Tutorial to SAP2000 Student Edition

by Keith Kowalkowski for CE470, Design of Metal Structures September 15, 2005

FRAME AND LOADING CONDITIONS

Exterior Loads:P = 168.4 kipsWind:W = 8.19 kipsDistributed Load: $w_u = (1.2*0.233333 + 0.5*0.1166667) = 0.33833$ kips/in

Step 1. Open Program

- Different Versions of Sap2000 vary differently.
- On, ECN computers on the third floor.
- Click "Start-Programs-CE Software-SAP2000 Nonlinear-SAP2000 Nonlinear".

Step 2 Getting Started (Student Edition)

- Click: "File-New"
- 3-35' spans = 105 ft
- I choose to have grid marks in feet and making each 12 units to have units of inches

oordinate System Definition		
Cartesian	Cylindrical	
System Name	GLOBAL	
Number of Grid	Spaces	
× direction	105	
Y direction	1	
Z direction	18	
Grid Spacing		
× direction	12	
Y direction	12	
Z direction	12	
ОК	Cancel	

Step 2: Getting Started

• Click on the xz tab on the top

Step 3. Define Materials and Sections

- Click "Define-Materials" at the top
- Click on the material "steel". It should be listed and then click on "Modify/Show" Material
- Type in the following properties for steel, we don't want to consider dead load separately

Material Name		STEEL	
Type of Material © Isotropic © Orthotropic	C Anisotropic	Type of Design Design	Steel
Analysis Property Data		Design Property Data	
Mass per unit Volume	0.	Steel yield stress, fy	36.
Weight per unit Volume	0.		
Modulus of Elasticity	29000.		
Poisson's Ratio	0.3		
Coeff of Thermal Expansion	6.500E-06		
Shear Modulii	11153.846		

Step 3. Define Materials and Sections

- Click "Define-Sections" at the top.
- Click to: "Add I/Wide Flange".
- Give the section a name and input the properties from the AISC manual.
- Make sure the proper material is listed (STEEL).
- Define all sections for the model

Wide Flange Section		
Section Name	W10X4	9
Properties Mod	lification Factors	Material STEEL
Dimensions Outside height (t3)	9.98	2
Top flange width (t2)	10	
Top flange thickness(tf)	.56	3
Web thickness (tw)	.34	
Bottom flange width(t2b)	10	
Bottom flange thickness (tfb)	.56	OK Cancel

Step 4. Define Nodes and Elements

- Click "Draw-Special Joint". This is a node.
- Add the nodes to the appropriate locations.
- See below.

Step 4. Define Nodes and Elements

- Click "Draw-Draw Frame Element".
- Insert the elements by connecting the nodes.

Step 5. Assigning Sections (For this model)

- Click on (highlight) the three beams
- Click "Assign-Frame-Sections"
- Click on "W27x84" and "ok"
- Click on (highlight) the four columns
- Click "Assign-Frame-Sections"
- Click on "W10x49" and "ok"
- You should see as below

Step 6. Define Restraints

- Click on the two end nodes on the bottom (pinned nodes). Make sure they are highlighted.
- Click on "Assign-Joint-Restraints"
- Click on the second tab so the three translations are highlighted.
- Click "OK"

Step 6. Define Restraints

- Click on the two center nodes on the bottom. Make sure they are highlighted
- Click on "Assign-Joint-Restraints"
- Click on the first tab so all translations and rotations are highlighted.
- Click "OK"

Step 6. Define Restraints

• You should see restraints as below

- Click on the top left node.
- Click on "Assign-Joint Static Loads-Forces"
- Enter the proper loads as shown below.
- Click "OK"

Force Global X 8.19	Options • Add to existing loads
Force Global Y 0. Force Global Z -168.4	 Replace existing loads Delete existing loads
Moment Global XX 0.	ΟΚ

- Click on the top right node (make sure it is the only one clicked).
- Click on "Assign-Joint Static Loads-Forces"
- Enter the proper load as shown below.
- Click "OK"

Load Cas	e Name	LOAD1 🗾
Loads		Options
Force Global X	d	 Add to existing loads
Force Global Y	0.	C Replace existing loads
Force Global Z	-168.4	O Delete existing loads
Moment Global 📈	0.	
Moment Global YY	0.	OK
Moment Global ZZ	0.	Cancel

- Click on all four top beam elements.
- Click on "Assign-Frame Static Loads-Point and Uniform"
- Enter the proper load as shown below.

Click "OK" 🎴	pint and Uniform Span Loads		
	Load Case Name	LOAD1	
	Load Type and Direction ● Forces ● Moments Direction Gravity ▼	Options Add to existing loads Replace existing loads Delete existing loads	
	Point Loads 1. 2. Distance 0. Load 0. Image: Colspan="2">October 2010 Image: Colspan="2">Point Loads Distance 0. Image: Colspan="2">October 2010 Image: Colspan="2">Distance Image: Colspan="2">October 2010 Image: Colsp	3. 4. 0.75 1. 0. 0. C Absolute Distance from End-I	
	Uniform Load	OK Cancel	

- You should see as below.
- Note they may be difficult to see on your printout.

Step 8. Making Pin Connections

- Click on the elements you want to release (The two end columns or end beams will work, you want to make the connection *pinned*). You will need to do this for truss members in roofs.
- Click on Assign-Frame-Releases. Release the "Start nodes or End nodes as required". It depends on which node you click first for the element.

Frame Releases				
Frame Releases Axial Load Shear Force 2 (Major) Shear Force 3 (Minor) Torsion Moment 22 (Minor) Moment 33 (Major)	Start	End		
No Releases				
ОК	Cancel			

Step 8. Making Pin Connections

• You should see as below. However, if you make a mistake you can always Click on "Edit-Undo".

Step 9. Run analysis

- Click "Analyze-Run"
- You should get a deformed shape that looks as below.
- You will be asked to save at this point

• You have four tabs on the top as shown below.

- The J stands for Joint Reactions.
- The F stands for member forces. This is where you will get the design axial forces, shears, and moments. For instance, click on Moment 3-3.
- Click "OK"

ember Force Diagram for Frames			
Load LOAD1 Load Case 💌			
Component			
C Axial Force C Torsion			
C Shear 2-2 C Moment 2-2			
◯ Shear 3-3 ⓒ Moment 3-3			
Scaling			
Auto			
C Scale Factor			
Fill Diagram			
Show Values on Diagram			
OK Cancel			

• You will see something as below:

- If you right click on the element, it will compute the forces on the beam
- Units are in kip-in
- This is what you will do to design your members

- If you want displacements at the nodes and maximum element forces, click on "File-Print Output Tables"
- Click the appropriate boxes and click "OK".
- The file will be found as indicated in the textbox.

Print Output Tabl	es		
Type of Anal	ysis Results		
Displacer Displacer Reaction Spring Fo Frame Fo Frame Jo NLLink F NLLink J	ments	Shell Forces Shell Stresses Shell Joint Forces Plane Stresses Plane Joint Forces Asolid Stresses Asolid Joint Forces	 Solid Stresses Solid Joint Forces Group Force Sum Select Loads
File Na	iOnly T le T ime C: OK	Envelopes Only Spreadsheet Format New Folder\Frame.txt Cancel	Append