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Introduction
1. Mechanical properties of steels
2. Typical steel shapes
3. Design concepts (ASD and LRFD)
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1.Mechanical properties of steels

Schematic Stress-Strain Curve:

Stress-Strain Curves (A36):

A36 : Yield stress = 36 ksi [approx. 250 MPa]



Typical Stress-Strain Curves

Important Properties

1. Modulus of elasticity, E (about 2x106 ksc)
2. Shear modulus, G

G =  E/2(1+μ)  , μ = poisson’s ratio (about 0.3)

3. Coefficient of thermal expansion and 
contraction
α = 12x10-6 / oC

4. yield strength and tensile strength
5. Mass density = 7.85 ton/m3



2. Typical Steel Shapes

Steel shapes can be classified into :

1. Hot-rolled shape
shapes are formed by hot rolling in the steel mill.

2. Cold-formed shape
shapes are formed by pressing the steel plate. The 
plate thickness is usually thin.

3. Built-up shape
shapes are formed by attaching two or more steel 
shapes together.

Standard Hot-rolled shapes

Channel, Angle, and T shapes (Geschwindner et al. 1994, p.96)

Wide-flange and I-beam shapes



Standard Hot-rolled shapes

W, S, M shapes
e.g.  W400x66  => depth = 400 mm & weight = 66 kg/m

C shape
e.g.  C150x18.6 => depth = 150 mm & weight = 18.6 kg/m

L shape
e.g. L75x50x4 => leg 1 = 75 mm & leg 2 = 50 mm  &  thickness = 4 mm

Standard Hot-rolled shapes

Tubular Products (Geschwindner et al. 1994, p.98)



Standard Hot-rolled shapes

Plate and Bar Products (Geschwindner et al. 1994, p.96)

Cold-formed Shapes



Built-up Shapes

3. Design concepts

All structural steel members must satisfy strength 
and serviceability criteria.

1. Strength limit states define safety against local or 
overall failure conditions, e.g., yielding, buckling 
etc.
2. Serviceability limit states define functional 
requirements, e.g., deflection etc.



Three methods of strength design are:

1. AISC / ASD ( Allowable Strength Design )
- use service loads and elastic analysis to compute the 
required strength
- use yield strength and stability with factor of safety to 
compute the available strength

2. AISC / LRFD ( Load and Resistance Factor Design )
- use factored loads and elastic analysis to compute the 
required strength
- use yield strength and stability with resistance factor to 
compute the available strength

3. AISC / PD ( Plastic Design )

AISC = American Institute of Steel Construction

Allowable Strength Design (ASD)

Axial force, Moment, Shear etc.



Load and Resistance Factor Design 
(LRFD)

Same as in ASD !!

D = Dead load, L = Live load, Lr = live load (Roof floor), S = Snow 
load, R = Rain load, W = Wind load, E = Earthquake

Use load combination that gives the maximum effect (M, V, etc.)

Load and Resistance Factor Design 
(LRFD)



Depends on the type of member and limit state

Load and Resistance Factor Design 
(LRFD)

Resistance Factor v.s. Safety Factor



Tension Members
1. Introduction
2. Typical shapes
3. Failure modes
4. Nominal tensile strength for each failure mode
5. Design concepts (ASD and LRFD)
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1. Introduction

• Tension members are found in most steel structures, 
e.g., bridges, roof trusses, transmission towers and 
wind bracing systems in multistory buildings.

22



2. Typical Shapes
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L shape
(Angle)

WT shape
(Tee)

W, S, or M shape Pipe

Double angle Double channel Built-up plate angle shape
Double plane truss

Reference: Johnston et al. 1980, p.27

3. Failure Modes
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1. Yielding on gross area (Ag)
2. Rupture on effective net area (Ae)
3. Block Shear Rupture



4. Nominal Tensile Strength for 
Each Failure Mode
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Net Area (An)
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The cross sectional area of a tension member is reduced due to 
holes provided in the bolted connection. The net area can be 
computed as follows.



http://www.bgstructuralengineering.com/BGSCM/BGSCM003/BGSCM00304.htm

1/8" (4 mm) = 1/16" (2 mm) for the 
actual hole diameter plus an 
additional 1/16" for damage related 
to punching or drilling 
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28

(for a zigzag line)

Plus this quatity
for each gage 
space



Effective Net Area (Ae)
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Shear lag factor = reduction factor due to shear lag
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(distance from centroid of element being connected to plane of load 
transfer)
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Block Shear Rupture
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5. Design Concepts (AISC 2010) 
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“Design tensile strength”

“Allowable tensile strength”
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Example 1 (Bolted Tension Member)
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no. of holes

Example 2 (Welded Tension Member)
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2 sides



Compression Members
1. Introduction
2. Elastic buckling (Euler’s analysis)
3. Effective length coefficient
4. Inelastic buckling
5. Column curve and design equations for 

compression members (AISC 2005)
6. Alignment charts (braced and unbraced

frames)
7. Inelastic effective length coefficients
8. Torsional buckling
9. Local buckling
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1. Introduction
• Member subjected to axial compression forces are 

column, top chord of a truss, top flange of a beam, 
post, strut, etc.

• Compression members are different from tension 
members in that buckling can occur.

• Only very short columns can be loaded to their yield 
stresses.

• A perfect column is a column having:
- homogeneous materials
- perfectly straight
- axially loaded
- no residual stresses

• The strength of an actual column is always less than
that of a perfect column because of the presence of 
residual stresses, initial column curvature, and 
accidental eccentricity of the applied load.

50



Type of columns

1. Short columns : 
Failed by a material failure, i.e., yielding 

2.   Intermediate columns : 
Failed by an inelastic buckling 

3. Long columns:
Failed by an elastic buckling
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Typical Column Sections (Galambos 1996, p.94)

Typical column sections
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Failure modes
• Primary or overall buckling
▫ Flexural buckling about principal x,y-axes
▫ Torsional buckling about z-axis
▫ Combined flexural and torsional buckling

• Secondary buckling (local buckling)
▫ Flange local buckling (FLB)
▫ Web local buckling (WLB)

• Stiffness (KL/r  should not be greater than 200)
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2. Elastic buckling
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Elastic buckling load

An initially straight concentrically loaded elastic member 
will buckle as shown in the figure

The elastic buckling load, or Euler load, is given by

And  the Euler stress is 

Where         = elastic modulus55

K = Effective length coefficient2
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• The elastic buckling strength is a 
function of only one material 
property - the modulus of 
elasticity. It is not a function of 
the yield strength

• The critical buckling stress 
cannot exceed the yield strength 
of steel. Therefore, the Euler 
curve must be cut of at the yield 
strength of steel. 



3. Effective length coefficient (K)
The equivalent pinned-end length of a column is referred as 
effective length (KL) where  K = effective length coefficient.
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4. Inelastic buckling
• Typical  range of column strength –slenderness ratio is shown

in the figure.
• Euler elastic buckling governs the strength for large 

slenderness ratio values.
• Intermediate and short columns will buckle inelastically.
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Fig. Typical range of column strength v.s. slenderness ratio
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5. Column curve (AISC 2005)
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Eq. (1)

Eq. (2)

Design of compression members
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1

Eq. (1)

/ 2.25y eF F >
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where

or

(Slenderness parameter) 

/ 2.25y eF F ≤

For columns in a rigid frame, the effective length coefficient 
should be determined using the alignment charts. Main 
assumptions used in developing the charts  (Kavanagh
1960) are

1.Behavior is purely  elastic.
2.All members have constant cross section.
3.All joints are rigid.
4.Rotations at opposite ends of beams are equal.
5.All columns buckle simultaneously.
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6. Alignment charts
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Braced v.s. unbraced frames
• A braced frame cannot sway and the buckling shape is 

symmetrical.

• An unbraced frame will sway and the buckling shape is anti-
symmetrical.

• Two different alignment charts are given for braced and 
unbraced frames.
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I. Braced frames
(sway prevented)

II. Unbraced frames
(sway permitted)

Aθ Cθ

Aθ Bθ
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GB

Sideway  prevented
ก.  ไมมีการเคลื่อนที่ดานขาง
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• Braced frame

• Unbraced frame
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The characteristic equations of column can be written as
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Eq. (3)

Eq. (4)



• Braced frame
▫ Beams with far end hinged - multiply (EI/L)b by  a factor  1.5 
▫ Beams with far end fixed - multiply (EI/L)b by  a factor  2.0 

• Unbraced frame
▫ Beams with far end hinged - multiply (EI/L)b by  a factor  0.5 
▫ Beams with far end fixed - multiply (EI/L)b by  a factor  2/3 
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When rotations at opposite beam ends are not equal (violate 
assumption no. 4), the beam stiffness must be modified as 
follows,

In practice, when column ends are hinged or fixed, the 
following values of G are recommended

• Hinged end, theoretical  G value = inf.  -> use G = 10
• Fixed end, theoretical  G value = 0  -> use G = 1

7. Inelastic effective length coefficients

• The alignment chart uses the elastic modulus in 
computing the column stiffness.

• Columns, however, may buckle inelastically, therefore,  
we replace (EI)c with (EtI)c to account for the 
inelasticity.

• The inelastic Gin can be written as
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Eq. (5)
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/af P A=

Alternatively, for a faster convergence, Yura proposed 

0.877
a

a
e

f
F

τ  =  

where 

• The Kin can be obtained from the alignment chart once 
all Gin have been computed.

• The calculation of Kin needs iterations until its value 
converges.

• The use of elastic K will always give conservative result 
in the design.

Eq. (7)

Eq. (8)

8. Torsional buckling

• The most efficient shape for resisting a torsion is a 
hollow circular section.

• Thin wall closed sections are stronger in torsion than 
open sections.
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Torque
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• Torsional buckling of symmetrical shapes and 
flexural-torsional buckling of unsymmetrical shapes  
are failure modes usually not considered in the design 
of hot-rolled columns. They generally do not govern, 
or the critical load differs very little from the weak-
axis planar buckling load.

• For built-up columns, however, the torsional and 
flexural-torsional buckling modes may control the 
strength.
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Design recommendations (AISC 2005)

• Doubly-symmetric sections
▫ The elastic torsional buckling stress is 

where 

▫ The critical buckling stress  in Eq. (1) or (2) is 
calculated from  Fe which is the minimum value of  
Fex, Fey, and Fez .
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• Singly-symmetric sections
▫ Symmetry about y-axis, the elastic flexural-

torsional buckling stress is

▫ The critical buckling stress  in Eq. (1) or (2) is 
calculated from  Fe which is the smallest of  Fex and 
Feyz .

▫ If symmetry about x-axis, Fe will be the smallest of 
Fey and Fexz .
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( )2
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2
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eyz
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F

H F F
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⎢ ⎥+⎣ ⎦

Eq. (10)

• Unsymmetrical sections
▫ The elastic flexural-torsional buckling stress  is the 

smallest root of the following equation

where 

▫ The critical buckling stress  in Eq. (1) or (2) is 
calculated from  Fe.

• Flexural buckling about both x and y axes and torsional
buckling about z-axis happen simultaneously.
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• Double-angle and tee sections
▫ Due to symmetry about y-axis, the critical flexural-

torsional buckling stress is

where 
and Fcry is calculated from Eq. (1) or (2) using

▫ The critical flexural buckling stress about x-axis, 
Fcrx , is calculated from Eq. (1) or (2) using

▫ The critical buckling stress  is the smallest of Fcrx

and Fcryz .
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Eq. (12)

10. Local buckling
• All column sections consist of plate elements.
• These plate elements can buckle locally before the 

overall buckling of the column occurs.
• Local buckling will reduce the compressive strength of 

the column.
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Classification of plate elements

• Unstiffened element
The plate element that is supported along only one 
edge parallel to the direction of the compressive force.

• Stiffened element
The plate element that is supported along two edges 
parallel to the direction of the compressive force.

80



Slenderness ratio of plate (b/t)
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Stiffened elements Unstiffened elements

Limiting b/t ratio to prevent local buckling
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Remarks: E =2,000,000 ksc, Fy = 2,450 ksc
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Design of slender element 
section with 
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/ rb t λ>

crF

/KL r/( )4.71 yE QF

0.39 yQF

yQF

Eq. (22)

Eq. (21)

• Inelastic buckling

For                                or 

• Elastic buckling

For                                  or

where   
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Qs for slender unstiffened elements
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/a e gQ A A=

Qa for slender stiffened elements

( )e g eA A b b t= − −∑where 

Eq. (24)
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Flexural Members (Part 1)
1. Introduction
2. Simple flexure formula
3. Modes of failure
4. In-plane bending (IPB)

5. Out-of-plane bending or Lateral torsional
buckling (LTB)

6. AISC 2005 provisions (Chapter F)
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1. Introduction

• Beams are members that carry primarily transverse 
loads.

• Typical beam sections are shown below.
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2. Simple Flexure Formula

yyxx

x y

MMf
S S

= +

S = section modulus, defined as the moment of inertia I divided 
by the distance c from the center of gravity to the extreme fiber.

The subscript x and y indicates the axis about which the moment 
of inertia is computed and from which the distance c is measured.

Reference:  Salmon, C.G. and Johnson, J.E. (1996). Steel structures: design and behavior, fourth edition, HarperCollins Publishers Inc.
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3. Modes of Failure

• In-plane bending (IPB)
▫ Yielding
▫ Local buckling of web and/or flange

• Out-of-plane bending or Lateral torsional buckling 
(LTB)

• Shear
▫ Yielding
▫ Web shear buckling

• Deflection
The limitation depends on the type of materials being 
supported, i.e., ceilings, partition, or walls.
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Behavior of Laterally-Stable, Compact Section 
Beams (In-plane Bending)

• Beams are laterally stable when compressive flanges do not buckle laterally.
• The moment strength can be computed from the section properties.

• The strain and stress distributions through the section depth at different 
stages of loadings are shown below.

Fy Fy Fy Fy

Fy
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Shape Factor (f)

• The increase of moment from My to Mp is known as the 
reserved moment strength.

• A shape factor is defined as the ratio of Mp and My

Fy

Fy
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Moment-Curvature relationships

κ

/ yM M
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4. In-plane bending (IPB)

/ = b tλrλpλ

rM

pM

yM

  = = n p x yM M Z F

( ) = p
n p p r

r p
M M M M

λ λ
λ λ

⎡ ⎤⎛ ⎞−
− −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 =  n cr xM F S

nM
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Limiting b/t ratio to prevent local 
buckling
AISC (2005)  classifies the steel sections into:
1. Compact section

o A section can develop a fully plastic moment.
o A flange must be continuously connected to the 

web or webs.
o Element local buckling is not a problem.

2. Noncompact section
o A section cannot develop a fully plastic moment.

3. Slender element section
o Element local buckling occurs.
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5. Lateral Torsional Buckling (LTB)

yM

rM

pM

HRΔ
HΔ

Δ

M M

bL
wt

ftfb

d

maxΔ

LTB and local buckling prevented

LTB or local buckling

LTB or local buckling
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Reference:  Salmon, C.G. and Johnson, J.E. (1996). Steel structures: design and behavior, fourth edition, HarperCollins Publishers Inc.
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Reference:  Salmon, C.G. and Johnson, J.E. (1996). Steel structures: design and behavior, fourth edition, HarperCollins Publishers Inc.
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Nominal moment strength v.s. Unbraced length

bLrLpL
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Mn = nominal flexural strength

6. AISC 2005 provisions (Chapter F)
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May be conservatively taken as 1.0
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: Same as previous section F2 
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Flexural Member (Part 2)
1. Simple shear formula
2. Web shear failure
3. AISC 2010 provisions (Chapter G)
4. Deflection criterion 
5. Biaxial bending
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1. Simple shear formula

142

Theoretically, the beam shear stress is given by

Where  V = shear force
I = moment of inertia of the entire cross section about the 

neutral axis
Q = moment about the neutral axis of the area that is beyond

the fiber at which the shear stress is calculated
t = thickness of the portion at which the shear stress is 

calculated

 = v
VQ
It

τ (1)
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For a typical I-section, the shear stress distribution in the elastic
range is shown below. It is clear that the web carries a significant 
portion  of shear force. Also, the shear stress is nearly uniform 
over the web area.

Therefore, for the purpose of design, we can assume without 
much error that the average shear stress is

 =  = v
w w

V V
A t d

τ (2)

Where  tw = web thickness, d = overall depth

Fig 1. Shear stress distribution on I-sections

Depending on the slenderness of the web,  the possible 
failure modes are
• Web shear yielding
• Inelastic web shear buckling
• Elastic web shear buckling
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2. Web shear failure

Fig 2. Shear yielding near the support.
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( ) = 0.6n v yw wV C F A
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h
t

Fig 3.  Web shear coefficient, Cv

1. Web shear yielding :

2. Inelastic web shear buckling :

3. Elastic web shear buckling :
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Refer to Fig. 3, we can summarize as follows,



3. AISC 2010 provisions (Chapter G)

Chapter G addresses webs of singly or doubly 
symmetric members subject to shear in the plane of 
web, single angles and HSS sections, and shear in the 
weak direction of singly or doubly symmetric shapes.
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G2.1 Members with unstiffened
or stiffened webs
For webs of singly or doubly symmetric members and 
channels subject to shear in the plane of the web. The 
nominal shear strength (Vn) of unstiffened or stiffened 
webs according to the limit states of shear yielding and 
shear buckling is
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“shear yield force”
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Section G2.1 (a)
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“flanges on both edges of web”

“flanges on both edges of web”

4. Deflection criterion 
Deflections in structural members and structural systems under 
appropriate service load conditions shall not impair the 
serviceability of the structure. Usually the allowable deflection is 
L/360.
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5. Biaxial bending

165

A loading condition that produces bending about both major 
(strong) axis and minor (weak) axis

x = strong axis
y = weak axis
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A shear center is a point through which the loads must act if there 
is to be no twisting, or torsion, of the beam. The shear center is 
always located on an axis of symmetry; thus the shear center will be 
at the centroid of a cross section with two axes of symmetry.

Fig.. Location of 
shear center for 
several common 
cross section
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One-axis bending:

or

Biaxial bending:
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LRFD : 

ASD : 
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Minor axis bending (Mny):
Any shape bent about its weak axis cannot buckle in the other 
direction, so lateral torsional buckling is not a limit state.

Compact section:

Noncompact section (flange-to-width ratio exceed the limit):

Same equation as major axis bending

170

When loads are not applied through the shear center of a cross 
section, the result is flexure plus torsion.

Purlins

Beams

Take only half the cross section to be 
effective with respect to y-axis.
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Design of Roof Purlins

Purlins

The sag rods provide lateral support with respect to x-axis 
bending and will act as transverse supports for y-axis bending, 
requiring that the purlin be treated as a continuous beam.

172



173

174



175

176



177

178



179


