

Performance Criteria: JRA				
Ground Motion GM with high possibility of occurrence (Level-1 GM)		Ordinary Bridge	Important Bridge Functional (1)	
		Functional (1)		
GM with low possibility of occurrence	Type-I GM (Kanto EQ)	Prevent critical damage (3)	Retain limited damage (2)	
(Level-2 GM)	Type-II GM (Kobe EQ)			

Ground Motion	Level of Post-EQ Service		Level of Damage	
	Ordinary Bridges	Important Bridge	Ordinary Bridges	Important Bridge
Functional-Evaluation GM	Immediate	Immediate	Reparable	Minimum
Safety-Evaluation GM	Limited	Immediate	Significant	Reparable

Response modification factor (R-factor)
Substructure	R
Wall-type pier	2
RC pile bents	11 1 1 1 1 1 1
vertical piles only	3
one or more batter piles	2
Single columns	3
Steel or composite steel and concrete pile be	ents
vertical piles only	5
one or more batter piles	3
Aultiple column bents	5

Risk factor R	Structural performance fa	ctor S _p	
Importance Category	R	Site Subsoil Category	S _p
Bridges carrying more than 2500 vpd	1.3	Rock or very stiff sites	0.9
Bridges carrying or crossing motorways and railways		Intermediate soil sites	0.8
Bridges carrying between 250 and 2500 vpd	1.15	Flexible or deep soil sites	0.67
Bridges carrying less than 250 vpd Non permanent bridges	This factor accounts for dampi from radiation and inelastic be	ng arisi havior	
The return periods of design earthquakes about 900, 650, and 450 years for bridge risk factors of 1.3, 1.15, and 1.0, respect	s are es with tively.	in the foundation.	

Substructure	Seismic Behavior	
	Limited Ductile	Ductile
RC columns		
slender (H/L \ge 3.5)	1.5	3.5
short (H/L=1)	1.0	1.0
Abutment	1.0	1.0

Comparison of Design Response Spectra					
Factors Codes	Zone factor	Importance factor	Site modification factor	Damping modification factor	Response modification factor
JRA (2002)	c _z = 1.0, 0.85, 0.7	 - 2 categories - For computing ductility → R-factor 	- 3 types- Response spectra	$c_D = \frac{1.5}{40h+1} + 0.5$	$R = \sqrt{2\mu_a - 1}$
AASHTO (1996)	Specify ground acceleration	-2 categories - For computing R-factor	- 4 types - S = 1.0, 1.2, 1,5, 2.0	No	- R-factor - From table
ATC-32 (1996)	Specify ground acceleration	- 2 categories - For computing Z-factor	 6 types Response spectra	No	- Z-factor - From chart
TNZ (1995)	Z = 1.2 - 0.6	- 3 categories - R = 1.3, 1.15, 1.0	- 3 types - Response spectra - S _p = 0.9, 0.8, 0.67	No	Use inelastic response spectra ($R = \mu$)
EC8 (1994)	Specify ground acceleration	- 3 categories - k _I = 1.3, 1.0, 0.7	- 3 types - k _s = 1.0, 1.0, 0.9	$k_D = \sqrt{\frac{0.07}{0.02 + h}} \ge 0.7$	- q-factor - From table

Load Combination		
Code	Load Combination	
JRA	D+PS+CR+SH+E+HP+B+EQ	
AASHTO	D+E+B+SF+EQ	
TNZ	1.00{kD+1.35(E+HP+B)+SG+ST+EQ+0.33TP} 1.35(D+E+HP+B+SG+0.33EQ+1.1CN) (k=1.3 or 0.8, whichever is more severe, to allow for vertical acceleration)	
EC8	$\frac{D}{PS+EQ}+\psi L$ (ψ =0 for bridges with normal traffic, ψ =0.2 for bridges with heavy traffic, ψ =0.3 for railway bridges)	