การออกแบบถึง Solid Contact Clarifier Tank

(Sludge Recirculation)

สำหรับน้ำประบาขนาด 150 ลูกบาศกุเมตรต่อชั่วโมง

โดย นายพรศักดิ์ สมรไกรสรกิจ

ส่วนวิเคราะห์จัดการสิ่งแวดล้อม กองจัดการสิ่งแวดล้อมและมลพิษ **ผ่ายควบคุมคุณภาพน้ำ**

DESIGN CALIFIER TANK

(SLUDGE BLANKET CLARIFIER TYPE : SLUDGE RECIRCULATION)

1. Flow Rate

 $Q = \frac{150}{150} m^{3}/hr$

2. Raw Water Quality input

1 Turbidity	=	NTU
2 рН	=	8.3
3 Alkalinity	=	34 mg/l as CaCO ₃
4 Temperature	=	°C
5 Fe	=	2 mg/l
6 Mn	=	mg/l
7 Total Hardness	=	50 mg/l as CaCO ₃

3. Design Criteria

3.1. Kawamura

3.1.1	Flocculation Time	=	approximate = 20 min	
		=	normal = 20 - 40 min	
3.1.2	Settling Time	=	1 - 2 hr	
3.1.3	Surface Loading	=	2 - 3 m/hr	
3.1.4	Weir Loading	=	7.3 - 15 m ³ /hr	
3.1.5	Upflow Velocity	=	< 10 mm/min	
3.1.6	Slurry Circulation rate	=	up to 3 - 5 time the raw water inflow rate	
3.1.7	G	=	30 - 50 s ⁻¹	
3.1.8	MAXIMUM MIXER TIP SPEE	D =	= 0.9 m/s (Baffled Channel)	
		=	0.9 m/s (Horizontal Shaft with Paddles)
		=	1.8 - 2.7 m/s (Vertical Shaft with Paddles)	
	Equation <i>mixer tip speed</i>	=	πDN	
3.1.9	Free Board is approximate	=	0.6 m	
3.1.10	Water Depth	=	4 - 5 m.	
3.1.11	Length and Width ratio	=	6 : 1 (minimum 4 : 1) (Rectangular Basir	า)
3.1.12	Width and Water Depth	=	3 : 1 (maximum 6 : 1) (Rectangular Basir	า)
3.1.13	Blade area/Rapid Mixing Ta	nk a	area = 0.1 - 0.2 % (page 121)	
3.1.14	Blade : Diameter Blade/Dia	nete	er Mixing Tank = 0.2 - 0.4 (page 121)	
3.1.15	Shaft rpm	=	8 - 12	

3.2. Q'Sim

3.2.1	Detention Time	=	2 Hr
3.2.2	Surface Loading	=	2 - 4 m/hr
3.2.3	Weir Loading	=	7.1 m ³ /m.hr

3.3. Sheet Master Degree of Environmental Engineering

3.3.1	Weir Loading	=	7.1 m ³ /m.hr
3.3.2	Surface Loading		
	- Q < 0.35 m ³ /min	=	0.5 - 1.0 m/hr
	- Q > 0.35 m ³ /min	=	1.25 - 1.85 m/hr
3.3.3	Water Depth	=	3 - 5 m.
3.3.4	Paddle radius	=	65 - 75% of radius for Flocculator
3.3.5	Detention Time	=	1 - 3 Hr
3.3.6	Diameter Tank	<	45 m
3.3.7	Paddle at bottom tank high	bott	om = 15 - 30 cm
3.3.8	Paddle Velocity	=	2 - 3 rpm
3.3.9	Effective Paddle Area	=	10 % Sweep area of the fllocculator

3.4. Water Work Engineering Book

3.4.1	Flocculation			
	2.4.1.1 Detention Time	=	20 - 60 min	
	2.4.1.2 Velocity Gradient	=	15 - 60 S ⁻¹	
	$2.4.1.3 \text{ GT} = 1 \times 10^4 - 15 \times 10^4$	1		
	2.4.1.4 Periperal Velocity of	Pac	dle	=0.3 - 0.6 m/s
	2.4.1.5 Shaft rotation speed	ł	= 1.5 - 5 rpm	1
3.4.2	Sedimetation (Coagulation)			
	2.4.2.1 Detention Time	=	2 - 8 hr	
	2.4.2.2 Surface Loading	=	20 - 40 m ³ /m ²	.day
	2.4.2.3 Weir Loading	=	200 - 300 m ³ /	m.day
3.4.3	Sedimentation (Softening)			
	2.4.3.1 Detention Time	=	1 - 6 Hr	
	2.4.3.2 Surface Loading	=	40 - 60 m ³ /m ²	.day
	2.4.3.3 Weir Loading	=	250 - 350 m ³ /	m.day

3.5 Clarifier Design (Water Poluttion Control Federation 1985)

3.5.1	Detention Time Flocculator	r cen	tral well = 20 - 30 min
3.5.2	Weir Loading (outlet)	=	100 to 150 m ³ /m ² .day
3.5.3	Radial inner feed well	=	10 to 13% of the tank radius
3.5.4	velocity gradient	=	30 - 50 S ⁻¹

4 GiveContact	Time in	Hopper insi	ide (Flocculation Zone)	=	40	min	
			Contact Time ZONE 1	=	20	min	(Criteria 20 - 30 min)
Contact Time	e outside	e (ZONE 2 +	ZONE 3) + ZONE 4	=	20	min	
5 Flow Rate				=	150	m ³ /hr	
6 Volume in ins	side Hop	pper		=	Q x t		
				=	100	m ³	
7 Give Detention	on Time	in outside H	lopper(Sedimentation Zone)	=	1.7	Hr	
8 Volume in ou	itside Hc	pper		=	Q x t		
				=	255	m^3	
9 Calculation [Diameter	· Hopper ins	side				
9.2 ZONE 1 ((Circular	·Basin)					
			Volume in ZONE 1	=	Q x t		
			Volume in ZONE 1	=	50	m ³	
		Give D1		=	4	m	
		Surface A	rea	=	$\frac{\pi D^2}{1}$	m^2	
		A_1		=	4 12.5664	m^2	
	•	Depth in Z	CONE 1	=	3.97887	m	
9.2 ZUNE 21	Circular			_	5	~	
		Give D2		_	πD^2	2	
		Surface A	rea	=	$\frac{\pi D}{4}$	m 2	
		A_2		=	19.635	m	
		Depth in Z	CONE2	=	3.22887	m	(safety 0.25 m)
		Volume Z	DNE2	=	63.3988	m ³	
9.3 ZONE 3 ((Conical	Basin)					
		Give D3		=	7	m	
		Give Dept	h in ZONE 3	=	1	m	

1/4

Surface area on Top		=	$\frac{\pi D^2}{4}$	
 Surface area on Top (A3)		=	19.635	m ²
Surface area on Bottom		=	$\frac{\pi D^2}{4}$	
 Surface area on Bottom (A4	1)	=	38.4845	m^2
	Volume	=	$\frac{d}{6}x(A_1 +$	$A_2 + \sqrt{A_1 x A_2})$
 Volume ZONE 3		=	14.2681	m ³

9.4 Outside Volume ZONE 2 and ZONE 3 = Volume ZONE 2 + ZONE 3 - Volume ZONE 1 = 27.6669 m³

9.5 ZONE 4 (Circular Basin)

... Volume in ZONE 4 = Total Volume in Hopper inside - (Volume ZONE2+ ZONE3)

••	Depth III ZONE 4	$\frac{1}{\pi D^2} \frac{1}{\pi D^2} x^4$
•	Depth in $70NE4$	– Volume Zone 4
•••	Volume in ZONE 4	= 22.3331 m

20

min

З

Check Detention Time Outside ZONE2 and ZONE3 + ZONE² = 0.33333 hr

 \therefore Water Depth = 4.80919 m

(Design Criteria 3 - 5 m,Kawamura,page161)

=

- Free Board from Design Criteria = 0.6 m (Kawamura)
- Solid Contact Clarifier Tank Height = 5.40919 m

10 Calculation Diameter Solid Contact Clarifier

Total Volume = Volume inside Hopper + Volume outside Hopper

= 9.69468

m

Diameter Solid Contact Clarifier =
$$\sqrt{\frac{4xVolume}{\pi xwater depth}}$$

20:44/27/2/2007

Page 1 of 1

(c)

(a)

(d)

(e)

1. Rapid Mixing by Radial and Axial Impellers

Theory
$$G = \sqrt{\frac{P}{\mu V}}$$

Where :

- G =Velocity gradient, sec⁻¹(G = 700 to 1000 sec⁻¹)
- P = Power Imparted to the water, N-m/s or Watt or kg.m²/s³
- $V = Volume of the basin, m^3$
- μ = absolute viscosity of the fluid, N-s/m²

The motor power of the mixer is the power to drive the speed reduction gears. The powe imparted to the water by a mixer is calculated from

Theory
$$P = 2\pi nT$$

Where :

- n = Impeller speed, revolutions per second (rps)
- T = Impeller shaft torque, N-m.

Other expression for the power imparted to the water are given by :

Theory $P = N_{p}\mu n^{2}d^{3}$ is used for the Laminar-flow range (Reynolds number N_R < 10) $P = N_{p}\rho n^{3}d^{5}$ is used for the Turbulent-flow range (Reynolds number NR > 10,000)

Where :

 N_P = Power number of the impeller (power numbers for different types of impellers are give in table 8 - 5

- d = impeller diameter, m
- ρ = mass density of fluid, kg/m³

 μ = absolute viscosity of water, N-s/m²

The Reynolds number for Rapid mixers is given by :

Theory $N_R = \frac{d^2 n \rho}{\mu}$

The velocity gradient for a mixing basin utilizing flow - induced turbulence can be calculated from :

$$G = \frac{g\rho\sqrt{h_L}}{t\mu}$$

Where :

$$h_L$$
 = total head loss through the mixer,m
 t = detention time, s

Detention time in Rapid-Mix Basin

Theory
$$t = \frac{V}{Q}$$

Where :

$$t$$
 = average detention time, min
 Q = flow rate, m³/min
 V = volume of the tank. m³

Check Mixer Tip Speed

Theory

Tip Speed =
$$\pi Dn$$
 m/s

Where :

D = Diameter of Impeller (m.)

n = Impeller speed, revolutions per second (rps)

Rapid Mix

Tip Speed > 1 m/s

Slow Mix

1.Baffle Channel < 0.9 m/s

2.Mechanical Flocculators

- Horozontal Shaft with Paddle < 0.9 m/s

- Vertical Shaft with Blade < 1.8 m/s to 2.7 m/s

1. Power Number for Impeller

	Power Number, N _p
Radial flow	
Straight blade turbine	
4 blade $(w/d = 0.15)^{a}$	2.6
4 blade ($w/d = 0.2$)	3.3
Disc turbine	
4 blade ($w/d = 0.25$)	5.1
6 blade ($w/d = 0.25$)	6.2
Axial flow	
Propeller 1:1 pitch	0.3
Propeller 1.5:1 pitch	0.7
45° Pitched blade	
4 blade ($w/d = 0.15$)	1.36
4 blade ($w/d = 0.2$)	1.94

Table 8-5	Power Numbers	of Various	Rapid-Mix	Impellers
-----------	---------------	------------	-----------	-----------

a w/d = blade width-to-diameter ratio.

Source: Adapted in part from References 2, 5, 27, and 28.

2. Coefficient of Drag for Paddle

Table 8-6Coefficient of Drag (C_D) for Paddle-Wheel Flocculator, Based on Length-
to-Width Ratio of the Paddle

CD	
1.20	
1.50	
1.90	
	С _D 1.20 1.50 1.90

Impeller Mixing

Give

1 Flow rates	=	150	m ³ /hr

2 Volume of the ZONE 1	=	50.000	m ³	
μ =	=	0.000895	Kg/m.s	at 25°C
ho =	=	997.1	Kg/m ³	at 25°C

Theory
$$G = \sqrt{\frac{P}{\mu V}}$$

Where :

	$G = \text{Velocity gradient, sec}^{-1}$									
	P = Power Imparted to the water, N-m/s or Watt or kg.m ² /s ³									
	<i>V</i> =	V = Volume of the basin, m ³								
	μ =	abs	solute vi	iscosity	y of the fluid	, N-s/m ²				
Give Velocity Gradient (G)		=		70	-1 S	(Design C	riteria Kawamora)			
3 Power Imparted to the water,	Р	=	2	19.3	N-m/s or	Watt or kg.n	2 3 1 /s			
		=	0.	2193	kWatt					
P is the power imparted to the	water. T	he	power o	of the c	driver(P') is a	calculated by	y diving P by the			
efficiency of the gearbox, whic	h is typi	icall	y aroun	d	80	percent				
 Power Imparted to the water,	Ρ'	=	0.	2741	kWatt					
	1 HP	=	0.	7457	kWatt					
 Power Imparted to the water,	P	=	0.	3676	HP					
 Use Standard motor of P'		=			HP,	rpm =				
			and	efficie	ency =	80	percent			

4 Impeller Design

...

...

...

Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.Experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basin

Use Disc Turbine 6 Blade

Blade width-to-Diamet	er ratio	=	0.25		
	N_{P}	=	6.2	(Table 8.5	Power Number)
Theory	Р	=	$N_P \rho n^3 d^5$		
	n	=	$\left(\frac{P}{\rho N_P d^5}\right)^{\frac{1}{3}}$		
Diameter of mixing tank (D)		=	4.000	m	= Width of Rapid Mixing Tank
Diameter of impeller (d)		=	0.2 to 0.4D	use	0.3 D
Diameter of impeller (d)		=	1.200	m	
	n	=	0.261188569	rps	
		=	15.67131412	rpm	
use gear box to convert	rpm(st	and	ard motor) to	15.67131	rpm

5 Check Reynolds number for tur	bulent	flov	V					
Theory	N_R	=	$\frac{d^2n\rho}{\mu}$) -				
	N_{R}	=		419,018	> 10,000	ОК		
						Therefore th	nis equation i	is Valid
6 Dimentions of impeller are as fo	ollow							
- Diameter of impeller (d)		=	,	20.0	cm.			

- Width of impeller (W)	=	30.0	cm.

7 Check Impeller shaft torque

Theory
$$P = 2\pi nT$$

		Pa	ige 3 of 5		
	Т	=	133.6827314	N-m	
. choose	e motor gear	=	15.67131412	rpm.	
:	Shaft torque	=	133.6827314	N-m	
Use Standard	d motor of P'	=	0.3676	HP	
8 Head loss through the mi Theory ∴	xer G	=	$\frac{g\rho\sqrt{h_L}}{t\mu}$ 4.078534E-05	m.	
9 Check Mixer Tip Speed					
Theory	Tip Speed	=	πDn	m/s	
<i>.</i>	Tip Speed	=	0.985	m/s	(0.9 m/s m/s,Kawamura)
					(Horizontal Shaft with Paddles)

10 Chack Plada area/Tank area	_	0.00	(Decian Critoria 0.1 0.2)
TO Check Blade area/Tank area	=	0.09	(Design Criteria 0.1 - 0.2)

Where : D = Diameter of Mixing Tank (m)

d = Diameter of Bladed Disk Turbine (m)

L = Long of single bladed (m)

W = Width of single bladed (m)

Equation :
$$d = 0.2$$
 to $0.4D$
 $L = \frac{d}{4}$
 $W = \frac{d}{5}$

sourec : Water Treatment Process : Simple Option (S.Vigneswaran)

Outlet Clarifier Tank

Weir Loading	=	7.3 - 15	m ³ /m.hr	
From Diameter Tank	=	9.694676462	m.	
Minus outlet hole 2 sic	le =	1	m.	(Launders 2 side)
 Length of weir	=	8.694676462	m.	

Theory

Length of weir =
$$\frac{Q(m^3 / hr)}{Weir \ Loading \ (m^3 / m.hr)}$$

Weir Loading =
$$17.25193579 \text{ m}^3/\text{m.hr}$$
 OK.

Give Diameter of	of Orifice	=	0.5	in. =	0.0127	m.
Give 1 m. of out	let weir h	nave ori	fice =	25	pores/side	
	2	side	=	50	pores	
Leng	th of Oi	rifice	=	0.635	m./ 1 m. weir	
•	1	side	=	0.3175	m./ 1 m. weir	
Then Free Spac	e of wei	-	=	0.6825	m./ 1 m. weir	
: Spac	ce betwe	en orific	ce to ori	fice =	0.0273 m.	
				=	2.73 cm	

Give 1 m. of outlet	25	pores/side			
<i>.</i>	2	side	=	50	pores
Then total orifice			=	435	pores
Then sum area of	orifice	Э	=	0.06	m^2

22 Flow Rate pass through 1 orifice	=	0.345	m ³ /hr
1 9			

Each of orifice area =
$$\frac{\pi D^2}{4}$$

 \therefore Each of orifice area = 0.0001267 m²

Theory Q = Av

 \therefore Velocity pass through each orifice = 0.756603 m/s

23 Inlet Structure

Select velocity =

From Static Mixer Design criteria velocity pass through static mixer = 1 - 2 m/s

m/s

1.5

Theory
$$Q = Av$$

Area $= \frac{Q}{v} m^2$
 $= 0.027778 m^2$
Circular pipe area $= \frac{\pi D^2}{4}$
 $D^2 = 0.035368$
 $D = 0.188063 m.$
 $= 7.404063 in. \approx 7 in.$

24 Calculation Surface Loading (Sedimentation Zone)

Water Works Engineering 0.8333 - 1.6666 m/hr

Kawamura 2 - 3 m/hr