนวแกน Y

รูปที่ 4.2.3 หน้าต่าง Add/Modify Grid Lines ของ left

ในหน้าต่าง Grid Lines ในแกน X ที่ช่อง
 Line : ให้พิมพ์คำว่า 26700,26600,26700

3

รูปที่ 4.2.4 หน้าต่างสำหรับกำหนดระยะของ Grid Lines ในแกน X

ในหน้าต่าง Grid Lines ในแกน Y ที่ช่อง
 Line : ให้พิมพ์คำว่า 4@8625

(5)

รูปที่ 4.2.5 หน้าต่างสำหรับกำหนดระยะของ Grid Lines ในแกน Y

		and the second second second second second	
	1		
		i	
		1	
	statestatestates I contractor as		
	1	i	
	1	1	
		1	
		i	
		1	
$\langle \rangle$	1	1	

รูปที่ 4.2.6 Grid Lines ของ left ในหน้าต่าง Model View

คลิกที่ปุ่ม Top เพื่อปรับมุมมองของการแสดงภาพ ให้อยู่ในลักษณะของการมองมาจากด้านบน

รูปที่ 4.2.7 คำสั่ง Top ในแถบเครื่องมือของ View Point

4.3) สร้าง Node ตามตำแหน่งของฐานรากที่ต้องการโมเดล

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Create Nodes ในแถบเครื่องมือของ Node ซึ่งการ กำหนด Node เปรียบเสมือนการระบุตำแหน่งของฐานราก

(6)

รูปที่ 4.3.1 คำสั่ง Create Nodes ในแถบเครื่องมือของ Node

1 คลิกเลือกที่ Merge Duplicate Nodes : เป็นคำสั่งสำหรับรวมจุด Node ที่ซ้อนทับกันให้ เหลือเพียง Node เคียวเท่านั้น

คลิกเลือกที่ Intersect Frame Elements : เป็นคำสั่งสำหรับสร้างจุคเชื่อมต่อบน Elements เพื่อกำหนคลักษณะของการถ่ายแรงตามตำแหน่งที่มีการเชื่อมต่อ

2 กลิกในช่องของ Coordinates (x,y,z) จากนั้นให้ไปกลิกในหน้าต่าง Model View ตาม ตำแหน่งที่ต้องการ โมเคลฐานรากของ โมเคล

Create Nodes			· •
Start Node Nur	nber :	15	i
Coordinates	(x,y,z)	_	_
0,10	2		m
Сору	-		-
Number of T	imes :	0	=
Distances (d	x,dy,dz)	:	_
0,0,0			m
Irge Di	uplicate N	lodes	

รูปที่ 4.3.2 หน้าต่างของ Node ที่อยู่ใน Tree Menu

 ให้คลิกที่ Line Grid Snap เพื่อ เปิค/ปิค Snap เป็นการ กำหนดเมาส์ให้เป็นเคลื่อนไปตามจุคตัด ของ Grid Line

(7)

Frequen... Grid/Sn... UCS/GCS | View Co... | Activati... 3 X 8

รูปที่ 4.3.3 คำสั่ง Line Grid Snap ในแถบเครื่องมือของ Grid/Snap

 คลิกที่กำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อเลือก Node ที่ ต้องการคัดลอก

รูปที่ 4.3.4 คำสั่ง Select by Window ในแถบเครื่องมือของ Selection

• ในหน้าต่าง Model View ให้คลิกไปตามตำแหน่งจุคสีแคงเพื่อสร้าง Node

รูปที่ 4.3.5 ตำแหน่งที่ใช้สำหรับการจำลองโมเดลของเสา

4.4) กำหนดคุณสมบัติ และหน้าตัดที่จะใช้ในการออกแบบ

- o กำหนดคุณสมบัติที่จะใช้ในการออกแบบ
 - ให้คลิกที่ Material เป็นการกำหนดคุณสมบัติของวัสดุที่ใช้ในการออกแบบว่าเป็นคอนกรีต, เหล็ก หรือวัสดุในรูปแบบอื่นๆ

(8)

รูปที่ 4.4.1 คำสั่ง Material ในแถบเครื่องมือของ Property

คลิก Add ในหน้าต่างของ Material เพื่อกำหนดลักษณะของวัสดุที่ใช้ในการออกแบบ

รูปที่ 4.4.2 หน้าต่างของ Material ที่อยู่ใน Properties

กำหนดคุณสมบัติของโมเดลเหล็กที่ใช้ในการออกแบบ

1

2

📕 กำหนด Type of Design ให้เถือกเป็น Steel

ในกรอบของ Steel กำหนด Standard ให้เลือกเป็น KS(S)

ในกรอบของ Steel กำหนด DB ให้เลือกเป็น SS400 ในกรณีที่หน้าจอคอมพิวเตอร์ไม่ สามารถแสดงหน้าต่าง Material Data ได้ทั้งหมด คือไม่สามารถคลิกที่ปุ่ม OK ที่อยู่ด้านล่างได้ ให้กดปุ่ม Tab หกครั้ง จากนั้นกด Spacebar ก็จะเปรียบเสมือนการคลิกที่ปุ่ม OK

ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3)

MIDAS Gen V.721 (Release No.3)

Material Data				
General Material ID	1	Name	SS400	-
Elasticity Data	Steel	Steel Standard DB	KS(S)	2
		- Concrete -	-	3

(9)

รูปที่ 4.4.3 กำหนดคุณสมบัติของ Steel ที่ใช้ในการออกแบบ

กำหนดคุณสมบัติของโมเดลคอนกรีตที่ใช้ในการออกแบบ

1 กำหนด Type of Design ให้เลือกเป็น Concrete

2 ในกรอบของ Concrete กำหนด Standard ให้เถือกเป็น KS(RC)

ในกรอบของ Concrete กำหนด DB ให้เลือกเป็น C210 ในกรณีที่หน้าจอคอมพิวเตอร์ ไม่สามารถแสดงหน้าต่าง Material Data ได้ทั้งหมด คือไม่สามารถคลิกที่ปุ่ม OK ที่อยู่ด้านล่าง ได้ ให้กดปุ่ม Tab หกครั้ง จากนั้นกด Spacebar ก็จะเปรียบเสมือนการคลิกที่ปุ่ม OK

General				
Material ID	2	Name	C210	
Elasticity Data	~			
Type of Design	Concrete	Standard	-	
		1 DB	I.	
		Concrete		
- Type of Material		Standard	KS(RC)	-C
Type of Materia		DB	C210	- []

รูปที่ 4.4.4 กำหนดคุณสมบัติของ Concrete ที่ใช้ในการออกแบบ

O กำหนดหน้าตัดที่จะใช้ในการออกแบบ

 ให้คลิกที่ Section เป็นการกำหนดหน้าตัดที่ใช้ในการออกแบบในส่วนของโครงสร้างเหล็กจะมี หน้าตัดให้เลือกตามมาตรฐานที่กำหนด

(10)

รูปที่ 4.4.5 คำสั่ง Section ในแถบเครื่องมือของ Property

 คลิก Add ในหน้าต่างของ Section เพื่อกำหนดหน้าตัดที่ใช้ในการออกแบบ ไว้สำหรับ Model โมเดลประเภท คาน ,เสา , โมเดลเหล็ก ,เกเบิล

		~1		~
ID	Name	Туре	Shape	(<u>A</u> dd)
				Madifi
				Mouny

รูปที่ 4.4.6 หน้าต่างของ Section ที่อยู่ใน Properties

กำหนดหน้าตัดของโมเดลเหล็ก I ที่ใช้ในการออกแบบ

ในกรอบของ Section ให้เลือกเป็น I-Section

ในกรอบของ DB ให้เลือกเป็น KS

1

2

3

ในกรอบของ Sect. Name ให้สร้างหน้าตัดใหม่ ดังต่อไปนี้

- (1) H 594x302x14/23 (2) H 400x400x13/21
- (3) H 400x200x8/13 (4) H 250x125x6/9

ในกรณีที่หน้าจอกอมพิวเตอร์ไม่สามารถแสดงหน้าต่าง Section Data ได้ทั้งหมด คือไม่ สามารถกลิกที่ปุ่ม OK ที่อยู่ด้านล่างได้ ให้กลิกซ้ายที่ DB/User กดปุ่ม Tab หนึ่งกรั้ง จากนั้นกด Spacebar ก็จะเปรียบเสมือนการกลิกที่ปุ่ม OK

Section ID 1	Transe		TO O
4	I-Section		
Name H 594x302x14/23	C User (•	DB KS	0
			2
	Sect. Name	H 594x302x14/23	
			and the second se
1		F Built-Up Section	3
H 11 12		F Built-Up Section	3
H T1 TV H T41	Get Data from S	F Built-Up Section	3

รูปที่ 4.4.7 กำหนดหน้าตัดของเหล็กที่ใช้ในการออกแบบ

คลิก Add ในหน้าต่างของ Section เพื่อกำหนดหน้าตัดเหล็กกลมที่ใช้ในการออกแบบ

rues				
erial 9	ection Thickness			
ID	Name	Туре	Shape	Add
1	H 594x302x14/23	DB	1	Madifi
2	H 400x400x13/21	DB	I	Modity
3	H 400x200x8/13	DB	I	Delete
4	H 250x125x6/9	DB	1	Delete

รูปที่ 4.4.8 หน้าต่างของ Section ที่อยู่ใน Properties

- กำหนดหน้าตัดของโมเคลเหล็กกลมที่ใช้ในการออกแบบ
 - 1

ในกรอบของ Section ให้เลือกเป็น Pipe

2

ในกรอบของ DB ให้เลือกเป็น KS

길 ในกรอบของ Sect. Name ให้สร้างหน้าตัดใหม่ ดังต่อไปนี้

(12)

(1) P 216.3x8	(2) P 139.8x6
(3) P 101.6x5	(4) P 76.3x4

 ในกรณีที่หน้าจอคอมพิวเตอร์ไม่สามารถแสดงหน้าต่าง Section Data ได้ทั้งหมด คือไม่ สามารถคลิกที่ปุ่ม OK ที่อยู่ด้านล่างได้ ให้คลิกซ้ายที่ DB/User กดปุ่ม Tab หนึ่งครั้ง จากนั้นกด Spacebar ก็จะเปรียบเสมือนการคลิกที่ปุ่ม OK

DB/Jser			
Section ID 5	O Pipe		1.
Name P 216.3x8	C User	DB KS	2
	Sect. Name	P 216.3x8	0
		🏳 Built-Up Section	3
	Get Data from S	ingle Angle	
	DB Name	AISC2K(US)	Ξ

รูปที่ 4.4.9 กำหนดหน้าตัดของเหล็กที่ใช้ในการออกแบบ

 กำหนดหน้าตัดของกอนกรีตที่ไม่ใช้ในการออกแบบ แต่ใช้ในการกำหนดขอบเขตของ Floor Load ที่ใช้ในการออกแบบต่อไป

(13)

- 🔟 ในกรอบของ Section ให้เลือกเป็น Solid Round
- ให้คลิกเลือกที่ User คือในกรณีที่ต้องการระบุหน้าตัดเอง
- 길 ในกรอบที่ให้ระบุหน้าตัด กำหนดให้ D = 1
- 💶 ในกรอบของ Name ให้ตั้งชื่อของหน้าตัดที่สร้างขึ้นใหม่ ให้กำหนดเป็น null

5 ในกรณีที่หน้าจอคอมพิวเตอร์ไม่สามารถแสดงหน้าต่าง Section Data ได้ทั้งหมด คือไม่ สามารถคลิกที่ปุ่ม OK ที่อยู่ด้านล่างได้ ให้คลิกซ้ายที่ DB/User กดปุ่ม Tab หนึ่งครั้ง จากนั้นกด Spacebar ก็จะเปรียบเสมือนการคลิกที่ปุ่ม OK

DBJUser Value SRC C	ombined Tapered	
Section ID 9	Solid Round	1 💽
	Sect. Name	Up Section
	Get Data From Single Angle	
	DB Name ALSC2R	US) T
	D (1)	mm

รูปที่ 4.4.10 กำหนดหน้าตัดของเสาคอนกรีต 40x60 ที่ใช้ในการออกแบบ

ในกรณีที่ต้องการกัดลอกหน้าตัดของโมเดลที่ใช้ในการออกแบบ

🔟 ให้คลิกซ้ายเลือกหน้าตัดที่ต้องการทำการคัดลอกก่อน จากนั้นให้คลิกที่ปุ่ม Copy

(14)

ID	Name	Туре	Shape		<u>A</u> dd
1	LC-100x50x20x3.2	DB	CC		Modify
2	40x60	User	SB	-	Teanit
					N Delete

รูปที่ 4.4.11 คัดลอกหน้าตัดของเสาคอนกรีตที่ใช้ในการออกแบบ

ในกรณีที่ต้องการแก้ไขหน้าตัดของโมเคลคอนกรีตที่ใช้ในการออกแบบ

🔟 ให้คลิกซ้ายเลือกหน้าตัดที่ต้องการทำการแก้ไข จากนั้นให้คลิกที่ปุ่ม Modify

1 LC-100x50x20x3,2 DB CC 2 40x60 User SB 3 40x60 User SB Delete Copy	ID	Name	Type	Shape	<u>A</u> dd
2 40x60 User SB 3 40x60 User SB <u>Delete</u> Copy	1	LC-100x50x20x3.2	DB	CC	1 Moder
3 40x60 User SB Delete	2	40x60	User	SB	
Сору	3	40x60	User	SB	Delete
					Copy
					Import
Import					Descente

รูปที่ 4.4.12 แก้ไขหน้าตัดของเสาคอนกรีตที่ใช้ในการออกแบบ

4.5) สร้างเสาเหล็ก ด้วยคำสั่ง Extrude Element

คำสั่ง Extrude Element ในแถบเครื่องมือของ Element เป็นเครื่องมือที่สามารถเปลี่ยน โมเดล ของโมเคลจาก Node เป็น Line Element. และจาก Line Elem. เป็น Planar Elem. และจาก Planar Elem. เป็น Solid Elem.

รูปที่ 4.5.1 คำสั่ง Extrude Element ในแถบเครื่องมือของ Element

• กลิกที่กำสั่ง Select All เพื่อเลือก Node ทั้งหมดที่อยู่ในหน้าต่างของ Model View

รูปที่ 4.5.2 คำสั่ง Select All ในแถบเครื่องมือของ Selection

O เปลี่ยน Node ให้เป็นเสาเหล็ก

• หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Extrude Element (ช่วงบน)

1 ในกรอบของ Extrude Type ให้เลือกเป็น Node -> Line Elem.

- 2 ในกรอบของ Element Attribute ให้เถือก Element Type : เป็น Beam
- 3 ในกรอบของ Material ให้เลือกเป็น SS400 หรือจะระบุเป็นรหัส ID ก็ได้
- 💶 ในกรอบของ Section : ให้เลือกเป็น H 594x302x14/23 หรือจะระบุเป็นรหัส ID ก็ได้

หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Extrude Element (ช่วงถ่าง)

 ในกรอบของ Translate คลิกเลือก Unequal Distance
 ในช่องของ Axis : คลิกเลือกแกน Z
 ในช่องของ Distance : พิมพ์ 12100
 ต่อจากนั้นให้กลิกที่ปุ่ม Apply

(16)

รูปที่ 4.5.3 คำสั่ง Extrude Element เปลี่ยน Node เป็น Line Elem.

🖶 ในกรณีที่ Extrude Element ถูกกำหนดให้ไปในทิศทางลบของแกนให้คลิกที่ Reverse I-J ด้วยทุกครั้ง

4.6) ปรับมุมมองของการแสดงภาพในหน้าต่าง Model View

 คลิกที่คำสั่ง Perspective ในแถบเครื่องมือของของ View Control เพื่อปรับมุมมองของการ แสดงภาพ ให้อยู่ในลักษณะภาพวาคที่มีสัคส่วนแบบที่มองเห็น

(17)

รูปที่ 4.6.1 คำสั่ง Perspective ในแถบเครื่องมือของ View Control

 คลิกที่กำสั่ง Hidden Surface ในแถบเครื่องมือของของ View Control เพื่อปรับมุมมองของการ แสดงภาพ ให้อยู่ในลักษณะของหน้าตัดที่กำหนดไว้ในการออกแบบ

รูปที่ 4.6.2 คำสั่ง Hidden Surface ในแถบเครื่องมือของ View Control

คลิกที่คำสั่ง Iso ในแถบเครื่องมือของของ View Point เพื่อปรับมุมมองของการแสดงภาพ ให้
 อยู่ในลักษณะของภาพวาดสามมิติที่ไม่ได้วาดขึ้นด้วยตาจริง

รูปที่ 4.6.3 คำสั่ง Iso ในแถบเครื่องมือของ View Point

 คลิกที่คำสั่ง Angle ในแถบเครื่องมือของของ View Point เพื่อปรับมุมมองของการแสดงภาพ ให้อยู่ในมุมที่ต้องการ

(18)

รูปที่ 4.6.4 คำสั่ง Angle ในแถบเครื่องมือของ View Point

 ในหน้าต่าง Angle View Dialog ให้กำหนดค่าของ Horizontal = 35 และ Vertical = 35 หรือจะ คลิกซ้ายค้างไว้ เพื่อทำการปรับมุมในรูปโดยตรงก็ได้ จากนั้นคลิกที่ปุ่ม OK

รูปที่ 4.6.5 หน้าต่าง Angle View Dialog ที่อยู่ในคำสั่ง Angle

• หน้าต่างของ Model View เมื่อปรับลักษณะของการแสดงภาพเรียบร้อยแล้ว

(19)

รูปที่ 4.6.6 การแสดงภาพของ เสาคอนกรีต และผนังรับแรงเฉือนที่ปรับมุมมองแล้ว

4.7) สร้างแบบจำลอง Truss T1 ด้วยคำสั่ง Truss ในแถบเครื่องมือ Wizard

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Truss ในแถบเครื่องมือของ Wizard ซึ่งมีรูปแบบให้ เลือกหลากหลายรูปแบบ ขึ้นอยู่กับความต้องการของผู้ออกแบบ

รูปที่ 4.7.1 คำสั่ง Truss ในแถบเครื่องมือของ Wizard

(20)

รูปที่ 4.7.2 การสร้างแบบจำลองโมเดลของ Truss T1 แบ่งเป็น 3 ส่วน

○ สร้างแบบจำลองโมเดล Truss T1-1

หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard

ป ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายนอกตามรูป

2 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป

กำหนดจำนวนของ Truss ภายในให้พิมพ์ 38

4 ในการกำหนดขนาดของ Truss ให้สังเกตจากรูปภาพด้านล่าง ซึ่งจะมีความสัมพันธ์กับ ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด

L ความกว้างของ Truss ให้พิมพ์ 26700

- H1 ความสูงของ Truss ให้พิมพ์ 1269
- D2 ระยะยกของ Truss ให้พิมพ์ 4590.5

คลิกไม่เลือก Apply out-to-out Size เป็นคำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัดระยะจากสูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก)
26700 4 D1 0 mm 11 1269 mm D2 4590.5 mm 42 0 mm Option C Apply out-to-out Size C Asymmetric
11 1269 mm D2 4590.5 mm 12 0 mm Option 12 0 Symmetric 12 0 Symmetric
pply out-to-out Size
C Asymmetric
Show Dimensions
Redraw & Update Data

(21)

รูปที่ 4.7.3 หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

- หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard
 - 1 กลิกเลือกที่หน้าต่าง Edit

ในการกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบสามารถกำหนดโดยระบุ
 เป็นรหัส ID หรือเลือกจากคุณสมบัติและหน้าตัดที่สร้างไว้แล้ว

ในกรอบของ Material คลิกเลือก 1:SS400

ในกรอบของ Section คลิกเลือก 5:P 216.3x8

เมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 5 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 5 Diagonal คือกลุ่มของ Truss ภายในให้พิมพ์รหัส ID ของ Section เป็น 7

aterial	1	1: \$\$400	ow cleme	2 (
ection	5	5: P 216	.3x8	-		11
Apply th	ne same	material to a	all member	rs		-
)	Sect.	Mat.		Sect.	Mat	
pp [5	1 Ve	ertical	1	1	
ottom [5	1 Di	aqonal (6	1	
	R	edraw & Úpr	late Data	~	-	1
				2	1	
				2		
				3		

(22)

รูปที่ 4.7.4 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

- หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard
 - 1 คลิกเลือกที่หน้าต่าง Insert

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 180 หมายความว่า ให้ Truss หมุนรอบแกน Z เป็นมุม 180 องศา

อิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง

🕘 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุคเชื่อมต่อบนแบบจำลองโมเคล

5 คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลอง โมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง ให้กค Ctrl + Z บนแป้นพิมพ์เพื่อข้อนกลับ

(23)

รูปที่ 4.7.5 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

รูปที่ 4.7.6 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

1 กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 0 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 0 องศา

คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุคเชื่อมต่อบนแบบจำลองโมเคล

คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลองโมเคล Truss

put Edit Insert	
Insert Point	Beam End Release
Alpha Beta	ations Gamma 1

รูปที่ 4.7.7 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

รูปที่ 4.7.8 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

O สร้างแบบจำลองโมเดล Truss T1-2

1

- หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard
 - 🃕 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายนอกตามรูป

(25)

- 📕 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป
- 📕 กำหนดจำนวนของ Truss ภายในให้พิมพ์ 6
- ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด
 - L ความกว้างของ Truss ให้พิมพ์ 7980
 - H1 ความสูงของ Truss ให้พิมพ์ 1269
 - D2 ระยะยกของ Truss ให้พิมพ์ 1407

5 คลิกไม่เลือก Apply out-to-out Size เป็นกำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัดระยะจากศูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก)

Input Edit Insert	
Type	2 Number of 3
	Panels
7930	
H1 1269 4 mm	D2 1407 mm
H2 0 mm	Option
pply out-to-out Size	C Symmetric
Show Dimensions	 Asymmetric
Redraw & L	Ipdate Data
5	
-	
	-+

รูปที่ 4.7.9 หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

• หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Edit

1

คลิกเลือกที่ Verticals เพื่อจำลองโมเคล Truss ท่อนแนวตั้ง

العام المالية مالية المالية المالية المالية المالية مالية مالي مالية مالي مالية ماليمالية مالية ماليمالية مالية ماليمالي ماليمالي

(26)

ในกรอบของ Material คลิกเลือก 1:SS400

ในกรอบของ Section คลิกเลือก 5:P 216.3x8

4 เมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 5 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 5 Diagonal คือกลุ่มของ Truss ภายในท่อนแนวตั้งให้พิมพ์รหัส ID ของ Section เป็น 7 Diagonal คือกลุ่มของ Truss ภายในท่อนเอียงให้พิมพ์รหัส ID ของ Section เป็น 7

5: P :	216.3x8		~	
terial				***
cerici	to all mem	bers		
lat.		Se	ct.	Mat
	Vertical	6	1	
	Diagonal	6	1	
aw 8.	Update Da	ata		
				_
	aw 8.	Diagonal aw & Update Da	Diagonal 6 aw & Update Data	Diagonal 6 1 aw & Update Data

รูปที่ 4.7.10 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

• หน้าต่างของ Insert ในส่วนของกำสั่ง Truss Wizard

ดถิกเถือกที่หน้าต่าง Insert

1

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 180 หมายความว่า ให้ Truss หมุนรอบแกน Z เป็นมุม 180 องศา

คลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง
 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล

5 คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลอง โมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

Truss Wizard	
4 Insert Point	Beam End Release
53300, 0, 16690.5	Assign
Alpha Beta	Gamma 2
Merge Duplicate Nodes	ts
Origin	Point
how No. 1(0, 0, 0) _
3	
10	11 12 13 14
1 the	o the the
z	5
x	-
OK C	ose

รูปที่ 4.7.11 หน้าต่างของ Insert ในส่วนของกำสั่ง Truss Wizard

(28)

รูปที่ 4.7.12 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

• หน้าต่างของ Insert ในส่วนของกำสั่ง Truss Wizard

3

- กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 0 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 0 องศา
- 2 กลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุคเชื่อมต่อบนแบบจำลองโมเคล
 - คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลอง โมเคล Truss

iss Wizard	t
Insert Point	Beam End Release
100 0 1000 F	Accian
20,00, 0, 10090.5	Assignm
Rotati	ons 1
Alpha Beta	ons Gamma

รูปที่ 4.7.13 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(29)

รูปที่ 4.7.14 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

O สร้างแบบจำลองโมเดล Truss T1-3

1

3

• หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายนอกตามรูป

2 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป

กำหนดจำนวนของ Truss ภายในให้พิมพ์ 4

4 ในการกำหนดขนาดของ Truss ให้สังเกตจากรูปภาพด้านล่าง ซึ่งจะมีความสัมพันธ์กับ ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด

L ความกว้างของ Truss ให้พิมพ์ 5320

H1 ความสูงของ Truss ให้พิมพ์ 1269

H2 ความสูงของ Truss ให้พิมพ์ 2207

[5] คลิกไม่เลือก Apply out-to-out Size เป็นกำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัดระยะจากศูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก) คลิกเลือก Symmetric เป็นคำสั่งที่ต้องการให้สร้างแบบจำลอง โมเคลของ Truss อีกค้าน
 ให้มีสัดส่วนสมดุลกัน

(30)

Input	Edit Ir		2 Num Pan	ber of els
H1 H2 H2 Sh	530 1269 2207 ply out-to-o ow Dimensio	mm D m4 mm out Size	1 0 2 0 Option C Asymmetry	mm mm etric 6 netric
5	ב	Redraw & Upc	late Data	₹
	KK		777	

รูปที่ 4.7.15 หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

- หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard
 - คลิกเลือกที่หน้าต่าง Edit
 - คลิกเลือกที่ Verticals เพื่อจำลองโมเคล Truss ท่อนแนวตั้ง

ในการกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบสามารถกำหนดโดยระบุ เป็นรหัส ID หรือเลือกจากคุณสมบัติและหน้าตัดที่สร้างไว้แล้ว

ในกรอบของ Material คลิกเลือก 1:SS400

ในกรอบของ Section คลิกเลือก 5:P 216.3x8

แมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

(31)

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 5 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 5 Diagonal คือกลุ่มของ Truss ภายในท่อนแนวตั้งให้พิมพ์รหัส ID ของ Section เป็น 7 Diagonal คือกลุ่มของ Truss ภายในท่อนเอียงให้พิมพ์รหัส ID ของ Section เป็น 7

รูปที่ 4.7.16 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

📕 คลิกเลือกที่หน้าต่าง Insert

1

ในมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 0 องศา คลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ด้องการให้ไปวางบนแบบจำลอง
 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล
 คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลองโมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง
 ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

(32)

Insert Point	Beam End Release Assign
Alpha Beta	Gamma
Verge Duplicate Nodes	ts
2	
10 11 12 13 0 2 8 4	

รูปที่ 4.7.17 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(33)

รูปที่ 4.7.19 แบบจำลองโมเดล Truss T1 เมื่อแล้วเสร็จ

4.8) คัดถอกแบบจำลอง Truss ด้วยคำสั่ง Translate Elements

O เลือกแบบจำลองโมเดลด้วยคำสั่ง Select Identity

 คลิกเลือก Truss ด้วยคำสั่ง Select Identity เป็นการเลือกโดยการกำหนดจากเงื่อนไขในการจัด กลุ่มมาช่วยในการเลือกอาทิเช่น

Element Type	เลือกจากประเภทของ โครงสร้าง เช่น คาน, เสา, ผนังรับแรงเฉือน,
	Plate, Solid, Truss, ๆถๆ
Material	เลือกจากการจัคกลุ่มของวัสคุที่ใช้ เช่น SS400, C210, ฯลฯ
Section	เลือกจากการจัดกลุ่มของหน้าตัดที่ใช้ P 216.3x8, P 139.8x6, ฯลฯ
Story	เลือกจากการจัดกลุ่มของกวามสูงของชั้น
Structure Group	เลือกจากการจัดกลุ่มของแบบจำลอง โมเคล
Load Group	เลือกจากการจัดกลุ่มของน้ำหนักที่มากระทำบนแบบจำลอง โมเคล
Supports	เลือกจากการจัดกลุ่มของฐานราก
Beam End Release	เลือกจากการจัดกลุ่มของพฤติกรรมของโมเมนต์
Wall ID	เลือกจากการจัคกลุ่มของรหัส ID ของผนังรับแรงเฉือน

รูปที่ 4.8.1 คำสั่ง Select Identity ในแถบเครื่องมือของ Selection

- หน้าต่างของ Select Identity สำหรับแสดงขั้นตอนการทำงานของคำสั่ง
 - ในกรอบของ Select Type: ให้เลือกเป็น Section
 - 2 คลิกเลือก 5: P 216.3x8 และ 7: P 101.6x5

1

- 3 คลิกที่ปุ่ม Add เพื่อเลือกแบบจำลองโมเคลที่ต้องการ
- 4 กลิกที่ปุ่ม Close เพื่อออกจากกำสั่ง Select Identity

รูปที่ 4.8.2 ขั้นตอนการทำงานของคำสั่ง Select Identity

รูปที่ 4.8.3 เลือกแบบจำลองโมเดล Truss T-1 ด้วยคำสั่ง Select Identity

(35)

O คัดลอกแบบจำลอง Truss ด้วยคำสั่ง Translate Elements

 คลิกที่คำสั่ง Translate Elements จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Elements ใน หน้าต่างของ Tree Menu

Wizard Node Element Property BC/Mass Stage Load

รูปที่ 4.8.4 คำสั่ง Translate Elements ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Elements (ช่วงบน)

📕 ในกรอบของ Mode ให้เลือกเป็น Copy

1

1

2 กลิกในช่อง dx, dy, dz: จากนั้นให้ไปยังหน้าต่าง Model View เพื่อกลิกที่ Node เริ่มต้น จากนั้นให้ไปกลิกที่ Node สิ้นสุด เพื่อให้โปรแกรมคำนวณจากระยะที่ต้องการจะกัดลอกหรือ จะระบุเป็นตัวเลงก็ได้ถ้าทราบระยะที่ชัดเจน

ในช่อง Number of Times : พิมพ์ 4 หมายความว่าต้องการทำการคัดถอกจำนวน 4 ช่วง

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Elements (ช่วงล่าง)
 - ในช่อง Intersect ให้คลิกเลือก Node และ Element
 - คลิกเลือก Copy Node Attributes :
 - คลิกเลือก Copy Element Attributes :

2 คลิกที่ปุ่ม Apply เพื่อทำการคัคลอก โมเคล ในหน้าต่างของ Model View

(37)

รูปที่ 4.8.5 ขั้นตอนการใช้คำสั่ง Translate Elements ในหน้าต่างของ Tree Menu

รูปที่ 4.8.6 แบบจำลองโมเดลหลังจากใช้คำสั่ง Translate Elements

4.9) สร้างแบบจำลองโมเดลของเสาเหล็กด้วยคำสั่ง Create Element

Wizard Node Element Property BC/Mass Stage Load 「たらら山田子美国大学派をある

(38)

รูปที่ 4.9.1 คำสั่ง Create Element ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงบน) • 1

ในกรอบของ Element Type ให้กลิกเลือกเป็น General beam/Tapered beam

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงล่าง) •

3

4

1 ในกรอบของ Material ให้เลือกเป็น SS400 หรือจะระบุเป็นรหัส ID ก็ได้

2 ในกรอบของ Section ให้เลือกเป็น H 594x302x14/23 หรือจะระบุเป็นรหัส ID ก็ได้

คลิกเลือก Ortho หมายถึงให้ตอนสร้างให้ขนานกับแกนทั้งสาม (x ,y ,z)

		4 4 9	• ~
คลิกเลือกในชอง Nodal	Connectivity	เพื่อเริ่มต์	นการจำลอง ไมเคล

Tree Menu Node Element Boundary	🏿 🗰 🕹 🕺 🗍 🗍 🗍	(ช่วงบน)	No. Name 1
Create Elements			Section No. Name 1 1: H 594x302x14/23
Element Type General beam/Tapered beam			Orientation © Beta Angle C Ref. Point C Ref. Vector
y Ref.	# X 2		0 Image: [deg] Nodal Connectivity Image: [deg] 0 Image: [deg]
N1		(ช่วงล่าง)	Interperti II Nodo II Elem

รูปที่ 4.9.2 คำสั่ง Create Element ที่อยู่ใน Tree Menu

(39)

ให้เริ่มสร้างเสาเหล็ก H 594x302x14/23 ตามตำแหน่งของวงกลมสีแดง โดยลากขึ้นไปให้จบที่

รูปที่ 4.9.3 รูปภาพแสดงตำแหน่งที่ต้องสร้างเสาเหล็กเพิ่ม

รูปที่ 4.9.4 แบบจำลองโมเดลเมื่อแล้วเสร็จ

4.10) สร้างแบบจำลอง Truss T2 ด้วยคำสั่ง Truss ในแถบเครื่องมือ Wizard

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Truss ในแถบเครื่องมือของ Wizard ซึ่งมีรูปแบบให้ เลือกหลากหลายรูปแบบ ขึ้นอยู่กับความต้องการของผู้ออกแบบ

(40)

รูปที่ 4.10.1 คำสั่ง Truss ในแถบเครื่องมือของ Wizard

รูปที่ 4.10.2 การสร้างแบบจำลองโมเดลของ Truss T2

O สร้างแบบจำลองโมเดล Truss T2

2

• หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard

ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป

3 กำหนดจำนวนของ Truss ภายในให้พิมพ์ 16

ในการกำหนดขนาดของ Truss ให้สังเกตจากรูปภาพด้านล่าง ซึ่งจะมีความสัมพันธ์กับ ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด

L ความกว้างของ Truss ให้พิมพ์ 17250

H1 ความสูงของ Truss ให้พิมพ์ 1269

คลิกไม่เลือก Apply out-to-out Size เป็นคำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัดระยะจากสูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก)

Input Edit Insert			
Туре	2	Number	of 3
	$\land \bigcirc$	Panels 16	
L 17250 m	m D1 0		mm
H1 1269 m	m D2 0 ⊂Opt	ion	mm
Ppply out-to-out Size		Symmetric	
Show Dimensions		Asymmetr	ic
Redra	w & Update Da	ta	
5			
		0.50	
HT		<u></u>	z
HT			Z
		<u></u>	T
		<u></u>	Z

รูปที่ 4.10.3 หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard

• หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Edit

1

ในกรอบของ Insertion ให้คลิกเลือก Vertical เพื่อโมเคล Truss ภายในแนวคิ่ง

(42)

ในการกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบสามารถกำหนดโดยระบุ เป็นรหัส ID หรือเลือกจากคุณสมบัติและหน้าตัดที่สร้างไว้แล้ว

ในกรอบของ Material คลิกเลือก 1:SS400

ในกรอบของ Section คลิกเลือก 5:P 216.3x8

4 เมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 5 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 5 Vertical คือกลุ่มของ Truss ภายในแนวดิ่งให้พิมพ์รหัส ID ของ Section เป็น 7 Diagonal คือกลุ่มของ Truss ภายในให้พิมพ์รหัส ID ของ Section เป็น 7

Material	1	1: SS400	- (-)
Section	5	5: P 216.3x8		•
Apply t	he same	material to all member	ers	
ID	Sect.	Mat.	Sect.	Mat
Top	5	1 Vertical	6	1
Bottom	5	1 Diagonal	6	1
	R	edraw, & Update Dat	8	

รูปที่ 4.10.4 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Insert

1

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีก่าเท่ากับ 90 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 90 องศา

(43)

길 คลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง

4 คลิกในกรอบของ Origin Point ให้เลือกตำแหน่งที่ 18(0, 0, 1269) มุมบนของ Truss

5 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล

คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลอง โมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

รูปที่ 4.10.5 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(44)

รูปที่ 4.10.6 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

รูปที่ 4.10.7 แบบจำลองโมเคลเมื่อแล้วเสร็จ

4.11) สร้างแบบจำลอง Truss T3 ด้วยคำสั่ง Truss ในแถบเครื่องมือ Wizard

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Truss ในแถบเครื่องมือของ Wizard ซึ่งมีรูปแบบให้ เลือกหลากหลายรูปแบบ ขึ้นอยู่กับความต้องการของผู้ออกแบบ

(45)

รูปที่ 4.11.1 คำสั่ง Truss ในแถบเครื่องมือของ Wizard

รูปที่ 4.11.2 การสร้างแบบจำลองโมเดลของ Truss T3

- O สร้างแบบจำลองโมเดล Truss T3
 - หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard
 - ป ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายนอกตามรูป
 - 2 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป
 - 3 กำหนดจำนวนของ Truss ภายในให้พิมพ์ 4

ในการกำหนดขนาดของ Truss ให้สังเกตจากรูปภาพด้านล่าง ซึ่งจะมีความสัมพันธ์กับ ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด

(46)

- L ความกว้างของ Truss ให้พิมพ์ 4312.5
- H1 ความสูงของ Truss ให้พิมพ์ 1269
- H2 ความสูงของ Truss ให้พิมพ์ 700
- D1 ความสูงระยะยกของ Truss ให้พิมพ์ 569
- D2 ความสูงระยะยกของ Truss ให้พิมพ์ 569

คลิกไม่เลือก Apply out-to-out Size เป็นกำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัคระยะจากศูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก)

6 คลิกเลือก Symmetric เป็นกำสั่งที่ต้องการให้สร้างแบบจำลอง โมเคลของ Truss อีกค้าน ให้มีสัคส่วนสมคุลกัน

รูปที่ 4.11.3 หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

• หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Edit

1

2

3

ในกรอบของ Insertion ให้กลิกเลือก End Vertical เพื่อโมเคล Truss ภายนอกแนวคิ่ง

(47)

คลิกเลือก Merge Straight Members เพื่อรวม Truss ในส่วนที่ไม่มี Truss ภายในแนวคิ่ง

ในการกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบ
 ในกรอบของ Material คลิกเลือก 1:SS400
 ในกรอบของ Section คลิกเลือก 7: P 101.6x5

5 เมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 7 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 7 Vertical คือกลุ่มของ Truss ภายในแนวคิ่งให้พิมพ์รหัส ID ของ Section เป็น 8 Diagonal คือกลุ่มของ Truss ภายในให้พิมพ์รหัส ID ของ Section เป็น 8

ection 6	6: P	15. ON 7 1 1		
		139.8x6		
 Apply the same 	ie material	to all memb	ers	
) Sect.	Mat.		Sect.	Mat
op (6)	1	Vertical	7	1
ottom 6	1	Diagonal	7	1
	Redraw &	Update Dat	a	-

รูปที่ 4.11.4 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Insert

1

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 90 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 90 องศา

(48)

길 คลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง

4 คลิกในกรอบของ Origin Point ให้เลือกตำแหน่งที่ 10(0, 0, 1269) มุมบนของ Truss

5 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล

คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลอง โมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

Insert Point	Beam End Release
9816.842, 0, 13791.24	Assign
Alpha Beta	
 ✓ Merge Duplicate Nodes ✓ Intersect Frame Elements 	2
Origin Pol	int
how No. 10(0, 0, 126	9)
3	4
10 11 12 13 14 2 3 4 5	15 16 17 18
10 11 12 13 14 2 3 4 5	15 18 17 18 8 7 8 9

รูปที่ 4.11.5 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(49)

รูปที่ 4.11.6 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

รูปที่ 4.11.7 แบบจำลองโมเคลเมื่อแล้วเสร็จ

• หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Edit

2

1

ในกรอบของ Insertion ให้คลิกไม่เลือก End Vertical

(50)

Section 6 6: P 139.8x6 Apply the same material to all members D Sect. Mat. Sect. Mat. Top 6 1 Vertical 1 1 Bottom 6 1 Diagonal 7 1 Redraw & Update Data	at
✓ Apply the same material to all members D Sect. Mat. Sect. Mi. Fop 6 1 Vertical 1 1 3ottom 6 1 Diagonal 7 1 Redraw & Update Data 0 0 0 0	at
Top 6 1 Vertical 1 1 Sottom 6 1 Diagonal 7 1 Redraw & Update Data	
Sottom 6 1 Diagonal 7 1 Redraw & Update Data	Ì
Redraw & Update Data	1
z Lx	

รูปที่ 4.11.8 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

• หน้าต่างของ Insert ในส่วนของกำสั่ง Truss Wizard

1 คลิกเลือกที่หน้าต่าง Insert

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 90 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 90 องศา ลลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง
 คลิกในกรอบของ Origin Point ให้เลือกตำแหน่งที่ 8(0, 0, 1269) มุมบนของ Truss
 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล
 คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลองโมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง
 ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

(51)

รูปที่ 4.11.9 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(52)

รูปที่ 4.11.10 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

รูปที่ 4.11.11 แบบจำลองโมเดลเมื่อแล้วเสร็จ

0 เลือกแสดงเฉพาะโมเดลของระนาบ YZ Plane

2

• คลิกที่คำสั่ง Select by Plane จากนั้นให้ไปยังหน้าต่างของ Model View

Selection 品 准 之 国 图 秋雨 图 ⑥ 回 夕 马 乐 光 ⑧

(53)

รูปที่ 4.12.1 คำสั่ง Select by Plane ในแถบเครื่องมือของ Selection

- จากนั้นทำการเลือกโมเคลในลักษณะระนาบ 2 มิติ (Plane) ซึ่งสามารถเลือกได้ 4 แบบคือ
 - 3 Points สำหรับกำหนดกรอบในการเลือก ด้วยการคลิก 3 ตำแหน่ง
 - XY Plane สำหรับกำหนดตำแหน่งที่ต้องการเลือกในระนาบ XY
 - XZ Plane สำหรับกำหนดตำแหน่งที่ต้องการเลือกในระนาบ XZ
 - YZ Plane สำหรับกำหนดตำแหน่งที่ต้องการเลือกในระนาบ YZ
 - 1 คลิกเลือกที่ YZ Plane เพื่อกำหนคระนาบที่ต้องการจะเลือก

คลิกที่ช่อง Z Position เพื่อที่จะเลือก Node ของ Truss T3 ตำแหน่งใดก็ได้

Plane Volume	I	
C 3 Points C XY Plane	C XZ Plane	TZ Plane
X Position	9124.211	mm

รูปที่ 4.12.2 หน้าต่าง Plane & Volume Select ของคำสั่ง Select by Plane

(54)

รูปที่ 4.12.3 เลือกเฉพาะ Truss T3 ตามรูปข้างต้น

O คัดลอก Truss T3 ด้วยคำสั่ง Translate Elements

 คลิกที่คำสั่ง Translate Elements จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Elements ใน หน้าต่างของ Tree Menu

รูปที่ 4.12.4 คำสั่ง Translate Elements ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Elements (ช่วงบน)

ในกรอบของ Mode ให้เลือกเป็น Copy

1

2

📕 คลิกเลือก Equal Distance เพื่อกำหนคระยะทางโคยคลิกบนแบบจำลองโมเคลโคยตรง

คลิกในช่อง dx, dy, dz: จากนั้นให้ไปยังหน้าต่าง Model View เพื่อคลิกที่ Node เริ่มต้น จากนั้นให้ไปคลิกที่ Node สิ้นสุด เพื่อให้โปรแกรมคำนวณจากระยะที่ต้องการจะคัดลอกหรือ จะระบุเป็นตัวเลงก็ได้ถ้าทราบระยะที่ชัดเจน

- หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Translate Elements (ช่วงล่าง)
 - ปี ในช่อง Intersect ให้คลิกเลือก Node และ Element
 - คลิกเลือก Copy Node Attributes :
 - คลิกเลือก Copy Element Attributes :

2

คลิกที่ปุ่ม Apply เพื่อทำการคัคลอกโมเคลในหน้าต่างของ Model View

Tree Menu	μ ×		
Node Element Boundary Mas	ss Load (ช่วงบ	าห)	
Translate Elements 🔹	1 6		10,0,0 mm
Start Number			Material Inc. : 0 📩 🗆 Rep.
Node Number : 1537	<u></u>		Section Inc. : 0 🛨 🗆 Rep.
Element Number : 2617	<u></u>		Thirtings Inc. ; 0 🕂 🗆 Rep.
Mode 1	5		File Free Nodes
C Move			Intersec 🔽 Node 🔽 Elem
C Node Increment			Copy Node Attributes
Num 2 Times : 1 -	E		Copy Element Attributes
Cequal Distance	3		Merging Tolerance
dx,dy,dz: 15457.89, 17250, m	ım		
Number of Times : 1 🛨		(ชวงลาง)	Z Apply Close
C Unequal Distance			

รูปที่ 4.12.5 ขั้นตอนการใช้คำสั่ง Translate Elements ในหน้าต่างของ Tree Menu

(56)

รูปที่ 4.12.6 Node เริ่มต้นไปยัง Node สิ้นสุด เพื่อวัดระยะที่ต้องการจะคัดลอก

รูปที่ 4.12.7 Node เริ่มต้นไปยัง Node สิ้นสุด เพื่อวัดระยะที่ต้องการจะคัดลอก
4.13) สร้างแบบจำลองโมเดล Truss T3 ด้วยคำสั่ง Mirror Elements

0 เลือกแสดงเฉพาะโมเดลของระนาบ YZ Plane

• คลิกที่คำสั่ง Select by Plane จากนั้นให้ไปยังหน้าต่างของ Model View

(57)

รูปที่ 4.13.1 คำสั่ง Select by Plane ในแถบเครื่องมือของ Selection

คลิกเลือกที่ YZ Plane เพื่อกำหนดระนาบที่ต้องการจะเลือก

2 คลิกที่ช่อง Z Position เพื่อที่จะเลือก Node ของ Truss T3 ตำแหน่งใคก็ได้โดยเลือก Truss T3 ตามวงกลมสีแคงหมายเลข 1-3

C 3 Points		1
C XY Plane	C XZ Plane	Orz Plane
X Position	9184.211	mm

รูปที่ 4.13.2 หน้าต่าง Plane & Volume Select ของคำสั่ง Select by Plane

(58)

รูปที่ 4.13.3 เลือกเฉพาะ Truss T3 ตามรูปข้างต้น

O สร้างแบบจำลองโมเดล Truss T3 ด้วยคำสั่ง Mirror Elements

แบบจำลองโมเคล Truss T3 อีกค้านของโรงงานต้องใช้คำสั่ง Mirror Elements ในการโมเคล ขั้นตอนของการโมเคลต้องกำหนดจุดกึ่งกลางในแกนที่ต้องการให้ Mirror สามารถกำหนดรูปแบบได้ 2 แบบคือ Copy หรือ Move กี่ได้

 คลิกที่คำสั่ง Mirror Elements จะปรากฏ ขั้นตอนการใช้คำสั่ง Mirror Elements ในหน้าต่างของ Tree Menu

Wizard | Node Element | Property | BC/Mass | Stage | Load このなやりますがなべいがらかな

รูปที่ 4.13.4 คำสั่ง Mirror Elements ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Mirror Elements

ในกรอบของ Mode ให้เลือกเป็น Copy

1

2

3

ในกรอบของ Reflection ให้คลิกเลือก y-z plane X:

ในช่อง Intersect ให้คลิกเลือก Node และ Element

- กลิกเลือก Copy Node Attributes :
- กลิกเลือก Copy Element Attributes :
- คลิกเลือก Mirror Beta Angle :
- กลิกเลือก Reverse Element Local :

คลิกเลือกในช่องของ y-z plane X: จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อคลิก ที่ตำแหน่งกึ่งกลางของแกน X ในหน้าต่าง Model View จากนั้นคลิกปุ่ม Apply

Free Menu	C Plane defined by 3 pts.
Node Element Boundary Mass L (ชั่วงบน)	×1,91,21; 0,0,0 m
Mirror Elements • …	x2,y2,z2; 0,0,0 m
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	x3, y3, z3; 0,0,0 m
Node Number : 1443	Material Increment : 0 🛨
Element Number ; 2117	Section Increment : 0 🔅
-Mode 1	Thickness Increment 3 0 🚊
Copy C Move	Intersect 🔽 Node 🔽 Elem
Reflection 2 4	Copy Node Attributes
€ v-z plane x:	Copy Element Attributes
C x-y plane z: [] m (ช่วงล่าง)	🔽 Mirror Beta Angle
C z-x plane y:	Reverse Element Local

รูปที่ 4.13.5 คำสั่ง Mirror Elements ในแถบเครื่องมือของ Element

(60)

รูปที่ 4.13.7 แบบจำลองโมเดล Truss T3 อีกด้านของโรงงาน

4.14) สร้างแบบจำลอง Truss T4 ด้วยคำสั่ง Truss ในแถบเครื่องมือ Wizard

สามารถทำได้โดยการ คลิกที่ปุ่มคำสั่ง Truss ในแถบเครื่องมือของ Wizard ซึ่งมีรูปแบบให้ เลือกหลากหลายรูปแบบ ขึ้นอยู่กับความต้องการของผู้ออกแบบ

(61)

รูปที่ 4.14.1 คำสั่ง Truss ในแถบเครื่องมือของ Wizard

รูปที่ 4.14.2 การสร้างแบบจำลองโมเดลของ Truss T4

- O สร้างแบบจำลองโมเดล Truss T4 ด้วยคำสั่ง Truss
 - หน้าต่างของ Input ในส่วนของกำสั่ง Truss Wizard
 - 🔟 ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายนอกตามรูป
 - ในกรอบของ Type คลิกเลือกรูปแบบของ Truss ภายในตามรูป
 - 3 กำหนดจำนวนของ Truss ภายในให้พิมพ์ 32

2

ในการกำหนดขนาดของ Truss ให้สังเกตจากรูปภาพด้านถ่าง ซึ่งจะมีความสัมพันธ์กับ ข้อมูล คือรูปภาพจะเปลี่ยนตามข้อมูลที่กำหนด

L ความกว้างของ Truss ให้พิมพ์ 34500

H1 ความสูงของ Truss ให้พิมพ์ 700

5 คลิกไม่เลือก Apply out-to-out Size เป็นคำสั่งที่ต้องการให้การกำหนดขนาดของ Truss เป็นการวัดระยะจากศูนย์กลางของหน้าตัดเหล็ก (ระยะเต็มไม่ต้องทอนด้วยหน้าตัดเหล็ก)

Type	Number of Panels
L 34300 4 H1 700 mm	D1 mm D2 mm
H2 mm Apply out-to-out Size Show Dimensions	Option C Symmetric C Asymmetric
Redraw & Up	date Data
•	

รูปที่ 4.14.3 หน้าต่างของ Input ในส่วนของคำสั่ง Truss Wizard

- หน้าต่างของ Edit ในส่วนของกำสั่ง Truss Wizard
 - 🔟 คลิกเลือกที่หน้าต่าง Edit

2 ในกรอบของ Insertion ให้คลิกเลือก End Vertical เพื่อ โมเคล Truss ภายนอกแนวคิ่ง

aถิกเถือก Merge Straight Members เพื่อรวม Truss ในส่วนที่ไม่มี Truss ภายในแนวคิ่ง

ในการกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบ ในกรอบของ Material กลิกเลือก 1:SS400

ในกรอบของ Section คลิกเลือก 6:P 139.8x6

5 เมื่อต้องการที่จะกำหนดคุณสมบัติและหน้าตัดที่จะใช้ในการออกแบบของ Truss ใน รูปแบบที่ไม่เหมือนกันซึ่งสามารถแยกได้โดยกำหนดเป็นรหัส ID

(63)

Top คือกลุ่มของ Truss ภายนอกที่อยู่ด้านบนให้พิมพ์รหัส ID ของ Section เป็น 6 Bottom คือกลุ่มของ Truss ภายนอกที่อยู่ด้านล่างให้พิมพ์รหัส ID ของ Section เป็น 6 Diagonal คือกลุ่มของ Truss ภายในให้พิมพ์รหัส ID ของ Section เป็น 7

laterial	1	1.0	\$\$400	- (7.	1
ection	6	6: 6	2 139.8v6		Y	1
Apply the	e same	e materia	al to all mem	bers		-
D	Sect.	Mat.		Sect.	Mat	
op (6		1	Vertical	1	1	
Bottom 6		1	Diagonal	7	1	
	F	tedraw t	& Update Da	ita		1

รูปที่ 4.14.4 หน้าต่างของ Edit ในส่วนของคำสั่ง Truss Wizard

• หน้าต่างของ Insert ในส่วนของกำสั่ง Truss Wizard

คลิกเลือกที่หน้าต่าง Insert

กำหนดการหมุนของ Truss โดยการกำหนด Gamma ให้มีค่าเท่ากับ 90 หมายความว่าให้ Truss หมุนรอบแกน Z เป็นมุม 90 องศา ลลิกเลือก Show No เพื่อเลือกตำแหน่งของ Truss ที่ต้องการให้ไปวางบนแบบจำลอง
 คลิกในกรอบของ Origin Point ให้เลือกตำแหน่งที่ 19(0, 0, 700) มุมบนของ Truss
 คลิกในกรอบของ Insert Point เพื่อระบุตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเคล
 คลิกที่ปุ่ม Apply เพื่อสร้างแบบจำลองโมเคล Truss แต่ถ้าทิศทางของ Truss ไม่ถูกต้อง
 ให้กด Ctrl + Z บนแป้นพิมพ์เพื่อย้อนกลับ

(64)

รูปที่ 4.14.5 หน้าต่างของ Insert ในส่วนของคำสั่ง Truss Wizard

(65)

รูปที่ 4.14.6 ตำแหน่งของจุดเชื่อมต่อบนแบบจำลองโมเดล

รูปที่ 4.14.7 แบบจำลองโมเคลเมื่อแล้วเสร็จ

4.15) สร้างแบบจำลองโมเดลคร่าวนอนด้วยคำสั่ง Create Element

(66)

รูปที่ 4.15.1 การสร้างแบบจำลองโมเดลของคร่าวนอน

 คลิกที่กำสั่ง Shrink Element ในแถบเครื่องมือของของ View Control เพื่อแสดงตำแหน่งของ จุคเชื่อมต่อ

Frequen Grid/Sn UCS/GCS	View Co	Activati
	r 🍙	

รูปที่ 4.15.2 คำสั่ง Shrink Element ในแถบเครื่องมือของ View Control

 คลิกที่คำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อทำการคลิกซ้าย ค้างไว้ที่มุมบนขวาของ Node จากนั้นให้เลือกครอบ Node ในตำแหน่งหมายเลขที่ 1, 2

รูปที่ 4.15.3 คำสั่ง Select by Window ในแถบเครื่องมือของ Selection

รูปที่ 4.15.4 ตำแหน่ง Node ที่ต้องการเลือกเพื่อทำการคัดลอก

- O แบ่งช่วงของเสาด้วยด้วยคำสั่ง Translate Node
 - คลิกที่คำสั่ง Translate Node จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Node

รูปที่ 4.15.5 คำสั่ง Translate Node ในแถบเครื่องมือของ Node

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Node (ช่วงบน)
 - 1 ในกรอบของ Mode ให้เลือกเป็น Copy

2

5

คลิกเลือก Unequal Distance เพื่อเลือกแกนที่ต้องการจะคัคลอก Node

(68)

- 길 ในกรอบของ Axis: คลิกเลือกในช่องของแกน Z
- 4 ในกรอบของ Distance: คลิกพิมพ์ระยะทางดังนี้ 4275,3400,3650
 - คลิกเลือก Merge Duplicate Nodes :
 - คลิกไม่เลือก Copy Node Attributes :
 - คลิกเลือก Intersect Frame Elements :

6 คลิกที่ปุ่ม Apply เพื่อทำการคัดลอก โมเคลในหน้าต่างของ Model View

Tree Mer	nu	Ţ.
Node	Elem Boun 1	Mass Lo
Translate	e Nodes	•
Start Nod	le Number : [1537
Mode	Lopy C M	ove
Transla	ation	
C Equ	al Distance	
12	dz: 0,0,0	mm
Numbe	of Times : 1	-
() Jne	qual Distance	3
Axis :	Cx Cy () -
	C Arbitrary	
Distan	ice : (42)5,3400,	3651 mm
(Exam)	ple: 5, 3, 4.5, 3@5	.0) 4
Directio	in Vector :	_
0,0,0	0 5	mm
(Mer	rge Duplicate Nodes	
E Cor	by Node Attributes	
I COL		

รูปที่ 4.15.6 ขั้นตอนการใช้คำสั่ง Translate Node ในหน้าต่างของ Tree Menu

(69)

รูปที่ 4.15.7 เสาเหล็กเมื่อถูกแบ่งด้วยคำสั่ง Translate Node

0 สร้างแบบจำลองโมเดลคร่าวนอนด้วยคำสั่ง Create Element

แบบจำลองโมเคลคร่าวนอนจะมีอยู่ 3 แถวที่ระยะ 4,275 มม, 3,400 มม และ 3,650 มม จาก ระดับพื้นชั้นถ่างทั้งสองด้านของตัวอาการ

รูปที่ 4.15.8 คำสั่ง Create Element ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงบน)

11 ในกรอบของ Element Type ให้คลิกเลือกเป็น General beam/Tapered beam

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงล่าง)

ปี ในกรอบของ Section ให้เลือกเป็น H 250x125x6/9 หรือจะระบุเป็นรหัส ID ก็ได้

คลิกเลือก Ortho หมายถึงให้ตอนสร้างให้ขนานกับแกนทั้งสาม (x ,y ,z)
 คลิกเลือกในช่อง Nodal Connectivity เพื่อเริ่มต้นการจำลองโมเคล

(70)

Tree Menu Node Flement Boundary Mass	₽ ×	(ช่วงบน)	1 1: SS400 •
Create Elements Create Elements Element Number : 87 Element Number : 48 Element Type			Section No. Name 4 4: H 250x125x6/9
General beam/Tapered beam			Ref. Vector [deg]
y N1		(ช่วงถ่าง)	1509, 1519 3

รูปที่ 4.15.9 คำสั่ง Create Element ที่อยู่ใน Tree Menu

รูปที่ 4.15.10 แบบจำลองโมเดลของคร่าวนอนเมื่อแล้วเสร็จ

4.16) รวมแบบจำลองโมเดลที่ไม่มีการเชื่อมต่อด้วยคำสั่ง Merge Element

• ให้กลิกที่กำสั่ง Select All เพื่อเลือกโมเคลทั้งหมดที่ยังกงแสดงอยู่ในหน้าต่างของ Model View

รูปที่ 4.16.1 คำสั่ง Select All ในแถบเครื่องมือของ Selection

 ให้คลิกที่คำสั่ง Merge Element เพื่อรวม Element ที่ไม่มีการเชื่อมต่อของโครงสร้างเข้าด้วยกัน จากนั้นให้คลิกที่ปุ่ม Apply ในหน้าต่าง Tree Menu ในส่วนของกำสั่ง Merge Element ได้ทันที

-	Wizard	Node	Element	Property	BC/Mass	Stage	Load	I
	110	16 2	3世/	1 7 2	XAX	1 m	35	

รูปที่ 4.16.2 คำสั่ง Merge Element ในแถบเครื่องมือของ Element

Merge Elements	•
Merge Elements	•
-	_
Start Number	
Node Number · 1537	-
Element Number : 2617	

รูปที่ 4.16.3 ขั้นตอนของคำสั่ง Merge Element ในหน้าต่าง Tree Menu

(72)

รูปที่ 4.16.4 แบบจำลองโมเดลเมื่อแล้วเสร็จ

4.17) สร้างแบบจำลองโมเดลของโครงสร้างช่วยรับ Truss T1

0 เลือกแสดงเฉพาะโมเดลของระนาบ XZ Plane

• คลิกที่คำสั่ง Select by Plane จากนั้นให้ไปยังหน้าต่างของ Model View

รูปที่ 4.17.1 คำสั่ง Select by Plane ในแถบเครื่องมือของ Selection

จากนั้นทำการเลือกโมเคลในลักษณะระนาบ 2 มิติ (Plane) ซึ่งสามารถเลือกได้ 4 แบบคือ
 คลิกเลือกที่ XZ Plane เพื่อกำหนดระนาบที่ต้องการจะเลือก
 คลิกที่ช่อง Y Position เพื่อที่จะเลือก Node ของบริเวณที่ต้องการตามรูป

Plane Volume	-		
C 3 Points	1		
C XY Plane	(Z Plane	C YZ Plane	ļ
Y Position	34500	mm	
	2		

(73)

รูปที่ 4.17.2 หน้าต่าง Plane & Volume Select ของคำสั่ง Select by Plane

รูปที่ 4.17.3 ตำแหน่งที่ต้องการในระนาบ XZ Plane

 คลิกที่กำสั่ง Activate ในแถบเครื่องมือของ Activation ให้เลือกแสดงเฉพาะ โมเคลของระนาบ XZ Plane เท่านั้น

รูปที่ 4.17.4 คำสั่ง Activate ในแถบเครื่องมือของ Activation

 คลิกที่กำสั่ง Front ในแถบเครื่องมือของของ View Point เพื่อปรับมุมมองของการแสดงภาพ ให้อยู่ในลักษณะมองมาจากด้านหน้า

(74)

รูปที่ 4.17.5 คำสั่ง Front ในแถบเครื่องมือของ View Point

O แบ่งช่วงของเสาด้วยด้วยคำสั่ง Translate Node เพื่อสร้างแบบจำลองของคานรับ Truss

ในการแบ่งช่วงของเสาสามารถทำใด้โดยการคัดลอก Node ด้วยกำสั่ง Translate Node โดย สามารถกำหนดระยะทางตามแนวแกน (x, y, z) ได้

 คลิกที่คำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อทำการคลิก เลือก Node ในวงกลมสีแดง

รูปที่ 4.17.7 ตำแหน่งของ Node ที่ต้องการ

• คลิกที่คำสั่ง Translate Node จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Node

Wizard Node | Element | Property | BC/Mass | Stage | **/ ℃** 🖓 🏼 🏑 🔸 🗶 🗶 🕸 °° •°

(75)

รูปที่ 4.17.8 คำสั่ง Translate Node ในแถบเครื่องมือของ Node

• หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Translate Node

2

3

5

6

คลิกเลือก Unequal Distance เพื่อเลือกแกนที่ต้องการจะคัคลอก Node

📕 ในกรอบของ Axis: คลิกเลือกในช่องของแกน Z

🖵 ในกรอบของ Distance: คลิกพิมพ์ระยะทางดังนี้ 11800, 4626

- คลิกเลือก Merge Duplicate Nodes :
- คลิกเลือก Intersect Frame Elements :

คลิกที่ปุ่ม Apply เพื่อทำการกัดลอกโมเคลในหน้าต่างของ Model View

Tree Menu	т×		
Node Element Boun M	lass Load (ช่วงบน)	
Translate Nodes			4 Arbitrary
Start Node Number : 15	37		Distance : 11300,4626 mm
	e		(Example: 5, 3, 4.5, 3@5.0)
Translation			0, 0 5 mm
C Equal Distance			Merge Duplicate Nodes
d 2 0, 0, 0	nam		Copy Node Attributes
			✓ Intersect Frame Elements
Axis: C X C Y		(ช่วงล่าง)	6 Appy Glose

รูปที่ 4.17.9 ขั้นตอนการใช้คำสั่ง Translate Node ในหน้าต่างของ Tree Menu

(76)

รูปที่ 4.17.10 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

0 สร้างแบบจำลองโมเดลของคานรับ Truss ด้วยคำสั่ง Create Element

แบบจำลองโมเคลของคานรับ Truss จะมีอยู่ 2 แถวที่ระยะ 11,800 มม และ 4,626 มม จาก ระดับพื้นชั้นล่างทั้งสองค้านของตัวอาการ

Wizard | Node Element | Property | BC/Mass | Stage | Load |

รูปที่ 4.17.11 คำสั่ง Create Element ในแถบเครื่องมือของ Element

• หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงบน)

ป ในกรอบของ Element Type ให้คลิกเลือกเป็น General beam/Tapered beam

หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Create Element (ช่วงถ่าง)

ปี ในกรอบของ Section ให้เลือกเป็น 5: P 216.3x8 หรือจะระบุเป็นรหัส ID ก็ได้

- 2 คลิกเลือก Ortho หมายถึงให้ตอนสร้างให้ขนานกับแกนทั้งสาม (x ,y ,z)
- 3 คลิกเลือกในช่อง Nodal Connectivity เพื่อเริ่มต้นการจำลองโมเคล

(77)

รูปที่ 4.17.12 คำสั่ง Create Element ที่อยู่ใน Tree Menu

รูปที่ 4.17.13 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

O สร้างแบบจำลองโมเดลเสาช่วยรับ Truss T1 ด้วยคำสั่ง Extrude Element

• เลือก Node ภายในวงกลมสีแดงทั้งหมดเพื่อทำการ Extrude จาก Node ให้เป็น Element

(78)

รูปที่ 4.17.15 แสดงตำแหน่งของ Node ที่จะใช้คำสั่ง Extrude Element

- หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Extrude Element (ช่วงบน)
 ในกรอบของ Extrude Type ให้เลือกเป็น Node -> Line Elem.
 กลิกเลือก Reverse I-J ในกรณีที่ Extrude Element ไปในทิศทางแกนลบเท่านั้น
 ในกรอบของ Element Attribute ให้เลือก Element Type : เป็น Beam
 ในกรอบของ Material: ให้เลือกเป็น 1: SS400 หรือจะระบุเป็นรหัส ID ก็ได้
 ในกรอบของ Section: ให้เลือกเป็น 7: P 101.6x5 หรือจะระบุเป็นรหัส ID ก็ได้
 หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Extrude Element (ช่วงถ่าง)
 - ในกรอบของ Generation Type คลิกเลือก Project
 - l ในกรอบของ Projection Type คลิกเลือก Project on a line
 - มี ในกรอบของ Base Line Definition คลิกเลือก P1 และ P2 ในหน้าต่าง Model View เพื่อ กำหนดขอบเขตที่ต้องการจะให้เสาวิ่งไปชนเส้นตรง P1 และ P2

(79)

รูปที่ 4.17.16 คำสั่ง Extrude Element เปลี่ยน Node เป็น Line Elem.

- คลิกเลือก Node ภายในวงกลมสีแดงทั้งหมดเพื่อทำการ Extrude จาก Node ให้เป็น Element

(80)

รูปที่ 4.17.19 แสดงตำแหน่งของ Node ที่จะใช้คำสั่ง Extrude Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Extrude Element (ช่วงบน)

2

3

4

1

2

ในกรอบของ Extrude Type ให้เลือกเป็น Node -> Line Elem.

คลิกเลือก Reverse I-J ในกรณีที่ Extrude Element ไปในทิศทางแกนลบเท่านั้น

ในกรอบของ Element Attribute ให้เลือก Element Type : เป็น Beam

ในกรอบของ Material: ให้เลือกเป็น 1: SS400 หรือจะระบุเป็นรหัส ID ก็ได้

ในกรอบของ Section: ให้เลือกเป็น 7: P 101.6x5 หรือจะระบุเป็นรหัส ID ก็ได้

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Extrude Element (ช่วงล่าง)

ในกรอบของ Generation Type คลิกเลือก Project

ในกรอบของ Projection Type คลิกเลือก Project on a line

ในกรอบของ Base Line Definition คลิกเลือก P1 และ P2 ในหน้าต่าง Model View เพื่อ กำหนดขอบเขตที่ต้องการจะให้เสาวิ่งไปชนเส้นตรง P1 และ P2

(81)

รูปที่ 4.17.20 คำสั่ง Extrude Element เปลี่ยน Node เป็น Line Elem.

รูปที่ 4.17.22 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

4.18) สร้างการเชื่อมต่อของแบบจำลองโมเดล ด้วยคำสั่ง Intersect Element

(82)

• คำสั่ง Intersect Element ในแถบเครื่องมือของ Element เป็นเครื่องมือที่สามารถ

Wizard | Node Element | Property | BC/Mass | Stage | Load | 11 2 4 → 3 日日 小 3 区 ○ 品 ※ → 3

รูปที่ 4.18.1 คำสั่ง Intersect Element ในแถบเครื่องมือของ Element

 คลิกที่กำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อเลือก แบบจำลองโมเคลตามรูป

รูปที่ 4.18.2 คำสั่ง Select by Window ในแถบเครื่องมือของ Selection

รูปที่ 4.18.3 แบบจำลองโมเดลที่ต้องการเลือก

 เมื่อเลือกแบบจำลองโมเคลตามรูปข้างต้นแล้วให้คลิก Apply ในกำสั่ง Intersect Element ใน หน้าต่างของ Tree Menu

(83)

	1	
tersect Eleme	nts	1
Estart Numb	er	
Node Number	: 15	51
Element Numb	er: 26	34
Intersect		
Tolerance :	0.9144	
	1 construction	

รูปที่ 4.18.4 คำสั่ง Intersect Element ในแถบเครื่องมือของ Element

รูปที่ 4.18.5 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

O แบ่งช่วงของเสาด้วยด้วยคำสั่ง Translate Node เพื่อสร้างแบบจำลองของคานยื่น

(84)

ในการแบ่งช่วงของเสาสามารถทำได้โดยการคัดถอก Node ด้วยคำสั่ง Translate Node โดย สามารถกำหนดระยะทางตามแนวแกน (x, y, z) ได้

 คลิกที่คำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อทำการคลิก เลือก Node ในวงกลมสีแดง

รูปที่ 4.18.6 คำสั่ง Select by Window ในแถบเครื่องมือของ Selection

คลิกที่คำสั่ง Translate Node จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Node

 Wizard	Node	Elemen	t Pri	operty	B	c/Ma	ss	Stage	e
 1 %	نە 🕑	8° • •	* >	κ 🔛	SILK A	(H2)	• •	•	

รูปที่ 4.18.8 คำสั่ง Translate Node ในแถบเครื่องมือของ Node

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Node
 - 1 ในกรอบของ Mode ให้เลือกเป็น Copy

2

5

คลิกเลือก Unequal Distance เพื่อเลือกแกนที่ต้องการจะคัคลอก Node

(85)

- 길 ในกรอบของ Axis: คลิกเลือกในช่องของแกน Z
- **4** ในกรอบของ Distance: คลิกพิมพ์ระยะทางคังนี้ 4838
 - คลิกเลือก Merge Duplicate Nodes :
 - คลิกเลือก Intersect Frame Elements :

6 คลิกที่ปุ่ม Apply เพื่อทำการคัดลอก โมเคลในหน้าต่างของ Model View

Tree Menu	μ×		
Node Element Boun M	ass Load (ช่วงบน)		
Translate Nodes	<u>•</u>		3 Arbitrary
Start Node Number : 15	62		Distance : 4888 mm
			(Example : 5, 3, 4.5, 3@5.0)
Translation			0,0,0 5 mm
C Equal Distance			Verge Duplicate Nodes
dx, dv, dz; 0, 0, 0	- em		Copy Node Attributes
Nur 2 FTimes : 1 =			✓ Intersect Frame Elements
Ounequal Distance	3	(22.22)	6 Anty Close
Axis: Cx Cy 📀		(D 140 14)	

รูปที่ 4.18.9 ขั้นตอนการใช้คำสั่ง Translate Node ในหน้าต่างของ Tree Menu

(86)

รูปที่ 4.18.10 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

O สร้างแบบจำลองโมเดลของคานยื่น ด้วยคำสั่ง Extrude Element

1	Wizard	Node	Element	Property	BC/Mass	Stage Lo	ad
	112	15 2		* 53 >	(AX)	n > >	

รูปที่ 4.18.11 คำสั่ง Extrude Element ในแถบเครื่องมือของ Element

คลิกเลือก Node ภายในวงกลมสีแดงเพื่อทำการ Extrude จาก Node ให้เป็น Element

รูปที่ 4.18.12 ตำแหน่งของ Node ที่ต้องการ

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Extrude Element (ช่วงบน)
 - 1 ในกรอบของ Extrude Type ให้เลือกเป็น Node -> Line Elem.
 - 2 คลิกเลือก Reverse I-J ในกรณีที่ Extrude Element ไปในทิศทางแกนลบเท่านั้น

(87)

- 3] ในกรอบของ Element Attribute ให้เถือก Element Type : เป็น Beam
 - 📕 ในกรอบของ Material: ให้เลือกเป็น 1: SS400 หรือจะระบุเป็นรหัส ID ก็ได้
 - ในกรอบของ Section: ให้เลือกเป็น 3: H 400x200x8/13 หรือจะระบุเป็นรหัส ID ก็ได้
- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Extrude Element (ช่วงล่าง)
 - [1] ในกรอบของ Translate คลิกเลือก Unequal Distance
 - 길 ในช่องของ Axis : คลิกเลือกแกน X

4

5

3 ในช่องของ Distance : พิมพ์ -8000 ต่อจากนั้นให้คลิกที่ปุ่ม Apply

Tree Menu	д х			
Node Element Boundary Mass	Load		Generation Type	
			Translate C Rotate C	Project
Extrude Elements	··· (¥	วงบน)	Translation	
Start Number			C Equal Distance	
Node Number : 1563				
Element Number : 2665	1		Unequal Distance	
Extrude Type			2	
Node -> Line Element	$\overline{\bigcirc}$		Axis: Ox Cy Cz C	Arbitrary
Source 2 Remove T Mov	re la		Distances : -8000 3	
Reverse I-J	3			-
Element Attribute			(Example: 5, 3, 4.5, 3@5.0)	-
Element Type: Beam			Direction Vector ;	-
Material :			0,0,0	mm
1 1: SS400 4	D1		1	-
Section :				
3 3: H 400x200x8/13	Ð		Merging Tolerance	
		(ช่วงล่าง)		-
Beta Angle : 0 5 T	Deg]		4 Apply	Close

รูปที่ 4.18.13 คำสั่ง Extrude Element เปลี่ยน Line Elem. เป็น Planar Elem.

(88)

รูปที่ 4.18.14 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

- O เคลื่อนย้ายตำแหน่งของ Node เพื่อทำให้คานยื่นทำมุมลงมาประมาณ 5 องศา
 - คลิกที่คำสั่ง Translate Node จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Node

รูปที่ 4.18.15 คำสั่ง Translate Node ในแถบเครื่องมือของ Node

• คลิกเลือก Node ภายในวงกลมสีแคงเพื่อทำการ Translate Node

รูปที่ 4.18.16 ตำแหน่งของ Node ที่ต้องการ

- หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Translate Node
 - ปี ในกรอบของ Mode ให้เลือกเป็น Move

2

5

คลิกเลือก Unequal Distance เพื่อเลือกแกนที่ต้องการจะคัดลอก Node

(89)

- 길 ในกรอบของ Axis: คลิกเลือกในช่องของแกน Z
- 실 ในกรอบของ Distance: คลิกพิมพ์ระยะทางดังนี้ -700
 - คลิกที่ปุ่ม Apply เพื่อทำการคัคลอกโมเคลในหน้าต่างของ Model View

Tree Menu	μ×				
Node Element Boun	Mass Load	(ช่วงบน)			
Translate Nodes	<u> </u>				
Start Node Number :	1564			Distance : (-700	
Mode	1			(Example: 5, 3, 4.5, 3@5.0))
Translation				Direction Vect	
C Equal Distance					mm
2 /dz: 0,0,0	1000			Merge Duplicate Nodes Coov Node Attributes	
Number of Times : 1				✓ Intersect Frame Elements	
Inequal Distance	3			E O	
Axis: Cx Cy (3		(ชวงลาง)		Close

รูปที่ 4.18.17 ขั้นตอนการใช้คำสั่ง Translate Node ในหน้าต่างของ Tree Menu

รูปที่ 4.18.18 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

4.19) แบ่งแยกแบบจำลองโมเดล ด้วยคำสั่ง Divide Element

 คลิกที่กำสั่ง Divide Element จะปรากฏ ขั้นตอนการใช้กำสั่ง Divide Elements ในหน้าต่างของ Tree Menu

(90)

รูปที่ 4.19.1 คำสั่ง Divide Elements ในแถบเครื่องมือของ Element

รูปที่ 4.19.2 ตำแหน่งของ Element ที่ต้องการ

- หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Divide Element
 - 🕌 ในกรอบของ Element Type ให้เลือกเป็น Frame
 - 길 คลิศ

3

- กลิกเลือก Unequal Distance เพื่อกำหนดระยะทางที่ต้องการแบ่งแยก Element
- ในกรอบของ X: ให้พิมพ์ระยะทางคังนี้ 2500 จากนั้นให้คลิกที่ปุ่ม Apply

(91)

รูปที่ 4.19.3 ขั้นตอนการใช้คำสั่ง Divide Element ในหน้าต่างของ Tree Menu

รูปที่ 4.19.4 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

O สร้างแบบจำลองโมเดลของ Truss ที่ช่วยรับแรงดึงของคานยื่น

Wizard | Node Element | Property | BC/Mass | Stage | Load |

รูปที่ 4.19.5 คำสั่ง Create Element ในแถบเครื่องมือของ Element

• หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงบน)

1

ในกรอบของ Element Type ให้คลิกเลือกเป็น Truss

หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Create Element (ช่วงล่าง)

ในกรอบของ Material ให้เลือกเป็น 1: SS400 หรือจะระบุเป็นรหัส ID ก็ได้
 ในกรอบของ Section ให้เลือกเป็น 6: P 139.8x6 หรือจะระบุเป็นรหัส ID ก็ได้
 กลิกเลือกในช่อง Nodal Connectivity เพื่อเริ่มต้นการจำลองโมเคล

(92)

รูปที่ 4.19.6 คำสั่ง Create Element ที่อยู่ใน Tree Menu

รูปที่ 4.19.7 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ
- O สร้างแบบจำลองโมเดลของคานยื่น ด้วยคำสั่ง Mirror Elements
 - คลิกที่กำสั่ง Front ในแถบเครื่องมือของของ View Point เพื่อปรับมุมมองของการแสดงภาพ ให้อยู่ในลักษณะมองมาจากด้านหน้า

(93)

รูปที่ 4.19.8 คำสั่ง Front ในแถบเครื่องมือของ View Point

คลิกที่คำสั่ง Mirror Elements จะปรากฏ ขั้นตอนการใช้กำสั่ง Mirror Elements

Wizard | Node Element | Property | BC/Mass | Stage | Load

รูปที่ 4.19.9 คำสั่ง Mirror Elements ในแถบเครื่องมือของ Element

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Mirror Elements
 - ในกรอบของ Mode ให้เลือกเป็น Copy

1

2

3

- ในกรอบของ Reflection ให้คลิกเลือก y-z plane X:
- ในช่อง Intersect ให้กลิกเลือก Node และ Element
 - คลิกเลือก Copy Node Attributes :
 - คลิกเลือก Copy Element Attributes :
 - กลิกเลือก Mirror Beta Angle :
 - คลิกเลือก Reverse Element Local :

4 คลิกเลือกในช่องของ y-z plane X: จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อคลิก ที่ตำแหน่งกึ่งกลางของแกน X ในหน้าต่าง Model View จากนั้นคลิกปุ่ม Apply

(94)

รูปที่ 4.19.10 คำสั่ง Mirror Elements ในแถบเครื่องมือของ Element

รูปที่ 4.19.12 แบบจำลองโมเดลเมื่อดำเนินการแล้วเสร็จ

O คัดลอกแบบจำลองของโครงสร้างช่วยรับ Truss T1 ด้วยคำสั่ง Translate Elements

(95)

 คลิกที่กำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อเลือก Element ที่ต้องการคัดลอก

รูปที่ 4.19.14 ตำแหน่งที่ต้องการเลือก

 คลิกที่คำสั่ง Translate Elements จะปรากฏ ขั้นตอนการใช้คำสั่ง Translate Elements ใน หน้าต่างของ Tree Menu

รูปที่ 4.19.15 คำสั่ง Translate Elements ในแถบเครื่องมือของ Element

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Elements

ในกรอบของ Mode ให้เลือกเป็น Copy

คลิกเลือก Unequal Distance

1

2

5

6

길 ในช่อง Axis : คลิกเลือกแกน Y

4] ในช่อง Distance : พิมพ์ 2@17250

ในช่อง Intersect ให้คลิกเลือก Node และ Element

- คลิกเลือก Copy Node Attributes :

- คลิกเลือก Copy Element Attributes :

คลิกที่ปุ่ม Apply เพื่อทำการคัคลอก โมเคลในหน้าต่างของ Model View

(96)

out Elamente boomdary)		C Arbitrary	
ranslate Elements	I de la companya de l	Distances ; 2@17	'250 mm
Estart Number		(Example : 5, 3, 4.5	, 3@5.0) 4
Node Number : 1568		Direction Vector :	
Element Number : 2672		0, 0, 0	mm
		Material Inc. :	⇒ r Rep.
	e	Section Inc. :) ≟ ⊢ Rep.
Translation		Thickness Inc. : 0	T Rep.
Node Increment	H	T 5 Free Node	5
Number of Times : 1	3	Intersect 🔽 Node	🔽 Elem 🔐
C Equal Distance		(Copy Node Attrib	utes
2 W,dz: 0,0,0	nam	Copy Element Att	ributes
Number of Times : 1	골	Merging To	lerance
Unequal Distance	-	(ช่วงล่าง) 🗖 🗖 🔿	1

รูปที่ 4.19.16 ขั้นตอนการใช้คำสั่ง Translate Elements ในหน้าต่างของ Tree Menu

(97)

รูปที่ 4.19.17 แบบจำลองโมเดลหลังจากใช้คำสั่ง Translate Elements

O คัดลอกแบบจำลองของคานยื่นด้วยคำสั่ง Translate Elements

 คลิกที่กำสั่ง Select by Window จากนั้นให้ไปยังหน้าต่างของ Model View เพื่อเลือก Element ที่ต้องการคัดลอก

รูปที่ 4.19.18 คำสั่ง Select by Window ในแถบเครื่องมือของ Selection

• ในหน้าต่าง Model View ให้คลิกเลือกไปตามตำแหน่ง Element ที่เป็นสีชมพู

รูปที่ 4.19.14 ตำแหน่งที่ต้องการเลือก

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Translate Elements

ในกรอบของ Mode ให้เลือกเป็น Copy

คลิกเลือก Unequal Distance

1

2

5

6

길 ในช่อง Axis : คลิกเลือกแกน Y

4] ในช่อง Distance : พิมพ์ 4@8625

ในช่อง Intersect ให้คลิกเลือก Node และ Element

- คลิกเลือก Copy Node Attributes :

- คลิกเลือก Copy Element Attributes :

คลิกที่ปุ่ม Apply เพื่อทำการคัคลอก โมเคลในหน้าต่างของ Model View

(98)

and the second s		ALDID BY	
ranslate Elements		Distances : 40862	5 mm
Estart Number		(Example : 5, 3, 4.5,	3@5.0) 4
Node Number : 1568	l	Direction Vector :	
Element Number : 2672		0,0,0	mm
1	-	Material Inc. : 0	⇒ r Rep.
Mode Opy C Move		Section Inc. : 0	∃ □ Rep.
Translation		Thickness Inc. : 0	∃ □ Rep.
Number of Times : 1			Elem
C Equal Distance		Copy Node Attribut	es
2 1y,dz: 0,0,0	mm	Copy Element Attri	outes
Number of Times : 1 -	a	(atagana) Merging Tole	rance
Inequal Distance	-		

รูปที่ 4.19.20 ขั้นตอนการใช้คำสั่ง Translate Elements ในหน้าต่างของ Tree Menu

(99)

รูปที่ 4.19.21 แบบจำลองโมเดลหลังจากใช้คำสั่ง Translate Elements

O สร้าง Element ปิดพื้นที่ๆ ต้องการใช้ Floor Load ด้วยคำสั่ง Create Element

รูปที่ 4.19.22 คำสั่ง Create Element ในแถบเครื่องมือของ Element

- หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Create Element (ช่วงบน)
 ในกรอบของ Element Type ให้คลิกเลือกเป็น General beam/Tapered beam
- หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Create Element (ช่วงล่าง)

🔟 ในกรอบของ Material ให้เลือกเป็น 2: C210 หรือจะระบุเป็นรหัส ID ก็ได้

- 길 ในกรอบของ Section ให้เลือกเป็น 9: null หรือจะระบุเป็นรหัส ID ก็ได้
 - 📕 คลิกเลือก Ortho หมายถึงให้ตอนสร้างให้ขนานกับแกนทั้งสาม (x ,y ,z)
 - 📕 คลิกเลือกในช่อง Nodal Connectivity เพื่อเริ่มต้นการจำลองโมเคล

(100)

รูปที่ 4.19.23 คำสั่ง Create Element ที่อยู่ใน Tree Menu

 ให้เริ่มสร้าง Element ปิดพื้นที่ๆ ต้องการใช้ Floor Load ตามตำแหน่งของวงกลมสีแดง โดย ลากจากหมายเลข 1-2, 3-4, 5-6, 7-8, 9-10 จำนวน 5 Element

รูปที่ 4.19.24 รูปภาพแสดงตำแหน่งที่ต้องสร้างเสาเหล็กเพิ่ม

(101) ตัวอย่างการออกแบบโดยโปรแกรมไมคาส เจน รุ่น 721 (หมายเลข 3) MIDAS Gen V.721 (Release No.3)

รูปที่ 4.19.25 แบบจำลองโมเดลเมื่อแล้วเสร็จ

<u>บทที่ 5</u> การวิเคราะห์และออกแบบโรงงานโครงสร้างเหล็ก

5.1) กำหนดลักษณะของฐานราก ด้วยคำสั่ง Support

0 เลือกแสดงเฉพาะโมเดลของระนาบ XY Plane

• คลิกที่คำสั่ง Select by Plane จากนั้นให้ไปยังหน้าต่างของ Model View

รูปที่ 5.1.1 คำสั่ง Select by Plane ในแถบเครื่องมือของ Selection

จากนั้นทำการเลือกโมเคลในลักษณะระนาบ 2 มิติ (Plane) ซึ่งสามารถเลือกได้ 4 แบบคือ

🔟 คลิกเลือกที่ XY Plane เพื่อกำหนดระนาบที่ต้องการจะเลือก

คลิกที่ช่อง Z Position เพื่อที่จะเลือก Node ของบริเวณที่ต้องการตามรูป

Plane Volume	Plane & Volume	Select-(Model View)	(
C 3Points 1	Plane Volume	1		
(Y Plane C XZ Plane C YZ Plane	C 3 Points	1 C XZ Plane	C YZ Plane	

รูปที่ รูปที่ 5.1.2 หน้าต่าง Plane & Volume Select ของคำสั่ง Select by Plane

รูปที่ 5.1.3 ตำแหน่งที่ต้องการในระนาบ XY Plane

O กำหนดลักษณะของฐานราก ด้วยคำสั่ง Support

รูปที่ 5.1.4 คำสั่ง Support ในแถบเครื่องมือของ BC/Mass

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Support (ช่วงบน)

💷 ในกรอบของ Optionให้คลิกเลือกเป็น Add

หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Support (ช่วงล่าง)

💷 คลิกเลือกที่ D-ALL แสดงว่าให้พิจารณาแรงกระทำทั้ง 3 แกนแต่ไม่พิจารณาโมเมนต์

2 กลิกที่ปุ่ม Apply เพื่อทำการสร้างจุด Support ในหน้าต่างของ Model View

(104)

รูปที่ 5.1.5 คำสั่ง Support ที่อยู่ใน Boundary

รูปที่ 5.1.6 แบบจำลองโมเดลเมื่อแล้วเสร็จ

5.2) กำหนดลักษณะของน้ำหนักบรรทุกที่มากระทำกับแบบจำลองโมเดล

- o จัดกลุ่มลักษณะของน้ำหนักบรรทุกที่มากระทำ
 - คลิกที่คำสั่ง Static Load Cases จากนั้นให้ไปยังหน้าต่างของ Static Load Cases

Wizard | Node | Element | Property | BC/Mass | Stage Load | Building | S

รูปที่ 5.2.1 คำสั่ง Static Load Cases ในแถบเครื่องมือของ Load

 ในหน้าต่างของ Static Load Cases สามารถกำหนดประเภทของน้ำหนักบรรทุกได้ หลากหลาย ตามประเภทของการใช้งานจริง ซึ่งจะส่งผลกับค่าตัวคูณเพิ่มกำลัง สามารถแบ่งได้ 3 ประเภท ดังนี้

Name:	Туре:	Remark:
DL	Dead Load (D)	น้ำหนักบรรทุกคงที่
LL	Live Load (L)	น้ำหนักบรรทุกจร
WX	Wind Load on Structure(W)	แรงลมกระทำทางแกน X

คลิกในช่องของ Name: เพื่อตั้งชื่อของประเภทของน้ำหนักบรรทุก
 คลิกเลือก Type: ประเภทของน้ำหนักบรรทุกที่มากระทำกับแบบจำลองโมเคล

Ice Pressure (IP) Earth Pressure (EP) Horizontal Earth Pressure (EH) Vertical Earth Pressure (EV) Ground Water Pressure (EV) Fluid Pressure (FP) Stream Flow Pressure (SF) Buoyancy (B) Creep (CR) Shrinkage (SH) Temperature (T) Prestress (PS) Construction Stage Load (CS)

Construction Stage Load (CS) Erection Load (ER) Live Load Impact (IL) Longitudinal Force from Live Load (BK) Wind Load on Live Load (WL) Centrifugal Force (CF) Collision Load (CO) Rib Shortening (RS)

รูปที่ 5.2.2 คำสั่ง Static Load Cases ในหมวดของ Type ที่สามารถเลือกได้

길 คลิกที่ปุ่ม Add เพื่อเพิ่มประเภทของน้ำหนักบรรทุก

atic Load C Name Type	ases : Wy C : Wind Load	1) I on Structure (W)	3 Add Modify
Description	1: Name	Туре	Description
	1 DL	Dead Load (D)	
1	2 LL	Live Load (L)	
	3 Wx	Wind Load on Structure (W)	

(106)

รูปที่ รูปที่ 5.2.3 หน้าต่างของคำสั่ง Static Load Cases

เพิ่มน้ำหนักบรรทุกคงที่ (น้ำหนักบรรทุกตัวเอง)

• คลิกที่คำสั่ง Self Weight จากนั้นให้ไปยังหน้าต่างของของ Static Load Cases

รูปที่ 5.2.4 คำสั่ง Self Weight ในแถบเครื่องมือของ Load

• หน้าต่างของ Tree Menu ในส่วนของกำสั่ง Self Weight (ช่วงบน)

ป ในกรอบของ Load Case Name ให้คลิกเลือกเป็น DL เพราะต้องการให้น้ำหนักบรรทุก ตัวเอง

(Self Weight) ไปอยู่ในกลุ่มของน้ำหนักบรรทุกคงที่ (DL)

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Self Weight (ช่วงล่าง)

ในกรอบของ Z ให้พิมพ์ -1 หมายความว่าให้เพิ่มน้ำหนักบรรทุกตัวเอง (Self Weight) หนึ่งเท่าตามแรงโน้มถ่วงของโลก คลิกที่ปุ่ม Add เพื่อเพิ่มน้ำหนักบรรทุกตัวเอง (Self Weight)

🗿 คลิกที่ปุ่ม Close เพื่อออกจากคำสั่ง Self Weight ในหน้าต่าง Tree Menu

Tree Menu	ά×	,	x
Node Element Boundary	Mass Load (1	้วงบน)	Y D
Self Weight	e i		z (1) 1
Load Case Name			Load Case X Y Z Group
DL			
Load Group Name			
Default	<u> </u>		* m •
Self Weight Factor			Operation
Wgt.Z W	gt.Y		Add Modify Delete
Z Y		(ช่วงล่าง)	2 3 000

รูปที่ 5.2.5 ขั้นตอนของคำสั่ง Self Weight ใน Tree Menu

0 เพิ่มน้ำหนักบรรทุกของหลังคาโรงงาน ด้วยคำสั่ง Assign Floor Loads

เปลี่ยนหน่วยที่ใช้ในการออกแบบในส่วนของหน่วยของแรงเป็น kg และหน่วยวัคความยาว
 เป็น m

รูปที่ 5.2.6 การเปลี่ยนหน่วยที่ใช้ออกแบบ

คลิกที่คำสั่ง Assign Floor Loads จากนั้นให้ไปยังหน้าต่างของ Tree Menu

รูปที่ 5.2.7 คำสั่ง Assign Floor Loads ในแถบเครื่องมือของ Load

• หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Assign Floor Loads (ช่วงบน)

คลิกที่ Floor Load Type เพื่อกำหนดน้ำหนักบรรทุกแบบรวมทั้ง น้ำหนักบรรทุกคงที่
 (DL) และ น้ำหนักบรรทุกจร (LL)

ตั้งชื่อน้ำหนักบรรทุกแบบในช่องของ Name: โดยพิมพ์ว่า Roof

1

ในกรอบของ Floor Load & Load Case ให้กำหนดค่าดังต่อไปนี้

Load Case	Floor Load	Remark
DL	-20	น้ำหนักบรรทุกคงที่ของโครงหลังคา
LL	-30	น้ำหนักบรรทุกจรของโครงหลังคา

คลิกที่ปุ่ม Add เพื่อเพิ่ม Floor Load Type

Description : Floor Load & Load Case Load Case 1. DL 2. LL 2. LL 3. LL 4. Sub Bea 3. Sub Bea 5. Sub Bea	m Weight
Floor Load & Load Case 2 Load Case Floor Load 2 1, DL -20 kqf/m^2 IV Sub Bea 2. LL -30 kqf/m^2 IV Sub Bea	m Weight
Load Case Floor Load 2 1. DL -20 kqf/m^2 IV Sub Bea 2. LL -30 kqf/m^2 Sub Bea	m Weight
1. DL -20 kqf/m^2 I✓ Sub Bea 2. LL -30 kqf/m^2 ✓ Sub Bea	m Weight
2. LL -30 kqf/m^2 \ Sub Bea	
	m Weight
3. NONE ▼ 9 kqf/m^2 Sub Bea	m Weight
4. NONE 💌 🛛 📖 kaf/m^2 🗆 Sub Bea	im Weight
Define Load Case	
I Maria I December I	Add

รูปที่ 5.2.8 ขั้นตอนของคำสั่ง Floor Load Type

2 ในกรอบของ Distribution: ให้กลิกเลือก One Way คือถ่ายน้ำหนักทางเดียว

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Assign Floor Loads (ช่วงล่าง)

ปี ในกรอบ No. of Sub Beams: ให้พิมพ์เลข 5 หมายความว่าต้องการให้มีจันทันในช่อง ของ Floor Load จำนวน 5 ท่อนเป็นลักษณะ Point Load

2 ในกรอบ Sub-Beam Angle(A2): หมายความว่าต้องการให้จันทันทำมุม 0 องศากับแนว การกำหนดขอบเขตของ Floor Load

อาการกลิกที่ช่องของ Node Defining Loading Area คือต้องกำหนดพื้นที่ของ Floor Load โดย การกลิกที่ Node ในหน้าต่าง Model View

Tree Menu	д х		
Node Element Boundary Mass Load	ป (หวง	งบน)	
Assign Floor Loads	Î		
Floor Load Type	E		Unmodeled Sub-Beam No. of Sub Beams : 1 5 + Sub-Beam Angle(A2): 0 • Unit Self Weight: 0 kgf/m 2 Load Direction & Projection
Allow Polygon Type Unit Area		(ช่วงถ่าง)	Load Direction : Global Z Projection : Yes No Description: Nodes Defining Loading Area: 3

รูปที่ 5.2.9 ขั้นตอนของคำสั่ง Assign Floor Loads ใน Tree Menu

ตำแหน่งที่ต้องคลิกเพื่อกำหนดพื้นที่ของกำสั่ง Assign Floor Loads คือ 1,2,3,4 และ 5,6,7,8
 ตามลำดับ

รูปที่ 5.2.10 แสดง Node พื้นที่ของคำสั่ง Assign Floor Loads

(111) ด้วอข่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมาขเลข 3) MIDAS Gen V.721 (Release No.3)

รูปที่ 5.2.11 การเพิ่มน้ำหนักบรรทุกแบบ Assign Floor Loads เมื่อแล้วเสร็จ

ตำแหน่งที่ต้องคลิกเพื่อกำหนดพื้นที่ของคำสั่ง Assign Floor Loads คือ 1,2,3,4 และ 5,6,7,8
 ตามลำดับ

รูปที่ 5.2.12 แสดง Node พื้นที่ของคำสั่ง Assign Floor Loads

รูปที่ 5.2.13 การเพิ่มน้ำหนักบรรทุกแบบ Assign Floor Loads เมื่อแล้วเสร็จ

ตำแหน่งที่ต้องคลิกเพื่อกำหนดพื้นที่ของคำสั่ง Assign Floor Loads คือ 1,2,3,4 และ 5,6,7,8
 ตามลำดับ

รูปที่ 5.2.14 แสดง Node พื้นที่ของคำสั่ง Assign Floor Loads

(113)

รูปที่ 5.2.15 การเพิ่มน้ำหนักบรรทุกแบบ Assign Floor Loads เมื่อแล้วเสร็จ

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Assign Floor Loads (ช่วงบน)

ในกรอบของ Floor Load Type: ให้คลิกเลือก Roof

1

2 ในกรอบของ Distribution: ให้คลิกเลือก One Way คือถ่ายน้ำหนักทางเดียว

หน้าต่างของ Tree Menu ในส่วนของคำสั่ง Assign Floor Loads (ช่วงถ่าง)

ในกรอบ No. of Sub Beams: ให้พิมพ์เลข 3 หมายความว่าต้องการให้มีจันทันในช่อง ของ Floor Load จำนวน 3 ท่อนเป็นลักษณะ Point Load

น้ำ ในกรอบ Sub-Beam Angle (A2): หมายความว่าต้องการให้จันทันทำมุม 0 องศากับแนว การกำหนดขอบเขตของ Floor Load

คลิกที่ช่องของ Node Defining Loading Area คือต้องกำหนดพื้นที่ของ Floor Load โดย การคลิกที่ Node ในหน้าต่าง Model View

รูปที่ 5.2.16 ขั้นตอนของคำสั่ง Assign Floor Loads ใน Tree Menu

ตำแหน่งที่ต้องคลิกเพื่อกำหนดพื้นที่ของกำสั่ง Assign Floor Loads คือ 1,2,3,4 และ 4,3,5,6
 ตามลำดับ

รูปที่ 5.2.17 แสดง Node พื้นที่ของกำสั่ง Assign Floor Loads

(115)

รูปที่ 5.2.18 การเพิ่มน้ำหนักบรรทุกแบบ Assign Floor Loads เมื่อแล้วเสร็จ

- 0 กำหนดความสูงแต่ละชั้นของโรงงานด้วยคำสั่ง Story Data
 - คลิกที่กำสั่ง Story Data จากนั้นให้ไปยังหน้าต่างของ Story Data เพื่อกำหนดความสูงแต่ละชั้น ของโรงงานที่จะพิจารณาแรงลม

รูปที่ 5.2.19 คำสั่ง Story Data ในแถบเครื่องมือของ Building

 คลิกที่คำสั่ง Auto Generate Story Data... เพื่อกำหนดความสูงแต่ละชั้นของโรงงานแบบ อัตโนมัติ

ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3) MIDAS Gen V.721 (Release No.3)

Name	Level(m)	Height(m)	Floor Diaphragm
ŧ			

(116)

รูปที่ 5.2.20 ขั้นตอนของคำสั่ง Story Data

หน้าต่างของ Auto Generate Story Data... ในส่วนของคำสั่ง Story Data

ในช่อง Selected List ให้กลิกที่ No: 1 Name: 1F จากนั้นให้เลื่อน Scroll Bar ลงมากด Shift ที่แป้นพิมพ์หลังจากนั้นให้กลิกที่ No: 72 Name: Roof

คลิกที่ปุ่มเพื่อส่งข้อมูลกลับไปยังช่องของ Unselected List เพื่อไม่เลือกทั้งหมด

ตัวอย่างการออกแบบโดยโปรแกรมใมดาส เจน รุ่น 721 (หมายเลข 3)

MIDAS Gen V.721 (Release No.3)

(117)

รูปที่ 5.2.21 ขั้นตอนของคำสั่ง Auto Generate Story Data...

1 ในช่อง Unselected List ให้กด Ctrl ที่แป้นพิมพ์ค้างไว้จากนั้นคลิกที่ No: 1, 2, 5, 16 และ 72 2

กลิกที่ปุ่มเพื่อส่งข้อมูลไปยังช่องของ Selected List เพื่อเลือกเฉพาะบางส่วน

utomatic Generation of	Story Data	f Story Data			
Unselected List	Selected List	Select	ted List		
No Level +	1 No Name	No	Name	Level	Height
1 0		1	1F	0	4.138
2 2 E		2	2F	4.138	0.7
3 4.275		5	3F	4.838	8.531
4 4.35592		16	4F	13.369	6.9355
5 4,838		72	Roof	20.3045	0
6 7.675					
7 44 005					

รูปที่ 5.2.22 ขั้นตอนของคำสั่ง Auto Generate Story Data...

(118) ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3) MIDAS Gen V.721 (Release No.3)

round Level				
0 m				
Name	Level(m)	Height(m)	Floor Diaphragm	
Roof	20.30	0.00	Consider	
4F	13.37	6.94	Consider	
3F	4.84	8.53	Consider	
2F	4.14	0.70	Consider	
10	0.00	1 11	Do not consider	

รูปที่ 5.2.23 ขั้นตอนของคำสั่ง Story Data เมื่อแล้วเสร็จ

• กลิกที่กำสั่ง Display Story Numbers เพื่อแสดงหมายเลขชั้นของโรงงาน

Freque	Grid/Snap UCS/GCS	View C	Activation
	🕻 🛦 🧟 🖵 🔂		

รูปที่ 5.2.24 คำสั่ง Display Story Numberรในแถบเครื่องมือของ View Control

รูปที่ 5.2.25 หมายเลขชั้นของโรงงานที่แสดงด้วยคำสั่ง Display Story Numbers

0 เพิ่มแรงลมที่มากระทำกับแบบจำลองโมเดล

หน้าต่างของ Tree Menu ในส่วนของแถบ Menu ดับเบิ้ลกลิกที่ Static Loads และดับเบิ้ลกลิกที่
 Wind Load จากนั้นจะปรากฏหน้าต่างของ Wind Load ให้กลิกที่ปุ่ม Add

รูปที่ 5.2.26 คำสั่ง Wind Load ในหน้าต่าง Tree Menu

- หน้าต่าง Add/modify Wind Load Specification กำหนดแรงถมมากระทำทางด้านแกน X
 - ปี ในกรอบของ Load Case Name ให้คลิกเลือกเป็น WX
 - 2 ในกรอบของ Wind Load Code ให้คลิกเลือก UBC (1997)

ในกรอบของ Wind Load Parameters

- O Exposure Category: ให้กำหนดลักษณะภูมิประเทศแบบที่ราบและทุ่งโล่งเลือก C
- O Basic Wind Speed: ให้กำหนดความเร็วลมที่ 80 mile/h

- O Importance Factor(I): ให้กำหนดความสำคัญของอาคารใช้งานทั่วไปมีค่าเท่ากับ 1
- O Mean Roof Height: ความสูงทั้งหมดของโรงงานจะได้จากคำสั่ง Story Data

4 ในกรอบของ Wind Load Direction Factor (Scale Factor) เป็นการกำหนดทิศทางของ แรงถมที่มากระทำโดยต้องสัมพันธ์กับ Load Case Name คือ

O WX จะกำหนดให้มีค่า X-Dir. เท่ากับ 1 และ ค่า Y-Dir. เท่ากับ 0

5] คลิกที่ปุ่ม Wind Load Profile... เพื่อแสดงค่าที่ได้จากการคำนวณของ Code UBC

(1997)

🚺 คลิกที่ปุ่ม OK เมื่อการเพิ่มแรงลมแล้วเสร็จ

ad Case Name : WX ind Load Code : UBC(199	1 97) O		Wind Load X-Dir.	Direction F	actor (Scal	e Factor) Z-Rot	0
escription :		2	Additional	Wind Loads	5		
Projected Area Method	Normal Force M	Method	Story	AddX	AddY	AddRZ	Add
Vind Load Parameters	~						
Exposure Category :	c 🧲		5			5	
Basic Wind Speed :	80	mile/h			_	_	Delete
Importance Factor(I) :	1		Windlins	ad Profile	7 6		
			Wing Loa	or Frome and		Cance	Appi

รูปที่ 5.2.27 ขั้นตอนของคำสั่ง Add/modify Wind Load Specification

Component (* X-Dir (* Y-Dir (* X & Y Dir (* SRSS			Story Force Story Shear Overturning Moment			Roof 4F		
Story Name	Elev.	Pres	sure	Loaded H	Loader A			
Roof	20.3045	152.2	9937	3.46775	34.5	> SF		
4F	13.369	152.2	9937	7.73325	34.5	5		
3F	4.838	143.9	7754	4.6155	34.5			
2F	4.138	127.2	6138	2.419	34.5	25	Sec. 1997 1994	
G.L.	0.0	126.4	7872	2.069	34.5			
۷.L.	m	120.4	1012	2.009	34.3 •	G.L.		

รูปที่ 5.2.28 หน้าต่างแสดงค่าของ Wind Load Profile

• รายการคำนวณในส่วนของแรงถมที่แสดงด้วยคำสั่ง Make Wind Load Calc. Sheet

WIND LOADS BASED ON UBC1997 (Normal Force Method) [UNIT: kgf, m] Design Wind Loads : F = p * Area Design Wind Pressure : p = Cel*Cql*qs*Iw-Ce2*Cq2*qs*Iw Exposure Category : C : V Basic Wind Speed [mph] = 80.00 : Iw = 1.00 Importance Factor Windward Pressure Coefficient : Cq1 = 0.80: Cq2 = -0.50Leeward Pressure Coefficient : qs = 16.40 Wind Stagnation Pressure [psf] Scale Factor for X-directional Wind Loads : SFx = 1.00 Scale Factor for Y-directional Wind Loads : SFv = 0.00Wind force of the specific story is calculated as the sum of the forces of the following two parts. 1. Part I : Lower half part of the specific story 2. Part II : Upper half part of the just below story of the specific story The reference height for the calculation of the wind pressure related factors are, therefore, considered separately for the above mentioned two parts as follows. Reference height for the wind pressure related factors(except topographic related factors) Part I : top level of the specific story
 Part II : top level of the just below story of the specific story ** Combined Height, Exposure and Gust Factor Coefficients at Windward and Leeward Walls (Ce1, Ce2) STORY Ce1 Ce2 NAME (Windward) (Leeward) 1.463 1.463 Roof 4E 1.463 1.463 3F 1.333 1.463 2E 1.072 1.463 1.060 1.463 1 F ** Story Force = Wind Force x Scale Factor + Added Force ** Story Torsion = Wind Torsion x Scale Factor + Added Torsion WIND LOAD GENERATION DATA X-DIRECTION STORY NAME PRESSURE ELEV. LOADED LOADED WIND ADDED STORY STORY OVERTURN 'G HEIGHT BREADTH FORCE FORCE FORCE SHEAR MOMENT _____ _____ Roof 152,2994 20,3045 3,46775 34.5 18220.697 0.0 18220.697 0.0 0.0 0.0 39408.397 18220.697 4F 152.2994 13.369 7.73325 34.5 39408.397 126369.65 3F 143.9775 4.838 4.6155 22724.381 0.0 22724.381 57629.094 618003.45 34.5 4.138 2.419 34.5 10564.796 80353.475 2F 127.2614 10564.796 0.0 674250.88

0.0

0.0

90918.27 1050470.7

G.L. 126.4787

0.0 2.069

34.5

	WI	N D L	OAD	GENE	RATI	ON DA	. T A Y -	DIREC	TION	
STORY	NAME	PRESSURE	ELEV.	LOADED HEIGHT	LOADED BREADTH	WIND FORCE	ADDED FORCE	STORY FORCE	STORY SHEAR	OVERTURN G MOMENT
	Roof	152.2994	20.3045	3.46775	0.0	0.0	0.0	0.0	0.0	0.0
	41	152.2994	13.369	7.73325	0.0	49130.897	0.0	0.0	0.0	0.0
	3F	143.9775	4.838	4.6155	80.0	52694.216	0.0	0.0	0.0	0.0
	2 F	127.2614	4.138	2.419	80.0	24498.077	0.0	0.0	0.0	0.0
	G.L.	126.4787	0.0	2.069	80.0	0.0	0.0		0.0	0.0
	W I	N D L	OAD	GENE	RATI	ON DA	TA RZ -	DIRE	CTION	
STORY	NAME	TORSIONAL PRESSURE	ELEV.	LOADED HEIGHT	LOADED BREADTH	WIND TORSION	ADDED TORSION	STORY TORSION	ACCUMULATED TORSION	
	Roof	0.0	20.3045	3.46775	34.5	0.0	0.0	0.0	0.0	
	4 E	0.0	13.369	7.73325	34.5	0.0	0.0	0.0	0.0	
	3F	0.0	4.838	4.6155	34.5	0.0	0.0	0.0	0.0	
	2F	0.0	4.138	2.419	34.5	0.0	0_0	0.0	0.0	
	G.L.	0.0	0.0	2.069	34.5	0.0	0.0		0.0	

(122)

รูปที่ 5.2.31 การเพิ่มแรงลมด้วยคำสั่ง Wind Load เมื่อแล้วเสร็จ

5.3) รวมน้ำหนักบรรทุกทั้งหมดตาม Code AISC-ASD89

• คลิกที่คำสั่ง Create Load Cases Using Load Combinations ในแถบเครื่องมือ Load

รูปที่ 5.3.1 คำสั่ง Create Load Cases Using Load Combinations

• หน้าต่างของ Create Load Cases Using Load Combinations

ในกรอบของ Load Combinations: ให้คลิกที่ปุ่มคำสั่ง

Select Load Case and Combination	0
Load Combination :	
Load Case :	<u>→</u> 1
☑ Delete Current Loads in the Selected Load	d Case

รูปที่ 5.3.2 หน้าต่างของคำสั่ง Create Load Cases Using Load Combinations

• หน้าต่างของ Load Combinations

1

ให้คลิกเลือกที่แถบหน้าต่างของ Steel Design

.oad Coml	binations	i)			
General	Stee De		ete Design	SRC Design Foo	ting Design
	\smile		and a condition 1	and a condition of a con	and president
-Load C	Combinatio	on List 1			
-Load C	Combinatio	on List 1	Anthur	Tune	Decedering
-Load C	Combination No	on List 1 Name	Active	Туре	Description

รูปที่ 5.3.3 หน้าต่างของคำสั่ง Load Combinations

2 ให้คลิกที่ปุ่มคำสั่ง Auto Generation... เป็นการรวมน้ำหนักบรรทุกแบบอัตโนมัติตาม

รูปที่ 5.3.4 หน้าต่างของคำสั่ง Load Combinations

หน้าต่างของ Automatic Generation of Load Combinations

ให้กรอบของ Design Code: ให้คลิกเลือก AISC-ASD89 จากนั้นคลิกที่ปุ่ม OK

Option	
Add C Replace	
Code Selection	
• Steel C Concrete	C SRC C F
Design Code : AISC-ASI	D89
	and the second
Scale Up of Response Spectrur	n Load Cases
Scale Up of Response Spectrur Scale Up Factor : 1	Toad Cases
Scale Up of Response Spectrur Scale Up Factor : 1 Factor Load Case	n Load Cases
Scale Up of Response Spectrur Scale Up Factor : 1 Factor Load Case	Add

รูปที่ 5.3.5 หน้าต่างของคำสั่ง Automatic Generation of Load Combinations

 หน้าต่างของ Load Combinations เมื่อรวมน้ำหนักบรรทุกตาม Code ที่เลือกโปรแกรมสามารถ กำหนดค่าตัวคูณเพิ่มให้เองอัตโนมัติ ทั้งยังสามารถแก้ไข Factor ตามที่ผู้ออกแบบต้องการได้ จากนั้นให้ Close หน้าต่าง Load Combinations และหน้าต่าง Create Load Cases Using Load Combinations

and C	ambientie	a List	rete Design	SRC Design	Footing Design			Cases and Eastern		
oau c	ombinauc	must					Loau	Cases and Factors		
	No	Name	Active	Туре	Description	*	1.5	LoadCase	Factor	1
>	1	sLCB1	Stren	Add	D+L		+	DL(ST)	1.0000	
	2	sLCB2	Stren	Add	0.75(D + L + WX)			LL(ST)	1.0000	
	3	sLCB3	Stren	Add	0.75(D + L - WX)		*			
	4	sLCB4	Stren	Add	0.75(D + WX)					
	5	sl CB5	Stren	Add	0.75(D - WX)					

รูปที่ 5.3.6 หน้าต่างของคำสั่ง Load Combinations เมื่อแล้วเสร็จ

5.4) การวิเคราะห์โมเดลแบบจำลองโครงสร้างของโรงงาน

 คลิกที่คำสั่ง Analysis เพื่อทำการวิเคราะห์โมเคลแบบจำลองโครงสร้างของโรงงานให้สังเกต ในหน้าต่างของ Message Window ซึ่งจะแสดงผลการวิเคราะห์ทั้งหมดให้ทราบโดยส่งค่าไป เก็บไว้ในไฟล์ (*.OUT)

รูปที่ 5.4.1 คำสั่ง Analysis ในแถบเครื่องมือ Change Mode

รูปที่ 5.4.2 การแสดงผลการ Analysis ในหน้าต่าง Message Window

O การนำเสนอพฤติกรรมของแรงและโมเมนต์ตามแนวแกนต่างๆที่กระทำต่อฐานราก

• คลิกที่คำสั่ง Reaction Forces ในแถบเครื่องมือ Result

Wizard | Node | Element | Property | BC/Mass | Stage | Load | Building | Settlement Result |

รูปที่ 5.4.3 คำสั่ง Reaction Forces ในแถบเครื่องมือ Result

 หน้าต่าง Reaction Forces/Moment เป็นการนำเสนอลักษณะพฤติกรรมของแรงและ โมเมนต์ที่ เกิดในโครงสร้างตามแนวแกนต่างๆ

ในกรอบของ Load Cases/Combinations สามารถเลือก Load Combinations ตามชื่อที่ ใค้สร้างไว้แล้วก่อนหน้านี้

2 ในกรอบของ Components ให้กลิกเลือก FZ เป็นการแสดงแรงที่เกิดขึ้นในแกน Z

ในกรอบของ Type of Display เป็นการกำหนครูปแบบการนำเสนอในหน้าต่าง Model

View

3

- ด กลิกเลือก Values เป็นการแสดงตัวเลขผลการวิเคราะห์ในหน้าต่าง Model View
 โดยตรง
- ด คลิกเลือก Legend เป็นการแสดงตัวเลขผลการวิเคราะห์ในหน้าต่าง Model View
 ในลักษณะของแถบสีที่จะแสดงอยู่ด้านข้าง
- 📕 คลิกที่ปุ่ม Apply เพื่อแสดงค่าในหน้าต่าง Model View

รูปที่ 5.4.4 ขั้นตอนของคำสั่ง Reaction Forces/Moment

รูปที่ 5.4.5 การแสดงผลการวิเคราะห์ด้วยคำสั่ง Reaction Forces/Moment

- O การนำเสนอพฤติกรรมของการโก่งตัวตามแนวแกนต่างๆที่เกิดขึ้นในโครงสร้าง
 - คลิกที่คำสั่ง Displacement Contour ในแถบเครื่องมือ Result

รูปที่ 5.4.6 คำสั่ง Displacement Contour ในแถบเครื่องมือ Result

 หน้าต่าง Displacement Contour เป็นการนำเสนอลักษณะพฤติกรรมของการ โก่งตัวที่เกิดใน โครงสร้างตามแนวแกนต่างๆ

[1] ในกรอบของ Load Cases/Combinations สามารถเลือก Load Combinations ตามชื่อที่ ได้สร้างไว้แล้วก่อนหน้านี้

2 ในกรอบของ Components ให้คลิกเลือก DXYZ เป็นการแสดงการ โก่งตัวที่เกิดขึ้นทั้ง 3 แกน

ในกรอบของ Type of Display เป็นการกำหนดรูปแบบการนำเสนอในหน้าต่าง Model

View

3

- ด คลิกเลือก Contour เป็นการแสดงสีของผลการวิเคราะห์บนแบบจำลอง โมเคล โดยตรง
- O คลิกเลือก Deform เป็นการแสดงรูปร่างที่เปลี่ยนไปเมื่อถูกน้ำหนักบรรทุกกระทำ
- ด กลิกเลือก Legend เป็นการแสดงตัวเลงผลการวิเคราะห์ในหน้าต่าง Model View
 ในลักษณะของแถบสีที่จะแสดงอยู่ด้านข้าง
- 4 คลิกที่ปุ่ม Apply เพื่อแสดงค่าในหน้าต่าง Model View
ตัวอย่างการออกแบบโดยโปรแกรมใมดาส เจน รุ่น 721 (หมายเลข 3)

MIDAS Gen V.721 (Release No.3)

(129)

tions Deformations Decree 1	traceas
uoris Derormations Porces Si	LI ESSES
placement Contour	
and the second second	
bad Cases/Combinations	
CBS: sLCB1	
Step 📃	1
© Displacement C Velocity	
C Acceleration	
C Absolute Acceleration	
Components	
C DX C DY C DZ	
C RX C RY C RZ	
C DXY C DYZ C DXZ	
2	
Type of Display	
Contour V Deform	
▼ Values ▼ Legend	
Animate Undeformed	
Mirrored 3	
Plate Cutting Diagram	
Current Step Displ.	
4	
~ ~	1
(App)y Close	

รูปที่ 5.4.7 ขั้นตอนของคำสั่ง Reaction Forces/Moment

(130) ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลง 3)

MIDAS Gen V.721 (Release No.3)

รูปที่ 5.4.8 การแสดงผลการวิเคราะห์ด้วยคำสั่ง Displacement Contour

- O การนำเสนอพฤติกรรมของ Truss ตามแนวแกนต่างๆที่เกิดขึ้นในโครงสร้าง
 - คลิกที่คำสั่ง Truss Forces ในแถบเครื่องมือ Result

Wizard Node	Element	Property	BC/Mass	Stage	Load	Building	Settlement	Result
 ** 1	í \land 🖢	💱 🛩 5	>>	₩ S	¥ 🕽	₹4, ₿	⊈ ⊷ ا	

รูปที่ 5.4.9 คำสั่ง Truss Forces ในแถบเครื่องมือ Result

 หน้าต่าง Truss Forces เป็นการนำเสนอลักษณะพฤติกรรมของ Truss ที่เกิดในโครงสร้างตาม แนวแกนต่างๆ ในกรอบของ Load Cases/Combinations สามารถเลือก Load Combinations ตามชื่อที่ ได้สร้างไว้แล้วก่อนหน้านี้

2 ในกรอบของ Force Filter ให้กลิกเลือก All เป็นการแสดงแรงที่เกิดขึ้นทั้งหมดใน ชิ้นส่วน

- O กลิก Tens. แสดงเฉพาะแรงคึงที่เกิดขึ้นในชิ้นส่วนของ Truss เท่านั้น
- O กลิก Comp. แสดงเฉพาะแรงอัดที่เกิดขึ้นในชิ้นส่วนของ Truss เท่านั้น

ในกรอบของ Type of Display เป็นการกำหนครูปแบบการนำเสนอในหน้าต่าง Model

View

3

- ด กลิกเลือก Contour เป็นการแสดงสีของผลการวิเคราะห์บนแบบจำลองโมเดล โดยตรง
- ด คลิกเลือก Legend เป็นการแสดงตัวเลขผลการวิเคราะห์ในหน้าต่าง Model View
 ในลักษณะของแถบสีที่จะแสดงอยู่ด้านข้าง

4 กลิกที่ปุ่ม Apply เพื่อแสดงค่าในหน้าต่าง Model View

russ Forces		
.oad Cases/C	combinations	
CBS: sLCB1		[
Step	2	
erce Filter	-	
·)	C Tens, C Com	.
ype of Displa	ау	-
Contour	T Deform	
Values	V Legend	
Animate	Undeforme	d
Mirrored		
minored	- 3	
utput Sectio	n Location	

รูปที่ 5.4.10 ขั้นตอนของคำสั่ง Truss Forces

รูปที่ 5.4.11 การแสดงผลการวิเคราะห์ด้วยคำสั่ง Truss Forces

- O การนำเสนอพฤติกรรมของแรงและโมเมนต์ตามแนวแกนต่างๆในรูปแบบ Diagram
 - คลิกที่คำสั่ง Beam Diagram ในแถบเครื่องมือ Result

รูปที่ 5.4.12 คำสั่ง Beam Diagram ในแถบเครื่องมือ Result

 หน้าต่าง Beam Diagram เป็นการนำเสนอลักษณะพฤติกรรมของแรงและ โมเมนต์ที่เกิดใน โครงสร้างตามแนวแกนต่างๆในรูปแบบ Diagram ในกรอบของ Load Cases/Combinations สามารถเลือก Load Combinations ตามชื่อที่ ได้สร้างไว้แล้วก่อนหน้านี้

 ในกรอบของ Components ให้คลิกเลือก My เป็นการแสดงโมเมนต์ที่เกิดขึ้นในแกน Y
 ในกรอบของ Display Options ให้คลิกเลือก Solid Fill เป็นการแสดง Diagram ในแบบ เต็ม

4 ในกรอบของ Type of Display เป็นการกำหนดรูปแบบการนำเสนอในหน้าต่าง Model

View

- ด คลิกเลือก Contour เป็นการแสดงสีของผลการวิเคราะห์บนแบบจำลองโมเคล โดยตรง
- ด คลิกเลือก Legend เป็นการแสดงตัวเลขผลการวิเคราะห์ในหน้าต่าง Model View
 ในลักษณะของแถบสีที่จะแสดงอยู่ด้านข้าง
- O คลิกเลือก Animate เป็นการแสดงภาพเคลื่อนใหวในหน้าต่างของ Model View

5 กลิกที่ปุ่ม Apply เพื่อแสดงค่าในหน้าต่าง Model View

reemenu	
Reactions Deformations	Forces Stresses
Beam Diagrams	<u> </u>
Load Cases/Combinations	
CBS: sLCB1	<u> </u>
Step	-
-	
, In Max/Min Diag	pram 🚺
Components	pram 1
Components Part Total	
Components Part Total	
Components Part Total C Fx C Mx C Fy C Fz	ram
Components Part Total C Fx C Mx C Fy C Fz C Jy C Mz	rram
Components Part Total C Fx C Mx C Fy C Fz Oly C Mz	C Fyz C Myz
V Max/Min Diag	rram 1 Fyz Myz 2

C Exact 5 Points		C No Fill	
Scale: 1.00	0000	Solid Fill	
Type of Display		3	
Contour]	☐ Deform	
☐ Values		✓ Legend	
nimate]		ed
Mirrored		Quick View]
4			
Output Section	Location	1	
ГІ	L Ce	enter I	7.3
M Abs Max	ΓM	n/Max. I	All
7 (2	1	

รูปที่ 5.4.13 ขั้นตอนของคำสั่ง Beam Diagram

คลิกที่วงกลมสีแดงเพื่อเริ่มต้นการนำเสนอภาพเกลื่อนใหวโดยจะมีปุ่มบังกับอยู่ด้านซ้ายมือ

รูปที่ 5.4.14 การแสดงผลการวิเคราะห์ด้วยคำสั่ง Beam Diagram

5.5) การออกแบบโมเดลแบบจำลองโครงสร้างของโรงงาน

 คลิกเลือกที่เมนู Design เลือก Steel Design Parameter และเลือกคำสั่ง Design Code เป็นการ กำหนด Code ที่จะใช้ในการออกแบบซึ่งต้องเลือกให้ตรงกับกำสั่ง Load Combinations (135) ตัวอย่างการออกแบบโดยไปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3) MIDAS Gen V.721 (Release No.3) Design Mode Query Tools Window Help General Design Parameter stage Load Building Settlement Result Que

-				
	General Design Parameter	•	Sta	ge Load Building Settlement Result Que
	Steel Design Parameter	•	B	Design Code
	Concrete Design Parameter	•	同	Strength Reduction Factors
	SRC Design Parameter		1/#	Modify Steel Material
	Steel Code Check	Ctrl+q	Ø	Serviceability Parameters

รูปที่ 5.5.1 คำสั่ง Design Code

หน้าต่าง Steel Design Code สำหรับกำหนด Code ที่ใช้ในการออกแบบ

1

2

ในกรอบของ Design Code: ให้คลิกเลือก Code ที่ใช้ในการออกแบบคือ AISC-ASD89

คลิกที่ปุ่ม OK เพื่อยืนยัน Code ที่ใช้ในการออกแบบ

รูปที่ 5.5.2 หน้าต่างของคำสั่ง Steel Design Code

 กลิกเลือกที่เมนู Design เลือก Steel Design Parameter และเลือกคำสั่ง Modify Steel Material เป็นการกำหนดคุณสมบัติของวัสดุที่จะนำมาออกแบบ

Design Mode Query Tools Window	Help
General Design Parameter	Stage Load Building Settlement Result Que
Steel Design Parameter	Design Code
Concrete Design Parameter	Strength Reduction Factors
S <u>R</u> C Design Parameter	₩ Modify Steel Material
Steel Code Check Ctrl+q	Serviceability Parameters

รูปที่ 5.5.3 คำสั่ง Modify Steel Material

- หน้าต่าง Modify Steel Material สำหรับกำหนดคุณสมบัติของวัสดุที่จะนำมาออกแบบในกรณี ที่ต้องการเปลี่ยนค่าคุณสมบัติของวัสดุ
 - ให้คลิกที่ ID: 1 เพื่อให้แสดงค่าในตารางค้านล่างก่อน

2

ในกรอบของ Code: ให้คลิกเลือก None เพื่อกำหนดคุณสมบัติของวัสคุเอง

ในกรอบของ Name: ให้ตั้งชื่อใหม่จากนั้นให้ปรับแก้ค่าคุณสมบัติของวัสดุตามตารางได้ เลยเมื่อกำหนดคุณสมบัติของวัสดุเสร็จแล้วให้กลิกที่ปุ่ม Modify

IName	Es	Fu	Fy Fy1	Fy2
1 SS400	2.1e+006	4100	2400	2200
_				
eel Material Selecti	on		3	-
		/		
Code : None	\odot	Name :	SS400	
Code : None Modulus of Elasticit	γ (Es)	Name :	2100000	kaf/cm^2

รูปที่ 5.5.4 หน้าต่างของคำสั่ง Modify Steel Material

คลิกเลือกที่เมนู Design เลือก Steel Design Parameter และเลือกคำสั่ง Specify Allowable
 Stresses... เป็นการกำหนดค่าตัวคูณลดของหน่วยแรงที่ยอมให้

(137)

MIDAS Gen V.721 (Release No.3)

Design Mode Query	Tools Window He	p	
General Design Param	eter 🕨	tage 1	Load Building Settlement Result Query
Steel Design Paramete	er 🕨	🖽 De	esign Code
Concrete Design Para	meter 🕨	🛱 St	rength Reduction Factors
SRC Design Parameter	r)	∦≢ Mo	odify Steel Material
Steel Code Check	Ctrl+6	🕼 Se	erviceability Parameters
Steel Optimal Design.	Ctrl+Shift+6	🛱 Be	ending Coefficient(Cb)
Concrete Code Design		🛱 Sh	ear Coefficient(Cv)
Concrete Code Design		🛱 Sp	ecify Allowable Stresses
		ES LO	ngitudinal Stiffener of Box Section
DC Strong Column Mig	Doom I		

รูปที่ 5.5.5 คำสั่ง Specify Allowable Stresses...

 คำสั่ง Specify Allowable Stresses... ในหน้าต่าง Tree Menu สำหรับกำหนดค่าตัวคูณลดของ หน่วยแรงที่ยอมให้ โดยต้องเลือก Element ที่ต้องการก่อนจากนั้นให้กลิกที่ปุ่ม Apply

ee menu	
eneral Steel Concrete	SRC
pecify Allowable Stresses	
Option	_
Add/Replace C	Delete
Define Allowable Stresses	_
Axial Compression(Fa) :	
✓ Use 0.5	*Fy
Axial Tension(Ft) :	_
▼ Use 0,6	*Fy
Major Bending(Fby) :	_
I✔ Use 0.6	*Fy
Minor Bending(Fbz) :	-
✓ Use 0.6	*Fy
Shear(Fv) :	-
✓ Use 0.4	*Fy

รูปที่ 5.5.6 หน้าต่างของคำสั่ง Specify Allowable Stresses...

 คลิกเลือกที่เมนู Design เลือก General Design Parameter และเลือกคำสั่ง Limiting Slenderness Ratio

เป็นการกำหนดอัตราส่วนชะลูด

Design Mode Query Tools Window	Help
General Design Parameter	Definition of Frame
Steel Design Parameter	Live Load Reduction Factor
Concrete Design Parameter	 Short/Long term Load Case
SRC Design Parameter	Serviceability Load Combination Type
Steel Code Check Ctrl+	-6 Load Contribution for Nonlinear Load Case
Steel Optimal Design Ctrl+Shift+	-6 [•] Member Assignment
Concrete Code Design	Reverse Member Local Direction
Concrete Code Check	Haunched Beam Assignment
	Unbraced Length(L,Lb)
RC Strong Column-Weak Beam	Effective Length Factor(K)
SRC Code Check	Limiting Slenderness Ratio

(138)

รูปที่ 5.5.7 คำสั่ง Limiting Slenderness Ratio ...

 คำสั่ง Limiting Slenderness Ratio... ในหน้าต่าง Tree Menu สำหรับกำหนดอัตราส่วนชะลูด ในการออกแบบ ให้เลือก Section H 250x125x6/9 ทั้งหมดจากนั้นให้กลิกที่ Do not Check และ กลิกที่ Apply เพื่อไม่ต้องตรวจสอบอัตราส่วนชะลูดของกร่าวนอน

Iree Menu	ф.
General Steel Concr	ete SRC
Limiting Slenderness Ratio	×
Option	
Add/Replace	C Delete
-Limiting Slenderness Rat	io
Compression :	
Tension : 300)

รูปที่ 5.5.8 หน้าต่างของคำสั่ง Limiting Slenderness Ratio ...

 คลิกเลือกที่เมนู Design เลือกกำสั่ง Steel Code Check หรือกด Ctrl+6 ที่แป้นพิมพ์ก็ได้ เป็นการ ออกแบบและตรวจสอบโครงสร้างเหล็ก

ตัวอข่างการออกแบบโดขโปรแกรมใมคาส เจน รุ่น 721 (หมาขเลข 3)

MIDAS Gen V.721 (Release No.3)

(139)

รูปที่ 5.5.9 คำสั่ง Steel Code Check

 หน้าต่าง AISC-ASD98 Code Checking Result Dialog สำหรับออกแบบและตรวจสอบ โครงสร้างเหล็ก โดยมีขั้นตอนดังนี้

📕 คลิกเลือก Section ที่ต้องการตรวจสอบและออกแบบให้คลิกเลือก H 594x302x14/23

2 ในกรอบของ Sorted by: สามารถเลือกการแสคงข้อมูลได้ 2 รูปแบบคือ

O Member คือแสดงข้อมูลทั้งหมดของชิ้นส่วนทุกชิ้น

1

3

O Property คือแสดงข้อมูลเฉพาะกลุ่มใหญ่ๆของหน้าตัดเหล็กเท่านั้น

คลิกที่ปุ่ม Change สำหรับตรวจสอบและออกแบบหน้าตัดเหล็กโดยให้สังเกตในช่อง ของ COM และ SHR จะต้องมีค่าไม่เกิน 1 แปลว่าหน้าตัดที่ใช้ OK

คลิกที่ปุ่ม Search Satisfied Section จะเลือกหน้าตัดเหล็กที่อยู่ในช่วง 0.8 ถึง 1

2 เลือกหน้าตัดที่เหมาะสมคือมีค่า Limit Combined Ratio ใกล้เคียง 1

คลิกที่ปุ่ม Change & Close คือนำหน้าตัดที่เลือกไปใช้และปิดหน้าต่างนี้ด้วย

ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3)

(140)

MIDAS Gen V.721 (Release No.3)

erty No. 1	-						Unit :	cm
Open MGB File			From	То			From	то То
opennicernic	☐ Same	н	0	0	T s	iame tw	0	0
1	□ Same	B1	0	0	- rs	ame tf1	0	0
I 🔹	☐ Same	B2	0	0	- F	ame tf2	0	0
						Print All	Propertie	s
Section	СНК	SEL	LCB	COM	SHR	н	в	AREA
oconon	and the second second		-	0.862	0.029	89.000	29 900	270.90
H 890x299x15/23	OK	Г	2	0.002		05.000	20.000	210.00
H 890x299x15/23 H 792x300x14/22	OK OK	Г	2	0.939	0.035	79.200	30.000	243.40
H 890x299x15/23 H 792x300x14/22 H 700x300x13/24	ОК ОК ОК		2 2 2	0.939	0.035	79.200 70.000	30.000 30.000	243.40 235.50
H 890x299x15/23 H 792x300x14/22 H 700x300x13/24 H 594x302x14/23	ОК ОК ОК ОК		2 2 2 2	0.939 0.856 0.918	0.035 0.042 0.046	79.200 70.000 59.400	30.000 30.000 30.200	243.40 235.50 222.40
H 890x299x15/23 H 792x300x14/22 H 700x300x13/24 H 594x302x14/23 H 350x357x19/19	ОК ОК ОК ОК		2 2 2 2 2 2	0.939 0.856 0.918 0.950	0.035 0.042 0.046 0.058	79.200 70.000 59.400 35.000	30.000 30.000 30.200 35.700	243.40 235.50 222.40 198.40
H 890x299x15/23 H 792x300x14/22 H 700x300x13/24 H 594x302x14/23 H 350x357x19/19 H 394x398x11/18	ОК ОК ОК ОК ОК		2 2 2 2 2 2 2	0.939 0.856 0.918 0.950 0.825	0.035 0.042 0.046 0.058 0.089	79.200 70.000 59.400 35.000 39.400	30.000 30.000 30.200 35.700 39.800	243.40 235.50 222.40 198.40 186.80

รูปที่ 5.5.10 หน้าต่างของคำสั่ง Change Steel Properties Dialog

คลิกที่ปุ่ม Update... สำหรับนำหน้าตัดเหล็กที่ได้เลือกใหม่ไปใช้กับแบบจำลองโมเคล จริงและทำการวิเคราะห์และออกแบบใหม่อีกครั้ง

ดลิกเลือกหน้าตัดที่เหมาะสมเพื่อนำไปใช้กับแบบจำลองโมเคล

1

คลิกที่ปุ่มเพื่อปรับหน้าตัดเดิมให้เป็นหน้าตัดที่เหมาะสมและทำการวิเคราะห์ และออกแบบใหม่อีกครั้ง

ตัวอย่างการออกแบบโดยโปรแกรมไมดาส เจน รุ่น 721 (หมายเลข 3) MIDAS Gen V.721 (Release No.3)

(141)

รูปที่ 5.5.11 หน้าต่างของคำสั่ง Update Changed Properties Dialog

 ๑ลิกที่ Connect Model View ในกรณีที่ต้องการให้เวลาคลิกในตารางแล้วให้เลือก แบบจำลอง โมเคลในหน้าของ Model View ด้วย
 คลิกที่ Graphic.... ในกรณีที่ต้องการตรวจสอบรายการคำนวณแบบสรุป
 คลิกที่ Detail.... ในกรณีที่ต้องการตรวจสอบรายการคำนวณแบบละเอียด
 คลิกเพื่อย่อหน้าต่างของ AISC-ASD98 Code Checking Result Dialog
 ในกรอบของ Result View Option เป็นการแสดงผลการคำนวณว่าหน้าตัดใหน ผ่าน/ไม่ ผ่าน

ตัวอข่างการออกแบบ โดยโปรแกรมไมดาส เจน รุ่น 721 (หมาขเลข 3)

MIDAS Gen V.721 (Release No.3)

556.89 0.0 5 836.08 180 9 260.73 0.0	124.61 369.75	0.850	1.000	1180.00	4400.00					Material	L	SHR	COM	
5 836.08 180 9 260.73 0.0	369.75	0.850			1160.00	1180.00	1180.00	2	x14/23	H 594x302	0	1	16	K
260.73 0.0	440.00		1.000	1.000	-12.123	2568807	-27713	2	2400.00	SS400	Ű	0.046	0.918	n
	110.09	1.000	1.000	553.057	553.057	553.057	553.057	1	0x8/13	1 H 400x200	-[3	2751	v
0 1014.6 144	1440.0	1.000	1.000	1.000	0.00000	-308968	9816.03		2400.00	BS400	1	0.068	0.262	n
3 56.753 14.	2.7423	1.000	1.000	862.500	862.500	862.500	862.500	1	25x6/9	H 250x12	E	4	2612	ĸ
440.18 180	1440.0	1.000	1.000	1.000	-687.51	-18388	103.273		2400.00	SS400	-	0.009	0.137	N
5 11.263 0.2	640.95	1.000	1.000	71.2941	71.2941	71.2941	71:2941	1	3x8	P 216.3	F	5	703	v
) 1584.0 158	1440.0	1.000	1.000	1.000	-56.799	2957.67	33554.0) '	2400.00	SS400		0.003	0.452	
0.0000 0.0	93.757	1.000	1.000	643.203	643.203	643.203	643.203	1	8x6	P 139.8	F	6	2745	ĸ
1584.0 144	1440.0	1.000	1.000	1.000	0.00000	0.00000	2364.55		2400.00	SS400	1	0.000	0.065	~
5 0.0000 0.0	795.35	1.000	1.000	200.734	200.734	200.734	200.734	1	6x5	P 101.6	F	7	868	~
2 1584.0 144	1185.2	1.000	1.000	1.000	0.00000	0.00000	-12065) '	2400.00	SS400	1	0.000	0.671	
0.0000 0.0	235.91	1.000	1.000	128.544	128.544	128.544	128.544	1	x4	P 76.3	-	8	2009	ĸ
1584.0 144	1440.0	1.000	1.000	1.000	0.00000	0.00000	2143.24		2400.00	SS400	1	0.000	0.164	
	795.35 1185.2 235.91 1440.0	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	200.734 1.000 128.544 1.000	200.734 0.00000 128.544 0.00000	200.734 0.00000 128.544 0.00000	200.734 -12065 128.544 2143.24	1	6x5 2400.00 5x4 2400.00	P 101.6 S5400 P 76.3 SS400	Г	7 0.000 8 0.000	868 0.671 2009 0.164	ок ок

(142)

รูปที่ 5.5.12 หน้าต่างของคำสั่ง AISC-ASD98 Code Checking Result Dialog

• กด F6 ที่แป้นพิมพ์เป็นการนำเสนอภาพในมุมมองของ Render View

รูปที่ 5.5.13 การนำเสนอภาพในมุมมองของ Render View

Design Code	- AISC-ASD89		
Unit System	- kaf. am	0	
Member No	- 16	0 10 10	
Material	- \$\$400 (No:1)	53 53 51	н у
	(Ev = 2400.00 Es = 2100000)	0.3	551181
Contine Mana	(1 y = 2400.00, 23 = 2100000)		-
Section Name	- H J94x302x14/23 (NU.1)	5.944882	
	(Rolled - H 394x302x14/23).	11.8898	
Member	: 1180.00		-14
mbor Fo		-	
lember Fo	ices	Depth 23.3858	Web Thick 0.55118
Axial For	Fxx = -27713 (LCB: 2, POS:I)	Top F Width 11.8898 Bot F Width 11.8898	Ect.F Thick 0.90551
Br _ Mon	3 My = 2568807, Mz = -12.123	Area 34.4721	Asz 12.8898
E.id Moments	Myi = 2568807, Myj = -1781806 (for Lb)	Qyb 277.740	Q20 17.6708
1	Myi = 2568807, Myj = -1781806 (for Ly)	Ybar 5.94488	Zber 11.0020
1.1	Mzi = -12.123, Mzj = 0.00000 (for Lz)	8yy 281,930 rv 9,80315	8zz 42.7770 rz 2.71054
Shear Fc 3	Fyy = -0.1563 (LCB: 3, POS:I)	14 1010 V	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Fz7 _35.96 (LCB: 2, POS:I)		
Design Par	,ers		
Unbraced Lengt	r Lers hs Ly = 1180.00, Lz = 1180.0	00, Lb = 1180.00	
Unbraced Lengt Effective Length	r Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00	00, Lb = 1180.00	
Unbraced Lengt Effective Length Moment Factor/	r Ly = 1180.00, Lz = 1180.0 hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Crent	00, Lb = 1180.00	
Design Par Unbraced Lengt Effective Length Moment Factor /	r LeTS hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Cr Lent Cmy = 0.85, Cmz = 0.85,	00, Lb = 1180.00 Cb = 1.00	
Design Par Unbraced Lengt Effective Length Moment Factor /	r LOTS hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Crent Cmy = 0.85, Cmz = 0.85,	00, Lb = 1180.00 Cb = 1.00	
Unbraced Lengt Effective Length Moment Factor /	r Lers hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Crent Cmy = 0.85, Cmz = 0.85, esults	00, Lb = 1180.00 Cb = 1.00	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra	r Lers hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Cr Lent Cmy = 0.85, Cmz = 0.85, esults tio	00, Lb = 1180.00 Cb = 1.00	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 13	P LeFS hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Crent Crmy = 0.85, Crmz = 0.85, esults tio 71.0 < 200.0 (Mer , L⊂B: 2)	00, Lb = 1180.00 Cb = 1.00 К	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 11 Axial Stress	r LY = 1180.00, Lz = 1180.4 hs Ly = 1180.00, Lz = 1180.4 Factors Ky = 1.00, Kz = 1.00 Bending Cr Lent Cmy = 0.85, Cmz = 0.85, esults tio 71.0 < 200.0 (Mer	00, Lb = 1180.00 Cb = 1.00 К	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 1 Axial Stress fa/Fa = 124	r LY = 1180.00, Lz = 1180.0 hs Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Cr Lent Cmy = 0.85, Cmz = 0.85, esults tio 71.0 < 200.0 (Mer	00, Lb = 1180.00 Cb = 1.00 К	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 1 Axial Stress fa/Fa = 12/ Bending Stresse	 LY = 1180.00, Lz = 1180.0 Factors Ly = 1180.0, Kz = 1.00 Bending Crent Cmy = 0.85, Cmz = 0.85, esults tio 71.0 < 200.0 (MerL_B: 2'	00, Lb = 1180.00 Cb = 1.00 K	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 1 Axial Stress fa/Fa = 124 Bending Stresse fby/Fby = 55	r LY = 1180.00, Lz = 1180.0 Factors Ly = 1180.0, Kz = 1.00 Bending Crent Cmy = 0.85, Cmz = 0.85, Csults Cmy = 0.85, Cmz = 0.85, 4.609/369.749 = 0.337 1.000 4.609/369.749 = 0.337 1.000 Sis Sis	00, Lb = 1180.00 Cb = 1.00 K	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 12 Axial Stress fa/Fa = 12 Bending Stresse fby/Fby = 50 fbz/Fbz =	Image: Sectors Ly = 1180.00, Lz = 1180.0 Factors Ky = 1.00, Kz = 1.00 Bending Crent Cmy = 0.85, Cmz = 0.85, Csults Cmy = 0.85, Cmz = 0.85, 4.609/369.749 = 0.337 1.000 4.609/369.749 = 0.337 1.000 Fis Sectors 56.887/836.076 = 0.666 < 1.	00, Lb = 1180.00 Cb = 1.00 К КК	
Uesign Par Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 12 Axial Stress fa/Fa = 12/ Bending Stress fby/Fby = 56 fbz/Fbz = 12 Combined Stress	Image: Signature Ly = 1180.00, Lz = 1180.0 Factors Ly = 1180.00, Kz = 1.00 Bending Cr Lent Cmy = 0.85, Cmz = 0.85, esults tio 71.0 < 200.0 (Mer	00, Lb = 1180.00 Cb = 1.00 K K K	
Uesign Par Unbraced Lengt Effective Length Moment Factor/ Checking R Slenderness Ra KL/r = 11 Axial Stress fa/Fa = 124 Bending Stresse fby/Fby = 50 fbz/Fbz = Combined Stress SFv = ICmv	Image: Provide state st	00, Lb = 1180.00 Cb = 1.00 K K K	
Design Par Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 10 Axial Stress fa/Fa = 124 Bending Stress fby/Fby = 50 fbz/Fbz = 10 Combined Stress SFy = [Cmy, Rmav1 = fa	Image: Second State Sta	00, Lb = 1180.00 Cb = 1.00 K K K K	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 1 Axial Stress fa/Fa = 124 Bending Stresse fby/Fby = 50 fbz/Fbz = 1 Combined Stress SFy = [Cmy/ Rmax1 = fa	Image: Provide state st	00, Lb = 1180.00 Cb = 1.00 K 0K K	
Design Par Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 12 Axial Stress fa/Fa = 12 Bending Stress fby/Fby = 55 fbz/Fbz = 1 Combined Stress SFy = [Cmy Rmax1 = fa Rmax2 = fa	Image: Second State Sta	00, Lb = 1180.00 Cb = 1.00 K K K K	
Design Par Unbraced Lengt Effective Length Moment Factor / Checking R Sienderness Ra KL/r = 12 Axial Stress fa/Fa = 124 Bending Stresse fby/Fby = 50 fbz/Fbz = 1 Combined Stress SFy = [Cmy/ Rmax1 = fa Rmax2 = fa	Image: Second State Sta	00, Lb = 1180.00 Cb = 1.00 K K K K	
Uesign Par Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 12 Axial Stress fa/Fa = 12 Bending Stresse fby/Fby = 50 fbz/Fbz = 10 Combined Stress SFy = [Cmy/ Rmax1 = fa Rmax = Ma Shear Stresses	Image: Second State Sta	00, Lb = 1180.00 Cb = 1.00 K 0K K	
Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 12 Axial Stress fa/Fa = 12 Bending Stresse fby/Fby = 50 fbz/Fbz = Combined Stress SFy = [Cmy/ Rmax1 = fa Rmax2 = fa Shear Stresses fvy/Fvy =	Image: Provide state st	00, Lb = 1180.00 Cb = 1.00 K K K K	
Design Par Unbraced Lengt Effective Length Moment Factor / Checking R Slenderness Ra KL/r = 10 Axial Stress fa/Fa = 124 Bending Stress fby/Fby = 50 fbz/Fbz = Combined Stress SFy = [Cmy, Rmax1 = fa Rmax2 = fa Rmax2 = fa Shear Stresses fvy/Fvy = fvz/Fvz =	Image: Provide state st	00, Lb = 1180.00 Cb = 1.00 K 0K K	

Design Code		-	
	- AISC-ASD89	╈	-
Unit System	- kgf, am	°	
Member No	- 2751	- 48	× V
Material	- SS400 (No:1)	4016 15	314061
	(Fy = 2400.00, Es = 2100000)	7.87	
Section Name	- H 400x200x8/13 (No:3)	3.937008	-
	(Rolled : H 400x200x8/13).	1 7.8740	2 1
Member	: 553.057	1	
.ember For	rces	Depth 157480	Web Thick: 0.31400
Axial For	Fxx = 9816.03 (LCB: 1, POS:J)	Top F Width 7.87402	Top F Thick 0.51181
Be _ Mom	; My = -308968, Mz = 0.00000	Bot.F Width 7.87402	Bot.F Thick 0.51181
E.id Moments	Myi = 94451.4, Myj = -308968 (for Lb)	Ares 13.0380 Qyb 124.577	Asz 4.96001 Gzb 7.75002
	Myi = 94451.4, Myj = -308968 (for Ly)	lyy 569.395 Yber 3.93701	Izz 41.8037 Zber 7.87402
	Mzi = 0.00000, Mzj = 0.00000 (for Lz)	Byy 72.0183	Bzz 10.6181
Shear Fc 3	Fyy = 0.00894 (LCB: 1, POS:I)	yy 0.01417	rz 1./8/40
	Fz7 39.33 (LCB: 1, POS:J)		
	Factors Ky = 1.00, Kz = 1.00		
Moment Factor / Checking Ref Slenderness Rati Ur = 121 Axial Stress ft/Ft = 116.6 Bending Stresses fby/Fby = 26 fbz/Fbz = 0. Combined Stress Rmax = ft/Ft Shear Stresses fyy/Fvy = 0	Factors Ky = 1.00, Kz = 1.00 Bending Cr xent Cmy = 1.00, Cmz = 1.00, Souths Cmy = 1.00, Cmz = 0.0K Souths Cmy = 0.000 < 1.00,	Cb = 1.00	
Moment Factor / Checking Re Slenderness Rati L/r = 121 Axial Stress ft/Ft = 116.6 Bending Stresses fby/Fby = 26 fbz/Fbz = 0. Combined Stress Rmax = ft/Ft Shear Stresses fvy/Fvy = 0 fvz/Fvz = 0	Factors Ky = 1.00, Kz = 1.00 Bending Cc .ent Cmy = 1.00, Cmz = 1.00, esults io .8 < 300.0 (Men	Cb = 1.00	

1. Design Information Design Code - AISC-ASD89 Unit System - kgf, cm 9.84252 Member No - 2612 Material - SS400 (No:1) 92126 0.23022 (Fy = 2400.00, Es = 2100000) Section Name - H 250x125x6/9 (No:4) 40 (Rolled : H 250x125x6/9). 4,92120 : 862.500 Member .ember Forces Depth 9.84252 Web Thick 0.23622 Top F Width 4.92126 Top F Thick 0.35433 Axial For Fxx = 103.273 (LCB: 1, POS:J) Bot.F Width 4.92120 Bot.F Thick 0.35433 Br "wom My = -18388, Mz = -687.51 Area 5.83731 Asz 2.32500 E.id Moments Myi = -17995, Myj = -18388 (for Lb) ayo 45,4488 Q2D 3.02735 97.3010 7.08338 IZZ lyy: Myi = -17995, Myj = -18388 (for Ly) 2.40003 Zber 4.92120 Yba Byy 19.7717 Szz 2.86812 Mzi = 604.339, Mzj = -687.51 (for Lz) 1.09843 4.09449 rz. ry. Shear Fc Fyy = 1.49779 (LCB: 1, POS:I) F77 3. Design Parc .ers Unbraced Lengths Ly = 862.500, Lz = 862.500, Lb = 862.500 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Co ent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 4. Checking Results Axial Stress ft/Ft = 2.74/1440.00 = 0.00. 20 O.K Bending Stresses fby/Fby = 56.753/440.183 = 0.125 (.000 O.K fbz/Fbz = 14.62/1800.00 = 0.008 < 1.000 O.K Combined Stress (Tension+Bending) Rmax = fbcy/Fbcy + fbcz/Fbcz = 0.137 OK Shear Stresses fvy/Fvy = 0.000 < 1.000 fvz/Fvz = 0.009 < 1.000 **0.**K รูปที่ 5.5.16 แสดงรายการคำนวณแบบสรุปของหน้าตัด H 250x125x6/9

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1. Design Infor	rmation		z
Unit Systeme. etg. cmMetrial 2.703 Metrial $(p = 2400.00, Es = 2100000)$ Cacion Name $P \ge 216.3.80$ Cacion Name $P \ge 216.3.80$ Metriser I $(m e = P \ge 16.3.80)$ Metriser I $(m e \ge 2.16.3.80)$ Metriser I $(m e \ge 2.16.3.80)$ Metriser I $(m = 2.3.3554.0)$ (LCS: $(n = POS.1/2)$ Same I Metriser II $(m = 2.3.3554.0)$ (LCS: $(n = POS.1/2)$ Metriser II $(m = 2.3.3554.0)$ (LCS: $(n = POS.1/2)$ Metriser II $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Same I Metriser III $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Metriser III $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Metriser III $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Metriser III $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Metriser III $(m = 2.3.3554.0)$ (LCS: $(n = 2.5.793)$ Metriser IIII $(m = 2.3.3554.0)$ (Metriser IIII)Metriser IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Design Code	- AISC-ASD89		-
Anthon More- 934Meterial- 95400 (More)(more marked by 2016 308 (More)(more marked by 2016 300 (Unit System	- kgf, cm		
$\label{eq:product} \begin{array}{llllllllllllllllllllllllllllllllllll$	Member No	-703	(
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Material	- SS400 (No:1)	1	// * Y
$\begin{aligned} & \text{decised Name } & -2.26.346 (N;5) \\ & \text{(Rolled : P. 216.356)}, \\ & \text{dentber ! } & \text{: 71.2941} \\ & & \text{dentber ! } \\ \\ & \text{dentber Forces} \\ & \text{Avail For } & \text{for } & \text{for } & \text{for } & \text{add } & \text{defter ! } \\ & \text{dentber } & \text{for } & \text{for } & \text{for } & \text{defter } & \text{defter ! } \\ & \text{dentber } & \text{for } & \text{for } & \text{defter } & \text{defter ! } \\ & \text{dentber } & \text{for } & \text{for } & \text{defter } & \text{defter } & \text{defter } \\ & \text{dentber } & \text{for } & \text{for } & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } & \text{defter } \\ & \text{defter } \\ & \text{defter } & \text{defter } \\ & \text{defter } & \text{defter } \\ & defte$		(Fy = 2400.00, Es = 2100000)	0.310001	
$\label{eq:results} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Section Name	- P 216.3x8 (No:5)		
$ \begin{array}{c} \sum_{k = 1}^{k = 1} \sum_{j = 1}^{k = 1} \sum_{j$		(Rolled : P 216.3x8).		
	Memberl	: 71.2941	-	8.51575
Checking Results Outer Dis. 25:177 We Thick 0.31400 Axial For Fxx = 33354.0 (LCB: 1, POS:1/2) Axia 40773 Axia 40773 Br	ember Fo	rces		
Axial Stress $f_{1}/F_{2} = 54.3524.0 (LCB: 1, POS.1/2) = 4 eres = 4.11427 = 4 eres = 4.21323 F_{1} = 2.0157 My = 2957.67, Mz = -56.799 GV = 163300 GV = 163300 W = 16300 W = 1600 W = 1000 W =$	ioniber i o		Outer Die. 8.51575	Wall Thick 0.31496
	Axial For	Fxx = 33554.0 (LCB: 1, POS:1/2)	Ares 8.11427	Atz 4.05725
End Moments My1 = 0.00000, My1 = 0.00000 (for Lb) My1 = 0.00000, My1 = 0.00000 (for Ly) My1 = 0.00000, My1 = 0.00000 (for Ly) My1 = 0.00000 (for Ly) My1 = 0.00000 (LCB: 1, POS.J) Fzr J.942 (LCB: 1, POS.J) Fzr J.942 (LCB: 1, POS.J) Design Parr Lefts Unbraced Lengths Ly = 71.2941, Lz = 71.2941, Lb = 71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Cr Lent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Slenderness Ratio KLr = 76.3 < 200.0 (Men 33, CB, OK Axial Stress fby/Fby = 1.291584.00 = 0.007 < 1.0, OK Bending Stresses fby/Fby = 0.22/1584.00 = 0.007 < 1.0, OK Shear Stresses fby/Fby = 0.023 < 1.000 < 1.00, OK Shear Stresses fby/Fby = 0.003 < 1.000, OK	Br _ Wom	3 My = 2957.67, Mz = -56.799	lyy 08.2313	1zz 08.2313
Myl = 0.00000, Myl = 0.00000 (brLy) yz 220197 rz 220197 Mzi = -53.583, Mzj = -60.014 (for Lz) Fz	E.id Moments	Myi = 0.00000, Myj = 0.00000 (for Lb)	Yber 4.25787 Byy 16.0492	Zber 4.25787 8zz 16.0492
Mz = -53.583, Mz = -60.014 (for Lz) Shear Fc	-	Myi = 0.00000, Myj = 0.00000 (for Ly)	ry 2.90157	rz 2.90157
Shear Fc 3 Fy = 0.09020 (LCB: 1, POS.J) Fz J.942 (LCB: 1, POS.J) Fz J.942 (LCB: 1, POS.J) Design Parn Lefts Unbraced Lengths Ly = 71.2941, Lz = 71.2941, Lb = 71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Cr Lent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Slenderness Ratio KLr = 70.3 < 200.0 (Men 33, LCB:, OK Axial Stress fty/Ft = 640.95/1440.00 = 0.445 < 0.00 fty/Fby = 11.26/1584.00 = 0.007 < 1.0, OK ftbz/Fbz = 0.22/1584.00 = 0.000 < 1.000, OK Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT((bt)/Fbt)/2 + (bttz/Fbtz, $y = 0.45^{+}$ 0OK Shear Stresses fty/Fy = 0.003 < 1.000	1.1	Mzi = -53.583, Mzj = -60.014 (for Lz)		
$F_{27} = 0.942 (LCB: 1, POS.J)$ Design Parn LeTS Unbraced Lengths Ly = 71.2941, Lz = 71.2941, Lb = 71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Crent $Cmy = 1.00, Cmz = 1.00, Cb = 1.00$ Checking Results Sienderness Ratio KL/r = 76.3 < 200.0 (Men. 13, LCB:, O.K Axial Stress ft/Ft = 640.95/1440.00 = 0.445 <	Shear Fc 🦻	Fyy = 0.09020 (LCB: 1, POS:J)		
Design Parin Lets Ly =71.2941, Lz =71.2941, Lb =71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Crontent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Stenderness Ratio KLr = 76.3 < 200.0 (Man 133, CCB;, OK		Fz7 J.942 (LCB: 1, POS:J)		
Ubesign Pair Lets Unbraced Lengths Ly =71.2941, Lz =71.2941, Lb =71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Cr Lent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Sienderness Ratio KLr = 76.3 < 200.0 (Men: 33, LCB:	Dosign Par	100		
Unbraced Lengths Ly = 71.2941, Lz = 71.2941, Lb = 71.2941 Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Cr ent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Slenderness Ratio KL/r = 76.3 < 200.0 (Men	. Design Par	.els		
Effective Length Factors Ky = 1.00, Kz = 1.00 Moment Factor / Bending Crent Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Slenderness Ratio KLr = 76.3 < 200.0 (Men 33, cCB:	Unbraced Lengtl	hs Ly = 71.2941, Lz = 71.29	941, Lb = 71.2941	
Moment Factor / Bending Ccient Cmy = 1.00, Cmz = 1.00, Cb = 1.00 Checking Results Slenderness Ratio KL/r = 76.3 < 200.0 (Men33, CB:OK Axial Stress fv/Ft = 640.95/1440.00 = 0.445 < _u00OK Bending Stresses fby/Fby = 11.26/1584.00 = 0.007 < 1.0OK fbz/Fbz = 0.22/1584.00 = 0.000 < 1.00cOK Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbt//Fbtz/, _= 0.45'OK Shear Stresses fv/Fy = 0.003 < 1.000OK	Effective Length	Factors Ky = 1.00, Kz = 1.00		
Cmy = 1.00, Cmz = 1.00, Cb = 1.00	Moment Factor /	Bending Crent		
Slenderness Ratio KL/r = 76.3 < 200.0 (Men		Cmy = 1.00, Cmz = 1.00,	Cb = 1.00	
Siendemess Ratio KL/r = 76.3 < 200.0 (Men 33, LCB:	Checking P	osulte		
Slenderness Ratio KL/r = 76.3 < 200.0 (Men 33, LCB:O.K Axial Stress ft/Ft = 640.95/1440.00 = 0.445 <ol Bending Stresses fby/Fby = 11.26/1584.00 = 0.007 < 1.0O.K fbz/Fbz = 0.22/1584.00 = 0.000 < 1.00LOK Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz, = 0.45' 0O.K Shear Stresses ft/Fy = 0.003 < 1.000</ol 	. Checking R	esuits		
KL/r = 76.3 < 200.0 (Men	Slenderness Rat	io		
Axial Stress ft/Ft = 640.95/1440.00 = 0.445 <	KL/r = 76	5.3 < 200.0 (Men 53, ∠CB:	ĸ	
ft/Ft = 640.95/1440.00 = 0.445 <o. Bending Stresses fby/Fby = 11.26/1584.00 = 0.007 < 1.0 O.K fbz/Fbz = 0.22/1584.00 = 0.000 < 1.00 O.K Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz/, = 0.45° O.K Shear Stresses fv/Fy = 0.003 < 1.000</o. 	Axial Stress			
Bending Stresses fby/Fby = 11.26/1584.00 = 0.007 < 1.0 O.K fbz/Fbz = 0.22/1584.00 = 0.000 < 1.000 O.K Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz, _ = 0.45° O.K Shear Stresses ft/Fy = 0.003 < 1.000	ft/Ft = 640.9	95/1440.00 = 0.445 < J00 O.K		
fby/Fbz = 11.26/1584.00 = 0.007 < 1.0 O.K fbz/Fbz = 0.22/1584.00 = 0.000 < 1.000 O.K Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz, = 0.4**)O.K Shear Stresses ft/Fv = 0.003 < 1.000	Bending Stresse			
fbz/Fbz = 0.22/1584.00 = 0.000 < 1.000O.K Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz), = 0.4° ? ?O.K Shear Stresses ft//Fy = 0.003 < 1.000	fby/Fby = 1	1.26/1584.00 = 0.007 < 1.0 0.	к	
Combined Stress (Tension+Bending) Rmax = ft/Ft + SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz), = 0.45* 90.K Shear Stresses fv/Fy = 0.003 < 1.000	fbz/Fbz = 0	.22/1584.00 = 0.000 < 1.00L O.H	C	
Rmax = ft/Ft + SQR TI(fbty/Fbty)^2 + (fbtz/Fbtz, _ = 0.45° 9 O.K Shear Stresses fv/Fy = 0.003 < 1.000	Combined Stress	s (Tension+Bending)		
Shear Stresses fv/Fv = 0.003 < 1.000	Rmax = ft/Ft	+ SQRT[(fbty/Fbty)^2 + (fbtz/Fbtz, = 0.4*' 0		
fv/Fv = 0.003 < 1.000	Shear Stresses			
	fv/Fv = 0.00	3 < 1.000		
			2.	
			10	
		1	<i>.</i>	
		Q	a	

z

MIDAS Gen V.721 (Release No.3)

1. Design Inform	mation		z
Design Code	- AISC-ASD89	/	÷.
Unit System	- kgf, cm	(
Member No	- 2745	(
Material	- SS400 (No:1)	0.2022	<u> </u>
	(Fy = 2400.00, Es = 2100000)	-#ff	
Section Name	- P 139.8x6 (No:6)		#
	(Rolled : P 139.8x6).		
Member	: 643.203		5.50394
.ember For	ces	Anton Yoshu	and the second
Axial For	Exx = 2364.55 (LCB: 1 POS()	Outer Dia. 5.50394	Wall Thick: 0.23622
Be Mon	i Mv = 0.00000. Mz = 0.00000	Area 3.90911 Ciyb 0.95110	Asz 1.95461 Qzb 0.95110
E.id Moments	Mvi = 0.00000, Mvi = 0.00000 (for Lb)	Wy 13.5982 Yber 2.75197	Izz 13.5982 Zber 2.75197
	Mvi = 0.00000. Mvi = 0.00000 (for Lv)	8yy 4.93682	Szz 4.93682
	Mzi = 0.00000. Mzi = 0.00000 (for Lz)	ry 1.80014	rz 1.80014
Shear Fc ,	Fyy = 0.00000 (LCB: 1, POS:I)		
	Fz7 J000 (LCB: 1, POS:I)		
3. Design Parc	lers		
Unbraced Length	s Ly = 643.203. Lz = 643.2	203. Lb = 643.203	
Effective Length F	actors Ky = 1.00, Kz = 1.00	and	
Moment Factor / E	Sending Company		
	Cmy = 1.00, Cmz = 1.00,	Cb = 1.00	
4. Checking Re	suits		
Slenderness Ratio			
L/r = 135.7	/ < 300.0 (Men 15, LCB:		
Axial Stress	and the second		
ft/Ft = 93.76/	/1440.00 = 0.065 ≤ ↑,00		
Bending Stresses	and the second		
fby/Fby = 0.0	/0/1584.00 = 0.000 < 1.00		
tbz/Hbz = 0.0	10/1440.00 = 0.000 < 1.000		
Rmax = 0.06	(Compression+Bending)		
Shear Stresses			
fy/Ev = 0.000	< 1 000 OK		
		6	
		JU	

ร**ูปที่ 5.5.18** แสดงรายการคำนวณแบบสรุปของหน้าตัด P 139.8x6

1. Design Inform	ation		z
Design Code	- AISC-ASD89		÷.
Unit System	- kgf, am	1	
Member No	- 868	((
Material	- SS400 (No:1)	and a	11-1
	(Fy = 2400.00, Es = 2100000)	TH-	
Section Name	- P 101.6x5 (No:7)		
	(Rolled : P 101.6x5).	×	4
Memberl	: 200.734	4	
.ember Forc	es		
Axial For	Fxx = -12065 (LCB: 1, POS:I)	Outer Dia. 4.00000	Weir Inick U.19085
Be , Mont is	My = 0.00000, Mz = 0.00000	Qyb 3.62567	Qzb 3.02507
E.id Moments	Myi = 0.00000, Myj = 0.00000 (for Lb)	Vber 2.00000	Izz 4.25244 Zber 2.00000
	Myi = 0.00000, Myj = 0.00000 (for Ly)	Byy 2.12973	Bzz 2.12073
	Mzi = 0.00000, Mzj = 0.00000 (for Lz)		
Shear Fc ,	Fyy = 0.00000 (LCB: 1, POS:I)		
	Fz7 J000 (LCB: 1, POS:I)		
4. Checking Res	Cmy = 1.00, Cmz = 1.00	, Cb = 1.00	
Slenderness Ratio			
KL/r = 114.7	< 200.0 (Mer 52, LCB	ĸ	
Axial Stress			
fa/Fa = 795.33	5/1185.21 = 0.671000		
Bending Stresses			
fby/Fby = 0.00	//1584.00 = 0.000 < 1.00		
fbz/Fbz = 0.00	//1440.00 = 0.000 < 1.00L O.K		
Combined Stress (Compression+Bending)		
Rmax = 0.671	< 1.000		
Shear Stresses			
fv/Fv = 0.000 =	: 1.000		
		P.	

รูปที่ 5.5.19 แสดงรายการคำนวณแบบสรุปของหน้าตัด P 101.6x5

Design Code -AISC-ASD89 Unit System - kgf, cm Member No - 2009 Material - SS400 (No:1) (Fy = 2400.00, Es = 2100000) Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 70.00000, Mz = 0.00000 Lind Moments My = 0.00000, Mz = 0.00000 My = 0.00000, My = 0.00000 (for Lb) (My = 0.00000, My = 0.00000 (for Ly) (Mz = 0.00000, Mz = 0.00000 (for Ly) (Mz = 0.00000, Mz = 0.00000 (for Lz) Shear Fo : Fyy = 0.00000 (LCB: 1, POS:1)	Outer Die. 3.00394 Veil Thick: 0.15748 Area: 1.40818 Asz: 0.70413 Outer Die. 3.00394 Veil Thick: 0.15748 Area: 1.40818 Asz: 0.70413 Outer Die. 3.00394 Veil Thick: 0.15748 Area: 1.40818 Asz: 0.70413 Outer Die. 3.00175 Cate: 1.40240 Yaer 1.80107 Zaer: 1.80107 Byy 0.95107 Szz: 0.95107
Unit System - kgf, cm Member No - 2009 Material - SS400 (No:1) (Fy = 2400.00, Es = 2100000) Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Nember I : 128.544 Axial For Forces Axial For Fox = 2143.24 (LCB: 1, POS:J) Br Worr i My = 0.00000, Mz = 0.00000 E. d Moments Myi = 0.00000, Mz = 0.00000 E. d Moments Myi = 0.00000, Mz = 0.00000 (for Lb) Myi = 0.00000, Mzj = 0.00000 (for Lb) Myi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Fyy = 0.00000 (LCB: 1, POS:I)	Outer Dis. 3.00304 Vieii Thick: 0.15748 Area: 1.40818 Arez: 0.70413 Gub 2.03178 Gzb 2.03178 My 1.42940 Izz: 1.42940 Yaer 1.50107 Ziber 1.50107 Bay 0.95107 Baz 0.95107
Member No - 2009 Material - SS400 (No:1) (Fy = 2400.00, Es = 2100000) Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Member Forces Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Worr My = 0.00000, Mz = 0.00000 E.id Moments Myi = 0.00000, Mzj = 0.00000 (for Lb) Myi = 0.00000, Mzj = 0.00000 (for Ly) Mzi = 0.00000 (LCB: 1, POS:I)	Outer Die. 3.00304 Weil Thick: 0.15748 Area 1.40815 Asz 0.70413 Oyb 2.03178 Ozb 2.03178 Var 1.42940 Izz 1.42940 Yaer 1.60107 Zber 1.50107 Say 0.95197 Szz 0.95197
Material - SS400 (No:1) (Fy = 2400.00, Es = 2100000) Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member I : 128.544 Image: Section Name - P 76.3x4 (LCB: 1, POS:J) Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Morr My = 0.00000, Mz = 0.00000 Luid Moments My = 0.00000, Mz = 0.00000 (for Lb) My = 0.00000, Mz = 0.00000 (for Ly) Mz = 0.00000, Mz = 0.00000 (for Lz) Shear Fo For Shear Fo Shear Fo	Outer Die. 3.00304 Weil Thick: 0.15748 Area: 1.40818 Aez: 0.70413 Outer Die. 3.00304 Weil Thick: 0.15748 Area: 1.40818 Aez: 0.70413 Outer Die. 3.00304 Use: 1.40240 Yung: 1.40240 Uze: 1.40240 Yung: 1.80107 Zber: 1.50107 Byy 0.95107 Bzz 0.95107
(Fy = 2400.00, Es = 2100000) Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member 1 : 128.544 Nember Forces Axial For Fox = 2143.24 (LCB: 1, POS:J) Br Morris My = 0.00000, Mz = 0.00000 E.id Moments Myi = 0.00000, Mz = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Lb) Myi = 0.00000, Mzj = 0.00000 (for Lz) Shear For S Fyy = 0.00000 (LCB: 1, POS:I)	Outer Dis. 3.00304 Vieii Thick 0.15748 Outer Dis. 3.00304 Vieii Thick 0.15748 Area 1.40818 Asz 0.70413 Gyb 2.03178 Gzb 2.03178 Val 1.42940 tiz 1.42940 Yaer 1.60107 Ziber 1.50107 Byy 0.95107 Bizz 0.95107
Section Name - P 76.3x4 (No:8) (Rolled : P 76.3x4). Member ! : 128.544 Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br dom Lid Moments My = 0.00000, Mz = 0.00000 Evid Moments My = 0.00000, My = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mz = 0.00000 (for Lz) Shear Fo	3.00304 Juter Dis. 3.00304 Vell Thick: 0.15748 Area: 1.40818 Area: 1.40818 Area: 1.40818 Juter Dis. 3.00304 Vell Thick: 0.15748 Qub Juter Dis. 3.00304 Vell Thick: 0.15748 Area: 1.40818 Area: 1.40818 Area: 1.40818 Juter 1.50107 Byy Byy 0.95107 Byy 0.95107
(Rolled : P 76.3x4). Member I : 128.544 Axial For Forces Axial For Fox = 2143.24 (LCB: 1, POS:J) Br My = 0.00000, Mz = 0.00000 E.id Moments My = 0.00000, My = 0.00000 (for Lb) My = 0.00000, My = 0.00000 (for Lb) My = 0.00000, Mz = 0.00000 (for Lz) Mz = 0.00000, Mz = 0.00000 (for Lz) Shear Fo S Fyy = 0.00000 (LCB: 1, POS:I)	3.00394 Outer Die. 3.00304 Weil Thick: 0.15748 Area 1.40818 Asz 0.70413 Oyb 2.03178 Ozb 2.03178 Oyb 1.42940 Izz 1.42940 Yaer 1.50107 Zber 1.50107 Syy 0.95197 Szz 0.95197
Member I : 128.544 Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Monr Lid Moments My = 0.00000, Mz = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mz = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Shear Fo	3.00394 Outer Die. 3.00394 Weil Thick: 0.15748 Area: 1.40818 Area: 1.40818 Area: 0.70413 Gyb: 2.03178 Gzb: 2.03178 Yoar: 1.50107 Byy: 0.95107 Byy: 0.95107
Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Morr My = 0.00000, Mz = 0.00000 Evid Moments Myi = 0.00000, Myj = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Fyy = 0.00000 (LCB: 1, POS:I)	Outer Dis. 3.00394 Well Thick: 0.15748 Area 1.40818 Asz 0.70413 Gyb 2.03178 Gzb 2.03178 Jyy 1.42940 Izz 1.42940 Yber 1.50107 Zber 1.50107 Byy 0.95197 Bizz 0.95197
Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Worr My = 0.00000, Mz = 0.00000 E.id Moments Myi = 0.00000, Myj = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Fyy = 0.00000 (LCB: 1, POS:I)	Outer Dis. 3.00394 Well Thick: 0.15748 Area 1.40816 Asz 0.70413 Gyb 2.03178 Gzb 2.03178 Iwr 1.42949 Izz 1.42949 Yber 1.50107 Zber 1.50107 Byy 0.95107 Bizz 0.95107
Axial For Fxx = 2143.24 (LCB: 1, POS:J) Br Morris Liid Moments Myi = 0.00000, Mz = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Fyy = 0.00000 (LCB: 1, POS:I)	Outer Die. 3.00304 Weil Thick: 0.15748 Area 1.40818 Asz 0.70413 Qyb 2.03178 Qzb 2.03178 Jyy 1.42040 Izz 1.42040 Yber 1.50107 Zber 1.50107 Syy 0.95107 Szz 0.95107
Br Worr My = 0.00000, Mz = 0.00000 E. id Moments Myi = 0.00000, Myj = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Stear Fo	Area 1.40818 Asz 0.70413 Gyb 2.03178 Gzb 2.03178 Iyy 1.42040 Izz 1.42040 Ybar 1.60107 Zbar 1.50107 Byy 0.95107 Bizz 0.95107
L. id Moments Myi = 0.00000, Myj = 0.00000 (for Lb) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Stear Fo	Iyy 1.42040 Izz 1.42040 Yber 1.50107 Zber 1.50107 Byy 0.95107 Bzz 0.95107
End Montants Myi = 0.00000, Myj = 0.00000 (for Ly) Myi = 0.00000, Myj = 0.00000 (for Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Fyy = 0.00000 (LCB: 1, POS:I)	Byy 0.05107 Bzz 0.05107
My = 0.00000, My = 0.00000 (Ior Ly) Mzi = 0.00000, Mzj = 0.00000 (for Lz) Shear Fo Shear Fo Fyy = 0.00000 (LCB: 1, POS:I)	
Shear Fo s Fyy = 0.00000 (LCB: 1, POS:I)	ry 1.00787 rz 1.00787
EZZ (JUDU U U.B. 1 EUS)	
12, 10000 (202. 1,100.)	
3. Design Par ers	
Unbraced Lengths $1_{\rm V} = 128544$ $1_{\rm Z} = 128544$	lb = 128544
Effective Length Eactors $K_V = 1.00, K_Z = 1.00$	
Moment Eactor / Bending Co	
Cmy = 1.00, Cmz = 1.00, Cb	= 1.00
4. Checking Results	
Slenderness Ratio	
KL/r = 50.2 < 200.0 (Men 35, _CB:OK	
Axial Stress	
ft/Ft = 235.91/1440.00 = 0.164 < 500	
Bending Stresses	
fby/Fby = 0.00/1584.00 = 0.000 < 1.00	
fbz/Fbz = 0.00/1440.00 = 0.000 < 1.000	
Combined Stress (Compression+Bending)	
Rmax = 0.164 < 1.000	
Shear Stresses	
fv/Fv = 0.000 < 1.000 O.K	
ร ูปท 5.5.19 แสดงรายการคำนวณแบบสรุปง	به لو